61f89b0025
6601458: Move java.math tests from closed to open 6740185: Move java/lang/annotations tests to open 6759433: Move Math and StrictMath regression tests from closed to open Move some more regression tests to the open Reviewed-by: jjg
449 lines
16 KiB
Java
449 lines
16 KiB
Java
/*
|
|
* Copyright 2003 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4826774
|
|
* @summary Numerical tests for hexadecimal inputs to parseDouble, parseFloat
|
|
* @author Joseph D. Darcy
|
|
*/
|
|
|
|
|
|
import java.util.regex.*;
|
|
import sun.misc.FpUtils;
|
|
import sun.misc.DoubleConsts;
|
|
|
|
public class ParseHexFloatingPoint {
|
|
private ParseHexFloatingPoint(){}
|
|
|
|
public static final double infinityD = Double.POSITIVE_INFINITY;
|
|
public static final double NaND = Double.NaN;
|
|
|
|
static int test(String testName, String input,
|
|
double result, double expected) {
|
|
int failures =0;
|
|
|
|
if (Double.compare(result, expected) != 0 ) {
|
|
System.err.println("Failure for " + testName +
|
|
": For input " + input +
|
|
" expected " + expected +
|
|
" got " + result + ".");
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
static int testCase(String input, double expected) {
|
|
int failures =0;
|
|
|
|
|
|
// Try different combination of letter components
|
|
input = input.toLowerCase(java.util.Locale.US);
|
|
|
|
String [] suffices = {"", "f", "F", "d", "D"};
|
|
String [] signs = {"", "-", "+"};
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
String s1 = input;
|
|
if(i == 1)
|
|
s1 = s1.replace('x', 'X');
|
|
|
|
for(int j = 0; j < 2; j++) {
|
|
String s2 = s1;
|
|
if(j == 1)
|
|
s2 = s2.replace('p', 'P');
|
|
|
|
for(int k = 0; k < 2; k++) {
|
|
String s3 = s2;
|
|
if(k == 1)
|
|
s3 = upperCaseHex(s3);
|
|
|
|
|
|
for(int m = 0; m < suffices.length; m++) {
|
|
String s4 = s3 + suffices[m];
|
|
|
|
|
|
for(int n = 0; n < signs.length; n++) {
|
|
String s5 = signs[n] + s4;
|
|
|
|
double result = Double.parseDouble(s5);
|
|
failures += test("Double.parseDouble",
|
|
s5, result, (signs[n].equals("-") ?
|
|
-expected:
|
|
expected));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
static String upperCaseHex(String s) {
|
|
return s.replace('a', 'A').replace('b', 'B').replace('c', 'C').
|
|
replace('d', 'D').replace('e','E').replace('f', 'F');
|
|
}
|
|
|
|
/*
|
|
* Test easy and tricky double rounding cases.
|
|
*/
|
|
static int doubleTests() {
|
|
|
|
/*
|
|
* A String, double pair
|
|
*/
|
|
class PairSD {
|
|
public String s;
|
|
public double d;
|
|
PairSD(String s, double d) {
|
|
this.s = s;
|
|
this.d = d;
|
|
}
|
|
}
|
|
int failures = 0;
|
|
|
|
|
|
|
|
// Hex strings that convert to three; test basic functionality
|
|
// of significand and exponent shift adjusts along with the
|
|
// no-op of adding leading zeros. These cases don't exercise
|
|
// the rounding code.
|
|
String leadingZeros = "0x0000000000000000000";
|
|
String [] threeTests = {
|
|
"0x.003p12",
|
|
"0x.006p11",
|
|
"0x.00cp10",
|
|
"0x.018p9",
|
|
|
|
"0x.3p4",
|
|
"0x.6p3",
|
|
"0x.cp2",
|
|
"0x1.8p1",
|
|
|
|
"0x3p0",
|
|
"0x6.0p-1",
|
|
"0xc.0p-2",
|
|
"0x18.0p-3",
|
|
|
|
"0x3000000p-24",
|
|
"0x3.0p0",
|
|
"0x3.000000p0",
|
|
};
|
|
for(int i=0; i < threeTests.length; i++) {
|
|
String input = threeTests[i];
|
|
failures += testCase(input, 3.0);
|
|
|
|
input.replaceFirst("^0x", leadingZeros);
|
|
failures += testCase(input, 3.0);
|
|
}
|
|
|
|
long bigExponents [] = {
|
|
2*DoubleConsts.MAX_EXPONENT,
|
|
2*DoubleConsts.MIN_EXPONENT,
|
|
|
|
(long)Integer.MAX_VALUE-1,
|
|
(long)Integer.MAX_VALUE,
|
|
(long)Integer.MAX_VALUE+1,
|
|
|
|
(long)Integer.MIN_VALUE-1,
|
|
(long)Integer.MIN_VALUE,
|
|
(long)Integer.MIN_VALUE+1,
|
|
|
|
Long.MAX_VALUE-1,
|
|
Long.MAX_VALUE,
|
|
|
|
Long.MIN_VALUE+1,
|
|
Long.MIN_VALUE,
|
|
};
|
|
|
|
// Test zero significand with large exponents.
