jdk-24/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp
Mikael Vidstedt a0da47fd66 8029233: Update copyright year to match last edit in jdk8 hotspot repository for 2013
Copyright year updated for files modified during 2013

Reviewed-by: twisti, iveresov
2013-12-24 11:48:39 -08:00

1129 lines
54 KiB
C++

/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
#include "asm/register.hpp"
// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
// level; i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.
class Assembler : public AbstractAssembler {
friend class AbstractAssembler;
friend class AddressLiteral;
// code patchers need various routines like inv_wdisp()
friend class NativeInstruction;
friend class NativeGeneralJump;
friend class Relocation;
friend class Label;
public:
// op carries format info; see page 62 & 267
enum ops {
call_op = 1, // fmt 1
branch_op = 0, // also sethi (fmt2)
arith_op = 2, // fmt 3, arith & misc
ldst_op = 3 // fmt 3, load/store
};
enum op2s {
bpr_op2 = 3,
fb_op2 = 6,
fbp_op2 = 5,
br_op2 = 2,
bp_op2 = 1,
sethi_op2 = 4
};
enum op3s {
// selected op3s
add_op3 = 0x00,
and_op3 = 0x01,
or_op3 = 0x02,
xor_op3 = 0x03,
sub_op3 = 0x04,
andn_op3 = 0x05,
orn_op3 = 0x06,
xnor_op3 = 0x07,
addc_op3 = 0x08,
mulx_op3 = 0x09,
umul_op3 = 0x0a,
smul_op3 = 0x0b,
subc_op3 = 0x0c,
udivx_op3 = 0x0d,
udiv_op3 = 0x0e,
sdiv_op3 = 0x0f,
addcc_op3 = 0x10,
andcc_op3 = 0x11,
orcc_op3 = 0x12,
xorcc_op3 = 0x13,
subcc_op3 = 0x14,
andncc_op3 = 0x15,
orncc_op3 = 0x16,
xnorcc_op3 = 0x17,
addccc_op3 = 0x18,
umulcc_op3 = 0x1a,
smulcc_op3 = 0x1b,
subccc_op3 = 0x1c,
udivcc_op3 = 0x1e,
sdivcc_op3 = 0x1f,
taddcc_op3 = 0x20,
tsubcc_op3 = 0x21,
taddcctv_op3 = 0x22,
tsubcctv_op3 = 0x23,
mulscc_op3 = 0x24,
sll_op3 = 0x25,
sllx_op3 = 0x25,
srl_op3 = 0x26,
srlx_op3 = 0x26,
sra_op3 = 0x27,
srax_op3 = 0x27,
rdreg_op3 = 0x28,
membar_op3 = 0x28,
flushw_op3 = 0x2b,
movcc_op3 = 0x2c,
sdivx_op3 = 0x2d,
popc_op3 = 0x2e,
movr_op3 = 0x2f,
sir_op3 = 0x30,
wrreg_op3 = 0x30,
saved_op3 = 0x31,
fpop1_op3 = 0x34,
fpop2_op3 = 0x35,
impdep1_op3 = 0x36,
impdep2_op3 = 0x37,
jmpl_op3 = 0x38,
rett_op3 = 0x39,
trap_op3 = 0x3a,
flush_op3 = 0x3b,
save_op3 = 0x3c,
restore_op3 = 0x3d,
done_op3 = 0x3e,
retry_op3 = 0x3e,
lduw_op3 = 0x00,
ldub_op3 = 0x01,
lduh_op3 = 0x02,
ldd_op3 = 0x03,
stw_op3 = 0x04,
stb_op3 = 0x05,
sth_op3 = 0x06,
std_op3 = 0x07,
ldsw_op3 = 0x08,
ldsb_op3 = 0x09,
ldsh_op3 = 0x0a,
ldx_op3 = 0x0b,
stx_op3 = 0x0e,
swap_op3 = 0x0f,
stwa_op3 = 0x14,
stxa_op3 = 0x1e,
ldf_op3 = 0x20,
ldfsr_op3 = 0x21,
ldqf_op3 = 0x22,
lddf_op3 = 0x23,
stf_op3 = 0x24,
stfsr_op3 = 0x25,
stqf_op3 = 0x26,
stdf_op3 = 0x27,
prefetch_op3 = 0x2d,
casa_op3 = 0x3c,
casxa_op3 = 0x3e,
mftoi_op3 = 0x36,
alt_bit_op3 = 0x10,
cc_bit_op3 = 0x10
};
enum opfs {
// selected opfs
fmovs_opf = 0x01,
fmovd_opf = 0x02,
fnegs_opf = 0x05,
fnegd_opf = 0x06,
fadds_opf = 0x41,
faddd_opf = 0x42,
fsubs_opf = 0x45,
fsubd_opf = 0x46,
fmuls_opf = 0x49,
fmuld_opf = 0x4a,
fdivs_opf = 0x4d,
fdivd_opf = 0x4e,
fcmps_opf = 0x51,
