b9f2f3e199
Reviewed-by: coleenp, kbarrett, dholmes
277 lines
7.8 KiB
C++
277 lines
7.8 KiB
C++
/*
|
|
* Copyright (c) 2009, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
|
|
#define SHARE_VM_UTILITIES_STACK_INLINE_HPP
|
|
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/stack.hpp"
|
|
#include "utilities/copy.hpp"
|
|
|
|
template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
|
|
size_t max_size):
|
|
_seg_size(segment_size),
|
|
_max_cache_size(max_cache_size),
|
|
_max_size(adjust_max_size(max_size, segment_size))
|
|
{
|
|
assert(_max_size % _seg_size == 0, "not a multiple");
|
|
}
|
|
|
|
template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
|
|
{
|
|
assert(seg_size > 0, "cannot be 0");
|
|
assert(max_size >= seg_size || max_size == 0, "max_size too small");
|
|
const size_t limit = max_uintx - (seg_size - 1);
|
|
if (max_size == 0 || max_size > limit) {
|
|
max_size = limit;
|
|
}
|
|
return (max_size + seg_size - 1) / seg_size * seg_size;
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
|
|
StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
|
|
{
|
|
reset(true);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::push(E item)
|
|
{
|
|
assert(!is_full(), "pushing onto a full stack");
|
|
if (this->_cur_seg_size == this->_seg_size) {
|
|
push_segment();
|
|
}
|
|
this->_cur_seg[this->_cur_seg_size] = item;
|
|
++this->_cur_seg_size;
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E Stack<E, F>::pop()
|
|
{
|
|
assert(!is_empty(), "popping from an empty stack");
|
|
if (this->_cur_seg_size == 1) {
|
|
E tmp = _cur_seg[--this->_cur_seg_size];
|
|
pop_segment();
|
|
return tmp;
|
|
}
|
|
return this->_cur_seg[--this->_cur_seg_size];
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::clear(bool clear_cache)
|
|
{
|
|
free_segments(_cur_seg);
|
|
if (clear_cache) free_segments(_cache);
|
|
reset(clear_cache);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
|
|
{
|
|
const size_t elem_sz = sizeof(E);
|
|
const size_t ptr_sz = sizeof(E*);
|
|
assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
|
|
if (elem_sz < ptr_sz) {
|
|
return align_up(seg_size * elem_sz, ptr_sz) / elem_sz;
|
|
}
|
|
return seg_size;
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
size_t Stack<E, F>::link_offset() const
|
|
{
|
|
return align_up(this->_seg_size * sizeof(E), sizeof(E*));
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
size_t Stack<E, F>::segment_bytes() const
|
|
{
|
|
return link_offset() + sizeof(E*);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E** Stack<E, F>::link_addr(E* seg) const
|
|
{
|
|
return (E**) ((char*)seg + link_offset());
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E* Stack<E, F>::get_link(E* seg) const
|
|
{
|
|
return *link_addr(seg);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
|
|
{
|
|
*link_addr(new_seg) = old_seg;
|
|
return new_seg;
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E* Stack<E, F>::alloc(size_t bytes)
|
|
{
|
|
return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::free(E* addr, size_t bytes)
|
|
{
|
|
FREE_C_HEAP_ARRAY(char, (char*) addr);
|
|
}
|
|
|
|
// Stack is used by the GC code and in some hot paths a lot of the Stack
|
|
// code gets inlined. This is generally good, but when too much code has
|
|
// been inlined, no further inlining is allowed by GCC. Therefore we need
|
|
// to prevent parts of the slow path in Stack to be inlined to allow other
|
|
// code to be.
|
|
template <class E, MEMFLAGS F>
|
|
NOINLINE void Stack<E, F>::push_segment()
|
|
{
|
|
assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
|
|
E* next;
|
|
if (this->_cache_size > 0) {
|
|
// Use a cached segment.
|
|
next = _cache;
|
|
_cache = get_link(_cache);
|
|
--this->_cache_size;
|
|
} else {
|
|
next = alloc(segment_bytes());
|
|
DEBUG_ONLY(zap_segment(next, true);)
|
|
}
|
|
const bool at_empty_transition = is_empty();
|
|
this->_cur_seg = set_link(next, _cur_seg);
|
|
this->_cur_seg_size = 0;
|
|
this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
|
|
DEBUG_ONLY(verify(at_empty_transition);)
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::pop_segment()
|
|
{
|
|
assert(this->_cur_seg_size == 0, "current segment is not empty");
|
|
E* const prev = get_link(_cur_seg);
|
|
if (this->_cache_size < this->_max_cache_size) {
|
|
// Add the current segment to the cache.
|
|
DEBUG_ONLY(zap_segment(_cur_seg, false);)
|
|
_cache = set_link(_cur_seg, _cache);
|
|
++this->_cache_size;
|
|
} else {
|
|
DEBUG_ONLY(zap_segment(_cur_seg, true);)
|
|
free(_cur_seg, segment_bytes());
|
|
}
|
|
const bool at_empty_transition = prev == NULL;
|
|
this->_cur_seg = prev;
|
|
this->_cur_seg_size = this->_seg_size;
|
|
this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
|
|
DEBUG_ONLY(verify(at_empty_transition);)
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::free_segments(E* seg)
|
|
{
|
|
const size_t bytes = segment_bytes();
|
|
while (seg != NULL) {
|
|
E* const prev = get_link(seg);
|
|
free(seg, bytes);
|
|
seg = prev;
|
|
}
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::reset(bool reset_cache)
|
|
{
|
|
this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
|
|
this->_full_seg_size = 0;
|
|
_cur_seg = NULL;
|
|
if (reset_cache) {
|
|
this->_cache_size = 0;
|
|
_cache = NULL;
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::verify(bool at_empty_transition) const
|
|
{
|
|
assert(size() <= this->max_size(), "stack exceeded bounds");
|
|
assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
|
|
assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
|
|
|
|
assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
|
|
assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
|
|
assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
|
|
|
|
if (is_empty()) {
|
|
assert(this->_cur_seg_size == this->segment_size(), "sanity");
|
|
}
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
|
|
{
|
|
if (!ZapStackSegments) return;
|
|
const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
|
|
Copy::fill_to_bytes(seg, zap_bytes, badStackSegVal);
|
|
}
|
|
#endif
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E* ResourceStack<E, F>::alloc(size_t bytes)
|
|
{
|
|
return (E*) resource_allocate_bytes(bytes);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void ResourceStack<E, F>::free(E* addr, size_t bytes)
|
|
{
|
|
resource_free_bytes((char*) addr, bytes);
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
void StackIterator<E, F>::sync()
|
|
{
|
|
_full_seg_size = _stack._full_seg_size;
|
|
_cur_seg_size = _stack._cur_seg_size;
|
|
_cur_seg = _stack._cur_seg;
|
|
}
|
|
|
|
template <class E, MEMFLAGS F>
|
|
E* StackIterator<E, F>::next_addr()
|
|
{
|
|
assert(!is_empty(), "no items left");
|
|
if (_cur_seg_size == 1) {
|
|
E* addr = _cur_seg;
|
|
_cur_seg = _stack.get_link(_cur_seg);
|
|
_cur_seg_size = _stack.segment_size();
|
|
_full_seg_size -= _stack.segment_size();
|
|
return addr;
|
|
}
|
|
return _cur_seg + --_cur_seg_size;
|
|
}
|
|
|
|
#endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP
|