|
|
for(int i = 0; i < bigExponents.length; i++) {
|
|
failures += testCase("0x0.0p"+Long.toString(bigExponents[i]) , 0.0);
|
|
}
|
|
|
|
// Test nonzero significand with large exponents.
|
|
for(int i = 0; i < bigExponents.length; i++) {
|
|
long exponent = bigExponents[i];
|
|
failures += testCase("0x10000.0p"+Long.toString(exponent) ,
|
|
(exponent <0?0.0:infinityD));
|
|
}
|
|
|
|
// Test significands with different lengths and bit patterns.
|
|
{
|
|
long signif = 0;
|
|
for(int i = 1; i <= 0xe; i++) {
|
|
signif = (signif <<4) | (long)i;
|
|
failures += testCase("0x"+Long.toHexString(signif)+"p0", signif);
|
|
}
|
|
}
|
|
|
|
PairSD [] testCases = {
|
|
new PairSD("0x0.0p0", 0.0/16.0),
|
|
new PairSD("0x0.1p0", 1.0/16.0),
|
|
new PairSD("0x0.2p0", 2.0/16.0),
|
|
new PairSD("0x0.3p0", 3.0/16.0),
|
|
new PairSD("0x0.4p0", 4.0/16.0),
|
|
new PairSD("0x0.5p0", 5.0/16.0),
|
|
new PairSD("0x0.6p0", 6.0/16.0),
|
|
new PairSD("0x0.7p0", 7.0/16.0),
|
|
new PairSD("0x0.8p0", 8.0/16.0),
|
|
new PairSD("0x0.9p0", 9.0/16.0),
|
|
new PairSD("0x0.ap0", 10.0/16.0),
|
|
new PairSD("0x0.bp0", 11.0/16.0),
|
|
new PairSD("0x0.cp0", 12.0/16.0),
|
|
new PairSD("0x0.dp0", 13.0/16.0),
|
|
new PairSD("0x0.ep0", 14.0/16.0),
|
|
new PairSD("0x0.fp0", 15.0/16.0),
|
|
|
|
// Half-way case between zero and MIN_VALUE rounds down to
|
|
// zero
|
|
new PairSD("0x1.0p-1075", 0.0),
|
|
|
|
// Slighly more than half-way case between zero and
|
|
// MIN_VALUES rounds up to zero.