fcmpd_opf = 0x52,
fstox_opf = 0x81,
fdtox_opf = 0x82,
fxtos_opf = 0x84,
fxtod_opf = 0x88,
fitos_opf = 0xc4,
fdtos_opf = 0xc6,
fitod_opf = 0xc8,
fstod_opf = 0xc9,
fstoi_opf = 0xd1,
fdtoi_opf = 0xd2,
mdtox_opf = 0x110,
mstouw_opf = 0x111,
mstosw_opf = 0x113,
mxtod_opf = 0x118,
mwtos_opf = 0x119
};
enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
enum Condition {
// for FBfcc & FBPfcc instruction
f_never = 0,
f_notEqual = 1,
f_notZero = 1,
f_lessOrGreater = 2,
f_unorderedOrLess = 3,
f_less = 4,
f_unorderedOrGreater = 5,
f_greater = 6,
f_unordered = 7,
f_always = 8,
f_equal = 9,
f_zero = 9,
f_unorderedOrEqual = 10,
f_greaterOrEqual = 11,
f_unorderedOrGreaterOrEqual = 12,
f_lessOrEqual = 13,
f_unorderedOrLessOrEqual = 14,
f_ordered = 15,
// V8 coproc, pp 123 v8 manual
cp_always = 8,
cp_never = 0,
cp_3 = 7,
cp_2 = 6,
cp_2or3 = 5,
cp_1 = 4,
cp_1or3 = 3,
cp_1or2 = 2,
cp_1or2or3 = 1,
cp_0 = 9,
cp_0or3 = 10,
cp_0or2 = 11,
cp_0or2or3 = 12,
cp_0or1 = 13,
cp_0or1or3 = 14,
cp_0or1or2 = 15,
// for integers
never = 0,
equal = 1,
zero = 1,
lessEqual = 2,
less = 3,
lessEqualUnsigned = 4,
lessUnsigned = 5,
carrySet = 5,
negative = 6,
overflowSet = 7,
always = 8,
notEqual = 9,
notZero = 9,
greater = 10,
greaterEqual = 11,
greaterUnsigned = 12,
greaterEqualUnsigned = 13,
carryClear = 13,
positive = 14,
overflowClear = 15
};
enum CC {
icc = 0, xcc = 2,
// ptr_cc is the correct condition code for a pointer or intptr_t:
ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
};
enum PrefetchFcn {
severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
};
public:
// Helper functions for groups of instructions
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
enum Membar_mask_bits { // page 184, v9
StoreStore = 1 << 3,
LoadStore = 1 << 2,
StoreLoad = 1 << 1,
LoadLoad = 1 << 0,
Sync = 1 << 6,
MemIssue = 1 << 5,
Lookaside = 1 << 4
};
static bool is_in_wdisp_range(address a, address b, int nbits) {
intptr_t d = intptr_t(b) - intptr_t(a);
return is_simm(d, nbits + 2);
}
address target_distance(Label& L) {
// Assembler::target(L) should be called only when
// a branch instruction is emitted since non-bound
// labels record current pc() as a branch address.
if (L.is_bound()) return target(L);
// Return current address for non-bound labels.
return pc();
}
// test if label is in simm16 range in words (wdisp16).
bool is_in_wdisp16_range(Label& L) {
return is_in_wdisp_range(target_distance(L), pc(), 16);
}
// test if the distance between two addresses fits in simm30 range in words
static bool is_in_wdisp30_range(address a, address b) {
return is_in_wdisp_range(a, b, 30);
}
enum ASIs { // page 72, v9
ASI_PRIMARY = 0x80,
ASI_PRIMARY_NOFAULT = 0x82,
ASI_PRIMARY_LITTLE = 0x88,
// Block initializing store
ASI_ST_BLKINIT_PRIMARY = 0xE2,
// Most-Recently-Used (MRU) BIS variant
ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
// add more from book as needed
};
protected:
// helpers
// x is supposed to fit in a field "nbits" wide
// and be sign-extended. Check the range.
