Coleen Phillimore b541d9ad77 8200276: Cleanup allocation.hpp includes
Reviewed-by: stefank, hseigel
2018-03-27 11:53:23 -04:00

201 lines
7.1 KiB
C++

/*
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CODE_VMREG_HPP
#define SHARE_VM_CODE_VMREG_HPP
#include "asm/register.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER2
#include "opto/adlcVMDeps.hpp"
#endif
//------------------------------VMReg------------------------------------------
// The VM uses 'unwarped' stack slots; the compiler uses 'warped' stack slots.
// Register numbers below VMRegImpl::stack0 are the same for both. Register
// numbers above stack0 are either warped (in the compiler) or unwarped
// (in the VM). Unwarped numbers represent stack indices, offsets from
// the current stack pointer. Warped numbers are required during compilation
// when we do not yet know how big the frame will be.
class VMRegImpl;
typedef VMRegImpl* VMReg;
class VMRegImpl {
// friend class OopMap;
friend class VMStructs;
friend class OptoReg;
// friend class Location;
private:
enum {
BAD_REG = -1
};
static VMReg stack0;
// Names for registers
static const char *regName[];
static const int register_count;
public:
static VMReg as_VMReg(int val, bool bad_ok = false) { assert(val > BAD_REG || bad_ok, "invalid"); return (VMReg) (intptr_t) val; }
const char* name() {
if (is_reg()) {
return regName[value()];
} else if (!is_valid()) {
return "BAD";
} else {
// shouldn't really be called with stack
return "STACKED REG";
}
}
static VMReg Bad() { return (VMReg) (intptr_t) BAD_REG; }
bool is_valid() const { return ((intptr_t) this) != BAD_REG; }
bool is_stack() const { return (intptr_t) this >= (intptr_t) stack0; }
bool is_reg() const { return is_valid() && !is_stack(); }
// A concrete register is a value that returns true for is_reg() and is
// also a register you could use in the assembler. On machines with
// 64bit registers only one half of the VMReg (and OptoReg) is considered
// concrete.
// bool is_concrete();
// VMRegs are 4 bytes wide on all platforms
static const int stack_slot_size;
static const int slots_per_word;
// This really ought to check that the register is "real" in the sense that
// we don't try and get the VMReg number of a physical register that doesn't
// have an expressible part. That would be pd specific code
VMReg next() {
assert((is_reg() && value() < stack0->value() - 1) || is_stack(), "must be");
return (VMReg)(intptr_t)(value() + 1);
}
VMReg next(int i) {
assert((is_reg() && value() < stack0->value() - i) || is_stack(), "must be");
return (VMReg)(intptr_t)(value() + i);
}
VMReg prev() {
assert((is_stack() && value() > stack0->value()) || (is_reg() && value() != 0), "must be");
return (VMReg)(intptr_t)(value() - 1);
}
intptr_t value() const {return (intptr_t) this; }
void print_on(outputStream* st) const;
void print() const { print_on(tty); }
// bias a stack slot.
// Typically used to adjust a virtual frame slots by amounts that are offset by
// amounts that are part of the native abi. The VMReg must be a stack slot
// and the result must be also.
VMReg bias(int offset) {
assert(is_stack(), "must be");
// VMReg res = VMRegImpl::as_VMReg(value() + offset);
VMReg res = stack2reg(reg2stack() + offset);
assert(res->is_stack(), "must be");
return res;
}
// Convert register numbers to stack slots and vice versa
static VMReg stack2reg( int idx ) {
return (VMReg) (intptr_t) (stack0->value() + idx);
}
uintptr_t reg2stack() {
assert( is_stack(), "Not a stack-based register" );
return value() - stack0->value();
}
static void set_regName();
#include CPU_HEADER(vmreg)
};
//---------------------------VMRegPair-------------------------------------------
// Pairs of 32-bit registers for arguments.
// SharedRuntime::java_calling_convention will overwrite the structs with
// the calling convention's registers. VMRegImpl::Bad is returned for any
// unused 32-bit register. This happens for the unused high half of Int
// arguments, or for 32-bit pointers or for longs in the 32-bit sparc build
// (which are passed to natives in low 32-bits of e.g. O0/O1 and the high
// 32-bits of O0/O1 are set to VMRegImpl::Bad). Longs in one register & doubles
// always return a high and a low register, as do 64-bit pointers.
//
class VMRegPair {
private:
VMReg _second;
VMReg _first;
public:
void set_bad ( ) { _second=VMRegImpl::Bad(); _first=VMRegImpl::Bad(); }
void set1 ( VMReg v ) { _second=VMRegImpl::Bad(); _first=v; }
void set2 ( VMReg v ) { _second=v->next(); _first=v; }
void set_pair( VMReg second, VMReg first ) { _second= second; _first= first; }
void set_ptr ( VMReg ptr ) {
#ifdef _LP64
_second = ptr->next();
#else
_second = VMRegImpl::Bad();
#endif
_first = ptr;
}
// Return true if single register, even if the pair is really just adjacent stack slots
bool is_single_reg() const {
return (_first->is_valid()) && (_first->value() + 1 == _second->value());
}
// Return true if single stack based "register" where the slot alignment matches input alignment
bool is_adjacent_on_stack(int alignment) const {
return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0));
}
// Return true if single stack based "register" where the slot alignment matches input alignment
bool is_adjacent_aligned_on_stack(int alignment) const {
return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0));
}
// Return true if single register but adjacent stack slots do not count
bool is_single_phys_reg() const {
return (_first->is_reg() && (_first->value() + 1 == _second->value()));
}
VMReg second() const { return _second; }
VMReg first() const { return _first; }
VMRegPair(VMReg s, VMReg f) { _second = s; _first = f; }
VMRegPair(VMReg f) { _second = VMRegImpl::Bad(); _first = f; }
VMRegPair() { _second = VMRegImpl::Bad(); _first = VMRegImpl::Bad(); }
};
#endif // SHARE_VM_CODE_VMREG_HPP