|
|
new PairSD("0x1.1p-1075", Double.MIN_VALUE),
|
|
new PairSD("0x1.000000000001p-1075", Double.MIN_VALUE),
|
|
new PairSD("0x1.000000000000001p-1075", Double.MIN_VALUE),
|
|
|
|
// More subnormal rounding tests
|
|
new PairSD("0x0.fffffffffffff7fffffp-1022", FpUtils.nextDown(DoubleConsts.MIN_NORMAL)),
|
|
new PairSD("0x0.fffffffffffff8p-1022", DoubleConsts.MIN_NORMAL),
|
|
new PairSD("0x0.fffffffffffff800000001p-1022",DoubleConsts.MIN_NORMAL),
|
|
new PairSD("0x0.fffffffffffff80000000000000001p-1022",DoubleConsts.MIN_NORMAL),
|
|
new PairSD("0x1.0p-1022", DoubleConsts.MIN_NORMAL),
|
|
|
|
|
|
// Large value and overflow rounding tests
|
|
new PairSD("0x1.fffffffffffffp1023", Double.MAX_VALUE),
|
|
new PairSD("0x1.fffffffffffff0000000p1023", Double.MAX_VALUE),
|
|
new PairSD("0x1.fffffffffffff4p1023", Double.MAX_VALUE),
|
|
new PairSD("0x1.fffffffffffff7fffffp1023", Double.MAX_VALUE),
|
|
new PairSD("0x1.fffffffffffff8p1023", infinityD),
|
|
new PairSD("0x1.fffffffffffff8000001p1023", infinityD),
|
|
|
|
new PairSD("0x1.ffffffffffffep1023", FpUtils.nextDown(Double.MAX_VALUE)),
|
|
new PairSD("0x1.ffffffffffffe0000p1023", FpUtils.nextDown(Double.MAX_VALUE)),
|
|
new PairSD("0x1.ffffffffffffe8p1023", FpUtils.nextDown(Double.MAX_VALUE)),
|
|
new PairSD("0x1.ffffffffffffe7p1023", FpUtils.nextDown(Double.MAX_VALUE)),
|
|
new PairSD("0x1.ffffffffffffeffffffp1023", Double.MAX_VALUE),
|
|
new PairSD("0x1.ffffffffffffe8000001p1023", Double.MAX_VALUE),
|
|
};
|
|
|
|
for (int i = 0; i < testCases.length; i++) {
|
|
failures += testCase(testCases[i].s,testCases[i].d);
|
|
}
|
|
|
|
failures += significandAlignmentTests();
|
|
|
|
{
|
|
java.util.Random rand = new java.util.Random();
|
|
// Consistency check; double => hexadecimal => double
|
|
// preserves the original value.
|
|
for(int i = 0; i < 1000; i++) {
|
|
double d = rand.nextDouble();
|
|
failures += testCase(Double.toHexString(d), d);
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/*
|
|
* Verify rounding works the same regardless of how the
|
|
* significand is aligned on input. A useful extension could be
|
|
* to have this sort of test for strings near the overflow
|
|
* threshold.
|
|
*/
|
|
static int significandAlignmentTests() {
|
|
int failures = 0;
|
|
// baseSignif * 2^baseExp = nextDown(2.0)
|
|
long [] baseSignifs = {
|
|
0x1ffffffffffffe00L,
|
|
0x1fffffffffffff00L
|
|
};
|
|
|
|
double [] answers = {
|
|
FpUtils.nextDown(FpUtils.nextDown(2.0)),
|
|
FpUtils.nextDown(2.0),
|
|
2.0
|
|
};
|
|
|
|
int baseExp = -60;
|
|
int count = 0;
|
|
for(int i = 0; i < 2; i++) {
|
|
for(long j = 0; j <= 0xfL; j++) {
|
|
for(long k = 0; k <= 8; k+= 4) { // k = {0, 4, 8}
|
|
long base = baseSignifs[i];
|
|
long testValue = base | (j<<4) | k;
|
|
|
|
int offset = 0;
|
|
// Calculate when significand should be incremented
|
|
// see table 4.7 in Koren book
|
|
|
|
if ((base & 0x100L) == 0L ) { // lsb is 0
|
|
if ( (j >= 8L) && // round is 1
|
|
((j & 0x7L) != 0 || k != 0 ) ) // sticky is 1
|
|
offset = 1;
|
|
}
|
|
else { // lsb is 1
|
|
if (j >= 8L) // round is 1
|
|
offset = 1;
|
|
}
|
|
|
|
double expected = answers[i+offset];
|
|
|
|
for(int m = -2; m <= 3; m++) {
|
|
count ++;
|
|
|
|
// Form equal value string and evaluate it
|
|
String s = "0x" +
|
|
Long.toHexString((m >=0) ?(testValue<<m):(testValue>>(-m))) +
|
|
"p" + (baseExp - m);
|
|
|
|
failures += testCase(s, expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
|
|
/*
|
|
* Test tricky float rounding cases. The code which
|
|
* reads in a hex string converts the string to a double value.
|
|
* If a float value is needed, the double value is cast to float.
|
|
* However, the cast be itself not always guaranteed to return the
|
|
* right result since:
|
|
*
|
|
* 1. hex string => double can discard a sticky bit which would
|
|
* influence a direct hex string => float conversion.
|
|
*
|
|
* 2. hex string => double => float can have a rounding to double
|
|
* precision which results in a larger float value while a direct
|
|
* hex string => float conversion would not round up.