static void assert_signed_range(intptr_t x, int nbits) {
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
}
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
assert( (x & 3) == 0, "not word aligned");
assert_signed_range(x, nbits + 2);
}
static void assert_unsigned_const(int x, int nbits) {
assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
}
// fields: note bits numbered from LSB = 0,
// fields known by inclusive bit range
static int fmask(juint hi_bit, juint lo_bit) {
assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
return (1 << ( hi_bit-lo_bit + 1 )) - 1;
}
// inverse of u_field
static int inv_u_field(int x, int hi_bit, int lo_bit) {
juint r = juint(x) >> lo_bit;
r &= fmask( hi_bit, lo_bit);
return int(r);
}
// signed version: extract from field and sign-extend
static int inv_s_field(int x, int hi_bit, int lo_bit) {
int sign_shift = 31 - hi_bit;
return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
}
// given a field that ranges from hi_bit to lo_bit (inclusive,
// LSB = 0), and an unsigned value for the field,
// shift it into the field
#ifdef ASSERT
static int u_field(int x, int hi_bit, int lo_bit) {
assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
"value out of range");
int r = x << lo_bit;
assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
return r;
}
#else
// make sure this is inlined as it will reduce code size significantly
#define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
#endif
static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
static int op( int x) { return u_field(x, 31, 30); }
static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
static int fcn( int x) { return u_field(x, 29, 25); }
static int op3( int x) { return u_field(x, 24, 19); }
static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
static int cond( int x) { return u_field(x, 28, 25); }
static int cond_mov( int x) { return u_field(x, 17, 14); }
static int rcond( RCondition x) { return u_field(x, 12, 10); }
static int op2( int x) { return u_field(x, 24, 22); }
static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
static int imm_asi( int x) { return u_field(x, 12, 5); }
static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
static int opf_low6( int w) { return u_field(w, 10, 5); }
static int opf_low5( int w) { return u_field(w, 9, 5); }
static int trapcc( CC cc) { return u_field(cc, 12, 11); }
static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
static int opf( int x) { return u_field(x, 13, 5); }
static bool is_cbcond( int x ) {
return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
}
static bool is_cxb( int x ) {
assert(is_cbcond(x), "wrong instruction");
return (x & (1<<21)) != 0;
}
static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
static int inv_cond_cbcond(int x) {
assert(is_cbcond(x), "wrong instruction");
return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
}
static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
// some float instructions use this encoding on the op3 field
static int alt_op3(int op, FloatRegisterImpl::Width w) {
int r;
switch(w) {
case FloatRegisterImpl::S: r = op + 0; break;
case FloatRegisterImpl::D: r = op + 3; break;
case FloatRegisterImpl::Q: r = op + 2; break;
default: ShouldNotReachHere(); break;
}
return op3(r);
}
// compute inverse of simm
static int inv_simm(int x, int nbits) {
return (int)(x << (32 - nbits)) >> (32 - nbits);
}
static int inv_simm13( int x ) { return inv_simm(x, 13); }
// signed immediate, in low bits, nbits long
static int simm(int x, int nbits) {
assert_signed_range(x, nbits);
return x & (( 1 << nbits ) - 1);
}
// compute inverse of wdisp16
static intptr_t inv_wdisp16(int x, intptr_t pos) {
int lo = x & (( 1 << 14 ) - 1);
int hi = (x >> 20) & 3;
if (hi >= 2) hi |= ~1;
return (((hi << 14) | lo) << 2) + pos;
}
// word offset, 14 bits at LSend, 2 bits at B21, B20
static int wdisp16(intptr_t x, intptr_t off) {
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, 16);
int r = (xx >> 2) & ((1 << 14) - 1)
| ( ( (xx>>(2+14)) & 3 ) << 20 );
assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
return r;
}
// compute inverse of wdisp10
static intptr_t inv_wdisp10(int x, intptr_t pos) {
assert(is_cbcond(x), "wrong instruction");
int lo = inv_u_field(x, 12, 5);
int hi = (x >> 19) & 3;
if (hi >= 2) hi |= ~1;
return (((hi << 8) | lo) << 2) + pos;
}
// word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
static int wdisp10(intptr_t x, intptr_t off) {
assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, 10);
int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
| ( ( (xx >> (2+8)) & 3 ) << 19 );
// Have to fake cbcond instruction to pass assert in inv_wdisp10()
assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
return r;
}
// word displacement in low-order nbits bits
static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
int pre_sign_extend = x & (( 1 << nbits ) - 1);
int r = pre_sign_extend >= ( 1 << (nbits-1) )
? pre_sign_extend | ~(( 1 << nbits ) - 1)
: pre_sign_extend;
return (r << 2) + pos;
}
static int wdisp( intptr_t x, intptr_t off, int nbits ) {
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, nbits);
int r = (xx >> 2) & (( 1 << nbits ) - 1);
assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
return r;
}
// Extract the top 32 bits in a 64 bit word
static int32_t hi32( int64_t x ) {
int32_t r = int32_t( (uint64_t)x >> 32 );
return r;
}
// given a sethi instruction, extract the constant, left-justified
static int inv_hi22( int x ) {
return x << 10;
}
// create an imm22 field, given a 32-bit left-justified constant
static int hi22( int x ) {
int r = int( juint(x) >> 10 );
assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
return r;
}
// create a low10 __value__ (not a field) for a given a 32-bit constant
static int low10( int x ) {
return x & ((1 << 10) - 1);
}
// instruction only in VIS3
static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
// instruction only in v9
static void v9_only() { } // do nothing
// instruction deprecated in v9
static void v9_dep() { } // do nothing for now
// v8 has no CC field
static void v8_no_cc(CC cc) { if (cc) v9_only(); }
protected:
// Simple delay-slot scheme:
// In order to check the programmer, the assembler keeps track of deley slots.
// It forbids CTIs in delay slots (conservative, but should be OK).
// Also, when putting an instruction into a delay slot, you must say
// asm->delayed()->add(...), in order to check that you don't omit
// delay-slot instructions.
// To implement this, we use a simple FSA
#ifdef ASSERT
#define CHECK_DELAY
#endif
#ifdef CHECK_DELAY
enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
#endif
public:
// Tells assembler next instruction must NOT be in delay slot.
// Use at start of multinstruction macros.
void assert_not_delayed() {
// This is a separate overloading to avoid creation of string constants
// in non-asserted code--with some compilers this pollutes the object code.
#ifdef CHECK_DELAY
assert_not_delayed("next instruction should not be a delay slot");
#endif
}
void assert_not_delayed(const char* msg) {
#ifdef CHECK_DELAY
assert(delay_state == no_delay, msg);
#endif
}
protected:
// Delay slot helpers
// cti is called when emitting control-transfer instruction,
// BEFORE doing the emitting.
// Only effective when assertion-checking is enabled.
void cti() {
#ifdef CHECK_DELAY
assert_not_delayed("cti should not be in delay slot");
#endif
}
// called when emitting cti with a delay slot, AFTER emitting
void has_delay_slot() {
#ifdef CHECK_DELAY
assert_not_delayed("just checking");
delay_state = at_delay_slot;
#endif
}
// cbcond instruction should not be generated one after an other
bool cbcond_before() {
if (offset() == 0) return false; // it is first instruction
int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
return is_cbcond(x);
}
void no_cbcond_before() {
assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
}
public:
bool use_cbcond(Label& L) {
if (!UseCBCond || cbcond_before()) return false;
intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
assert( (x & 3) == 0, "not word aligned");
return is_simm12(x);
}
// Tells assembler you know that next instruction is delayed
Assembler* delayed() {
#ifdef CHECK_DELAY
assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
delay_state = filling_delay_slot;
#endif
return this;
}
void flush() {
#ifdef CHECK_DELAY
assert ( delay_state == no_delay, "ending code with a delay slot");
#endif
AbstractAssembler::flush();
}
inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
inline void emit_data(int x) { emit_int32(x); }
inline void emit_data(int, RelocationHolder const&);
inline void emit_data(int, relocInfo::relocType rtype);
// helper for above fcns
inline void check_delay();
public:
// instructions, refer to page numbers in the SPARC Architecture Manual, V9
// pp 135 (addc was addx in v8)
inline void add(Register s1, Register s2, Register d );
inline void add(Register s1, int simm13a, Register d );
void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 136
inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
// compare and branch
inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
protected: // use MacroAssembler::br instead
// pp 138
inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
inline void fb( Condition c, bool a, Label& L );
// pp 141
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
// pp 144
inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
inline void br( Condition c, bool a, Label& L );
// pp 146
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
// pp 149
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
public:
// pp 150
// These instructions compare the contents of s2 with the contents of
// memory at address in s1. If the values are equal, the contents of memory
// at address s1 is swapped with the data in d. If the values are not equal,
// the the contents of memory at s1 is loaded into d, without the swap.