|
|
*
|
|
* This method includes tests of the latter two possibilities.
|
|
*/
|
|
static int floatTests(){
|
|
int failures = 0;
|
|
|
|
/*
|
|
* A String, float pair
|
|
*/
|
|
class PairSD {
|
|
public String s;
|
|
public float f;
|
|
PairSD(String s, float f) {
|
|
this.s = s;
|
|
this.f = f;
|
|
}
|
|
}
|
|
|
|
String [][] roundingTestCases = {
|
|
// Target float value hard rouding version
|
|
|
|
{"0x1.000000p0", "0x1.0000000000001p0"},
|
|
|
|
// Try some values that should round up to nextUp(1.0f)
|
|
{"0x1.000002p0", "0x1.0000010000001p0"},
|
|
{"0x1.000002p0", "0x1.00000100000008p0"},
|
|
{"0x1.000002p0", "0x1.0000010000000fp0"},
|
|
{"0x1.000002p0", "0x1.00000100000001p0"},
|
|
{"0x1.000002p0", "0x1.00000100000000000000000000000000000000001p0"},
|
|
{"0x1.000002p0", "0x1.0000010000000fp0"},
|
|
|
|
// Potential double rounding cases
|
|
{"0x1.000002p0", "0x1.000002fffffffp0"},
|
|
{"0x1.000002p0", "0x1.000002fffffff8p0"},
|
|
{"0x1.000002p0", "0x1.000002ffffffffp0"},
|
|
|
|
{"0x1.000002p0", "0x1.000002ffff0ffp0"},
|
|
{"0x1.000002p0", "0x1.000002ffff0ff8p0"},
|
|
{"0x1.000002p0", "0x1.000002ffff0fffp0"},
|
|
|
|
|
|
{"0x1.000000p0", "0x1.000000fffffffp0"},
|
|
{"0x1.000000p0", "0x1.000000fffffff8p0"},
|
|
{"0x1.000000p0", "0x1.000000ffffffffp0"},
|
|
|
|
{"0x1.000000p0", "0x1.000000ffffffep0"},
|
|
{"0x1.000000p0", "0x1.000000ffffffe8p0"},
|
|
{"0x1.000000p0", "0x1.000000ffffffefp0"},
|
|
|
|
// Float subnormal cases
|
|
{"0x0.000002p-126", "0x0.0000010000001p-126"},
|
|
{"0x0.000002p-126", "0x0.00000100000000000001p-126"},
|
|
|
|
{"0x0.000006p-126", "0x0.0000050000001p-126"},
|
|
{"0x0.000006p-126", "0x0.00000500000000000001p-126"},
|
|
|
|
{"0x0.0p-149", "0x0.7ffffffffffffffp-149"},
|
|
{"0x1.0p-148", "0x1.3ffffffffffffffp-148"},
|
|
{"0x1.cp-147", "0x1.bffffffffffffffp-147"},
|
|
|
|
{"0x1.fffffcp-127", "0x1.fffffdffffffffp-127"},
|
|
};
|
|
|
|
String [] signs = {"", "-"};
|
|
|
|
for(int i = 0; i < roundingTestCases.length; i++) {
|
|
for(int j = 0; j < signs.length; j++) {
|
|
String expectedIn = signs[j]+roundingTestCases[i][0];
|
|
String resultIn = signs[j]+roundingTestCases[i][1];
|
|
|
|
float expected = Float.parseFloat(expectedIn);
|
|
float result = Float.parseFloat(resultIn);
|
|
|
|
if( Float.compare(expected, result) != 0) {
|
|
failures += 1;
|
|
System.err.println("" + (i+1));
|
|
System.err.println("Expected = " + Float.toHexString(expected));
|
|
System.err.println("Rounded = " + Float.toHexString(result));
|
|
System.err.println("Double = " + Double.toHexString(Double.parseDouble(resultIn)));
|
|
System.err.println("Input = " + resultIn);
|
|
System.err.println("");
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static void main(String argv[]) {
|
|
int failures = 0;
|
|
|
|
failures += doubleTests();
|
|
failures += floatTests();
|
|
|
|
if (failures != 0) {
|
|
throw new RuntimeException("" + failures + " failures while " +
|
|
"testing hexadecimal floating-point " +
|
|
"parsing.");
|
|
}
|
|
}
|
|
|
|
}
|