void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
// pp 152
void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 155
void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
// pp 156
void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
// pp 157
void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
// pp 159
void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
// pp 160
void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
// pp 161
void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
// pp 162
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
// pp 163
void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
// pp 164
void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
// pp 165
inline void flush( Register s1, Register s2 );
inline void flush( Register s1, int simm13a);
// pp 167
void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); }
// pp 168
void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
// v8 unimp == illtrap(0)
// pp 169
void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
// pp 170
void jmpl( Register s1, Register s2, Register d );
void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
// 171
inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
inline void ldfsr( Register s1, Register s2 );
inline void ldfsr( Register s1, int simm13a);
inline void ldxfsr( Register s1, Register s2 );
inline void ldxfsr( Register s1, int simm13a);
// 173
void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 175, lduw is ld on v8
inline void ldsb( Register s1, Register s2, Register d );
inline void ldsb( Register s1, int simm13a, Register d);
inline void ldsh( Register s1, Register s2, Register d );
inline void ldsh( Register s1, int simm13a, Register d);
inline void ldsw( Register s1, Register s2, Register d );
inline void ldsw( Register s1, int simm13a, Register d);
inline void ldub( Register s1, Register s2, Register d );
inline void ldub( Register s1, int simm13a, Register d);
inline void lduh( Register s1, Register s2, Register d );
inline void lduh( Register s1, int simm13a, Register d);
inline void lduw( Register s1, Register s2, Register d );
inline void lduw( Register s1, int simm13a, Register d);
inline void ldx( Register s1, Register s2, Register d );
inline void ldx( Register s1, int simm13a, Register d);
inline void ldd( Register s1, Register s2, Register d );
inline void ldd( Register s1, int simm13a, Register d);
// pp 177
void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 181
void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 183
void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
// pp 185
void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
// pp 189
void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
// pp 191
void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
// pp 195
void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
// pp 196
void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 197
void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 201
void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
// pp 202
void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
// pp 203
void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 208
// not implementing read privileged register
inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
// pp 213
inline void rett( Register s1, Register s2);
inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
// pp 214
void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
void save( Register s1, int simm13a, Register d ) {
// make sure frame is at least large enough for the register save area
assert(-simm13a >= 16 * wordSize, "frame too small");
emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
}
void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 216
void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
// pp 217
inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
// pp 218
void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
// pp 220
void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
// pp 221
void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
// pp 222
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
inline void stfsr( Register s1, Register s2 );
inline void stfsr( Register s1, int simm13a);
inline void stxfsr( Register s1, Register s2 );
inline void stxfsr( Register s1, int simm13a);
// pp 224
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// p 226
inline void stb( Register d, Register s1, Register s2 );
inline void stb( Register d, Register s1, int simm13a);
inline void sth( Register d, Register s1, Register s2 );
inline void sth( Register d, Register s1, int simm13a);
inline void stw( Register d, Register s1, Register s2 );
inline void stw( Register d, Register s1, int simm13a);
inline void stx( Register d, Register s1, Register s2 );
inline void stx( Register d, Register s1, int simm13a);
inline void std( Register d, Register s1, Register s2 );
inline void std( Register d, Register s1, int simm13a);
// pp 177
void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 230
void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 231
inline void swap( Register s1, Register s2, Register d );
inline void swap( Register s1, int simm13a, Register d);
// pp 232
void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 234, note op in book is wrong, see pp 268
void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 235
void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 237
void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
void trap( Condition c, CC cc, Register s1, int trapa ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
// simple uncond. trap
void trap( int trapa ) { trap( always, icc, G0, trapa ); }
// pp 239 omit write priv register for now
inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
rs1(s) |
op3(wrreg_op3) |
u_field(2, 29, 25) |
immed(true) |
simm(simm13a, 13)); }
inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
// wrasi(d, imm) stores (d xor imm) to asi
inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
// VIS3 instructions
void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
#ifdef CHECK_DELAY
delay_state = no_delay;
#endif
}
};
#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP