jdk-24/src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp
2020-03-25 17:20:58 +01:00

732 lines
24 KiB
C++

/*
* Copyright (c) 2016, 2019, Red Hat, Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shenandoah/shenandoahFreeSet.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
#include "gc/shenandoah/shenandoahTraversalGC.hpp"
#include "logging/logStream.hpp"
#include "runtime/orderAccess.hpp"
ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
_heap(heap),
_mutator_free_bitmap(max_regions, mtGC),
_collector_free_bitmap(max_regions, mtGC),
_max(max_regions)
{
clear_internal();
}
void ShenandoahFreeSet::increase_used(size_t num_bytes) {
shenandoah_assert_heaplocked();
_used += num_bytes;
assert(_used <= _capacity, "must not use more than we have: used: " SIZE_FORMAT
", capacity: " SIZE_FORMAT ", num_bytes: " SIZE_FORMAT, _used, _capacity, num_bytes);
}
bool ShenandoahFreeSet::is_mutator_free(size_t idx) const {
assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
idx, _max, _mutator_leftmost, _mutator_rightmost);
return _mutator_free_bitmap.at(idx);
}
bool ShenandoahFreeSet::is_collector_free(size_t idx) const {
assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
idx, _max, _collector_leftmost, _collector_rightmost);
return _collector_free_bitmap.at(idx);
}
HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
// Scan the bitmap looking for a first fit.
//
// Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
// we would find the region to allocate at right away.
//
// Allocations are biased: new application allocs go to beginning of the heap, and GC allocs
// go to the end. This makes application allocation faster, because we would clear lots
// of regions from the beginning most of the time.
//
// Free set maintains mutator and collector views, and normally they allocate in their views only,
// unless we special cases for stealing and mixed allocations.
switch (req.type()) {
case ShenandoahAllocRequest::_alloc_tlab:
case ShenandoahAllocRequest::_alloc_shared: {
// Try to allocate in the mutator view
for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
if (is_mutator_free(idx)) {
HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
if (result != NULL) {
return result;
}
}
}
// There is no recovery. Mutator does not touch collector view at all.
break;
}
case ShenandoahAllocRequest::_alloc_gclab:
case ShenandoahAllocRequest::_alloc_shared_gc: {
// size_t is unsigned, need to dodge underflow when _leftmost = 0
// Fast-path: try to allocate in the collector view first
for (size_t c = _collector_rightmost + 1; c > _collector_leftmost; c--) {
size_t idx = c - 1;
if (is_collector_free(idx)) {
HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
if (result != NULL) {
return result;
}
}
}
// No dice. Can we borrow space from mutator view?
if (!ShenandoahEvacReserveOverflow) {
return NULL;
}
// Try to steal the empty region from the mutator view
for (size_t c = _mutator_rightmost + 1; c > _mutator_leftmost; c--) {
size_t idx = c - 1;
if (is_mutator_free(idx)) {
ShenandoahHeapRegion* r = _heap->get_region(idx);
if (can_allocate_from(r)) {
flip_to_gc(r);
HeapWord *result = try_allocate_in(r, req, in_new_region);
if (result != NULL) {
return result;
}
}
}
}
// Try to mix the allocation into the mutator view:
if (ShenandoahAllowMixedAllocs) {
for (size_t c = _mutator_rightmost + 1; c > _mutator_leftmost; c--) {
size_t idx = c - 1;
if (is_mutator_free(idx)) {
HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
if (result != NULL) {
return result;
}
}
}
}
break;
}
default:
ShouldNotReachHere();
}
return NULL;
}
HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
assert (!has_no_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->region_number());
if (_heap->is_concurrent_root_in_progress() &&
r->is_trash()) {
return NULL;
}
try_recycle_trashed(r);
in_new_region = r->is_empty();
HeapWord* result = NULL;
size_t size = req.size();
if (ShenandoahElasticTLAB && req.is_lab_alloc()) {
size_t free = align_down(r->free() >> LogHeapWordSize, MinObjAlignment);
if (size > free) {
size = free;
}
if (size >= req.min_size()) {
result = r->allocate(size, req.type());
assert (result != NULL, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, size);
}
} else {
result = r->allocate(size, req.type());
}
if (result != NULL) {
// Allocation successful, bump stats:
if (req.is_mutator_alloc()) {
increase_used(size * HeapWordSize);
if (_heap->is_traversal_mode()) {
r->update_seqnum_last_alloc_mutator();
}
}
// Record actual allocation size
req.set_actual_size(size);
if (req.is_gc_alloc()) {
r->set_update_watermark(r->top());
if (_heap->is_concurrent_traversal_in_progress()) {
// Traversal needs to traverse through GC allocs. Adjust TAMS to the new top
// so that these allocations appear below TAMS, and thus get traversed.
// See top of shenandoahTraversal.cpp for an explanation.
_heap->marking_context()->capture_top_at_mark_start(r);
_heap->traversal_gc()->traversal_set()->add_region_check_for_duplicates(r);
OrderAccess::fence();
}
}
}
if (result == NULL || has_no_alloc_capacity(r)) {
// Region cannot afford this or future allocations. Retire it.
//
// While this seems a bit harsh, especially in the case when this large allocation does not
// fit, but the next small one would, we are risking to inflate scan times when lots of
// almost-full regions precede the fully-empty region where we want allocate the entire TLAB.
// TODO: Record first fully-empty region, and use that for large allocations
// Record the remainder as allocation waste
if (req.is_mutator_alloc()) {
size_t waste = r->free();
if (waste > 0) {
increase_used(waste);
_heap->notify_mutator_alloc_words(waste >> LogHeapWordSize, true);
}
}
size_t num = r->region_number();
_collector_free_bitmap.clear_bit(num);
_mutator_free_bitmap.clear_bit(num);
// Touched the bounds? Need to update:
if (touches_bounds(num)) {
adjust_bounds();
}
assert_bounds();
}
return result;
}
bool ShenandoahFreeSet::touches_bounds(size_t num) const {
return num == _collector_leftmost || num == _collector_rightmost || num == _mutator_leftmost || num == _mutator_rightmost;
}
void ShenandoahFreeSet::recompute_bounds() {
// Reset to the most pessimistic case:
_mutator_rightmost = _max - 1;
_mutator_leftmost = 0;
_collector_rightmost = _max - 1;
_collector_leftmost = 0;
// ...and adjust from there
adjust_bounds();
}
void ShenandoahFreeSet::adjust_bounds() {
// Rewind both mutator bounds until the next bit.
while (_mutator_leftmost < _max && !is_mutator_free(_mutator_leftmost)) {
_mutator_leftmost++;
}
while (_mutator_rightmost > 0 && !is_mutator_free(_mutator_rightmost)) {
_mutator_rightmost--;
}
// Rewind both collector bounds until the next bit.
while (_collector_leftmost < _max && !is_collector_free(_collector_leftmost)) {
_collector_leftmost++;
}
while (_collector_rightmost > 0 && !is_collector_free(_collector_rightmost)) {
_collector_rightmost--;
}
}
HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
shenandoah_assert_heaplocked();
size_t words_size = req.size();
size_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
// No regions left to satisfy allocation, bye.
if (num > mutator_count()) {
return NULL;
}
// Find the continuous interval of $num regions, starting from $beg and ending in $end,
// inclusive. Contiguous allocations are biased to the beginning.
size_t beg = _mutator_leftmost;
size_t end = beg;
while (true) {
if (end >= _max) {
// Hit the end, goodbye
return NULL;
}
// If regions are not adjacent, then current [beg; end] is useless, and we may fast-forward.
// If region is not completely free, the current [beg; end] is useless, and we may fast-forward.
if (!is_mutator_free(end) || !can_allocate_from(_heap->get_region(end))) {
end++;
beg = end;
continue;
}
if ((end - beg + 1) == num) {
// found the match
break;
}
end++;
};
size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
// Initialize regions:
for (size_t i = beg; i <= end; i++) {
ShenandoahHeapRegion* r = _heap->get_region(i);
try_recycle_trashed(r);
assert(i == beg || _heap->get_region(i-1)->region_number() + 1 == r->region_number(), "Should be contiguous");
assert(r->is_empty(), "Should be empty");
if (i == beg) {
r->make_humongous_start();
} else {
r->make_humongous_cont();
}
// Trailing region may be non-full, record the remainder there
size_t used_words;
if ((i == end) && (remainder != 0)) {
used_words = remainder;
} else {
used_words = ShenandoahHeapRegion::region_size_words();
}
r->set_top(r->bottom() + used_words);
r->reset_alloc_metadata_to_shared();
_mutator_free_bitmap.clear_bit(r->region_number());
}
// While individual regions report their true use, all humongous regions are
// marked used in the free set.
increase_used(ShenandoahHeapRegion::region_size_bytes() * num);
if (remainder != 0) {
// Record this remainder as allocation waste
_heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
}
// Allocated at left/rightmost? Move the bounds appropriately.
if (beg == _mutator_leftmost || end == _mutator_rightmost) {
adjust_bounds();
}
assert_bounds();
req.set_actual_size(words_size);
return _heap->get_region(beg)->bottom();
}
bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) {
return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_root_in_progress());
}
size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) {
if (r->is_trash()) {
// This would be recycled on allocation path
return ShenandoahHeapRegion::region_size_bytes();
} else {
return r->free();
}
}
bool ShenandoahFreeSet::has_no_alloc_capacity(ShenandoahHeapRegion *r) {
return alloc_capacity(r) == 0;
}
void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion *r) {
if (r->is_trash()) {
_heap->decrease_used(r->used());
r->recycle();
}
}
void ShenandoahFreeSet::recycle_trash() {
// lock is not reentrable, check we don't have it
shenandoah_assert_not_heaplocked();
for (size_t i = 0; i < _heap->num_regions(); i++) {
ShenandoahHeapRegion* r = _heap->get_region(i);
if (r->is_trash()) {
ShenandoahHeapLocker locker(_heap->lock());
try_recycle_trashed(r);
}
SpinPause(); // allow allocators to take the lock
}
}
void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
size_t idx = r->region_number();
assert(_mutator_free_bitmap.at(idx), "Should be in mutator view");
assert(can_allocate_from(r), "Should not be allocated");
_mutator_free_bitmap.clear_bit(idx);
_collector_free_bitmap.set_bit(idx);
_collector_leftmost = MIN2(idx, _collector_leftmost);
_collector_rightmost = MAX2(idx, _collector_rightmost);
_capacity -= alloc_capacity(r);
if (touches_bounds(idx)) {
adjust_bounds();
}
assert_bounds();
}
void ShenandoahFreeSet::clear() {
shenandoah_assert_heaplocked();
clear_internal();
}
void ShenandoahFreeSet::clear_internal() {
_mutator_free_bitmap.clear();
_collector_free_bitmap.clear();
_mutator_leftmost = _max;
_mutator_rightmost = 0;
_collector_leftmost = _max;
_collector_rightmost = 0;
_capacity = 0;
_used = 0;
}
void ShenandoahFreeSet::rebuild() {
shenandoah_assert_heaplocked();
clear();
for (size_t idx = 0; idx < _heap->num_regions(); idx++) {
ShenandoahHeapRegion* region = _heap->get_region(idx);
if (region->is_alloc_allowed() || region->is_trash()) {
assert(!region->is_cset(), "Shouldn't be adding those to the free set");
// Do not add regions that would surely fail allocation
if (has_no_alloc_capacity(region)) continue;
_capacity += alloc_capacity(region);
assert(_used <= _capacity, "must not use more than we have");
assert(!is_mutator_free(idx), "We are about to add it, it shouldn't be there already");
_mutator_free_bitmap.set_bit(idx);
}
}
// Evac reserve: reserve trailing space for evacuations
size_t to_reserve = _heap->max_capacity() / 100 * ShenandoahEvacReserve;
size_t reserved = 0;
for (size_t idx = _heap->num_regions() - 1; idx > 0; idx--) {
if (reserved >= to_reserve) break;
ShenandoahHeapRegion* region = _heap->get_region(idx);
if (_mutator_free_bitmap.at(idx) && can_allocate_from(region)) {
_mutator_free_bitmap.clear_bit(idx);
_collector_free_bitmap.set_bit(idx);
size_t ac = alloc_capacity(region);
_capacity -= ac;
reserved += ac;
}
}
recompute_bounds();
assert_bounds();
}
void ShenandoahFreeSet::log_status() {
shenandoah_assert_heaplocked();
LogTarget(Info, gc, ergo) lt;
if (lt.is_enabled()) {
ResourceMark rm;
LogStream ls(lt);
{
size_t last_idx = 0;
size_t max = 0;
size_t max_contig = 0;
size_t empty_contig = 0;
size_t total_used = 0;
size_t total_free = 0;
size_t total_free_ext = 0;
for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
if (is_mutator_free(idx)) {
ShenandoahHeapRegion *r = _heap->get_region(idx);
size_t free = alloc_capacity(r);
max = MAX2(max, free);
if (r->is_empty()) {
total_free_ext += free;
if (last_idx + 1 == idx) {
empty_contig++;
} else {
empty_contig = 1;
}
} else {
empty_contig = 0;
}
total_used += r->used();
total_free += free;
max_contig = MAX2(max_contig, empty_contig);
last_idx = idx;
}
}
size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
size_t free = capacity() - used();
ls.print("Free: " SIZE_FORMAT "%s (" SIZE_FORMAT " regions), Max regular: " SIZE_FORMAT "%s, Max humongous: " SIZE_FORMAT "%s, ",
byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
mutator_count(),
byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
);
size_t frag_ext;
if (total_free_ext > 0) {
frag_ext = 100 - (100 * max_humongous / total_free_ext);
} else {
frag_ext = 0;
}
ls.print("External frag: " SIZE_FORMAT "%%, ", frag_ext);
size_t frag_int;
if (mutator_count() > 0) {
frag_int = (100 * (total_used / mutator_count()) / ShenandoahHeapRegion::region_size_bytes());
} else {
frag_int = 0;
}
ls.print("Internal frag: " SIZE_FORMAT "%%", frag_int);
ls.cr();
}
{
size_t max = 0;
size_t total_free = 0;
for (size_t idx = _collector_leftmost; idx <= _collector_rightmost; idx++) {
if (is_collector_free(idx)) {
ShenandoahHeapRegion *r = _heap->get_region(idx);
size_t free = alloc_capacity(r);
max = MAX2(max, free);
total_free += free;
}
}
ls.print_cr("Evacuation Reserve: " SIZE_FORMAT "%s (" SIZE_FORMAT " regions), Max regular: " SIZE_FORMAT "%s",
byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
collector_count(),
byte_size_in_proper_unit(max), proper_unit_for_byte_size(max));
}
}
}
HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
shenandoah_assert_heaplocked();
assert_bounds();
if (req.size() > ShenandoahHeapRegion::humongous_threshold_words()) {
switch (req.type()) {
case ShenandoahAllocRequest::_alloc_shared:
case ShenandoahAllocRequest::_alloc_shared_gc:
in_new_region = true;
return allocate_contiguous(req);
case ShenandoahAllocRequest::_alloc_gclab:
case ShenandoahAllocRequest::_alloc_tlab:
in_new_region = false;
assert(false, "Trying to allocate TLAB larger than the humongous threshold: " SIZE_FORMAT " > " SIZE_FORMAT,
req.size(), ShenandoahHeapRegion::humongous_threshold_words());
return NULL;
default:
ShouldNotReachHere();
return NULL;
}
} else {
return allocate_single(req, in_new_region);
}
}
size_t ShenandoahFreeSet::unsafe_peek_free() const {
// Deliberately not locked, this method is unsafe when free set is modified.
for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
if (index < _max && is_mutator_free(index)) {
ShenandoahHeapRegion* r = _heap->get_region(index);
if (r->free() >= MinTLABSize) {
return r->free();
}
}
}
// It appears that no regions left
return 0;
}
void ShenandoahFreeSet::print_on(outputStream* out) const {
out->print_cr("Mutator Free Set: " SIZE_FORMAT "", mutator_count());
for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
if (is_mutator_free(index)) {
_heap->get_region(index)->print_on(out);
}
}
out->print_cr("Collector Free Set: " SIZE_FORMAT "", collector_count());
for (size_t index = _collector_leftmost; index <= _collector_rightmost; index++) {
if (is_collector_free(index)) {
_heap->get_region(index)->print_on(out);
}
}
}
/*
* Internal fragmentation metric: describes how fragmented the heap regions are.
*
* It is derived as:
*
* sum(used[i]^2, i=0..k)
* IF = 1 - ------------------------------
* C * sum(used[i], i=0..k)
*
* ...where k is the number of regions in computation, C is the region capacity, and
* used[i] is the used space in the region.
*
* The non-linearity causes IF to be lower for the cases where the same total heap
* used is densely packed. For example:
* a) Heap is completely full => IF = 0
* b) Heap is half full, first 50% regions are completely full => IF = 0
* c) Heap is half full, each region is 50% full => IF = 1/2
* d) Heap is quarter full, first 50% regions are completely full => IF = 0
* e) Heap is quarter full, each region is 25% full => IF = 3/4
* f) Heap has one small object per each region => IF =~ 1
*/
double ShenandoahFreeSet::internal_fragmentation() {
double squared = 0;
double linear = 0;
int count = 0;
for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
if (is_mutator_free(index)) {
ShenandoahHeapRegion* r = _heap->get_region(index);
size_t used = r->used();
squared += used * used;
linear += used;
count++;
}
}
if (count > 0) {
double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
return 1 - s;
} else {
return 0;
}
}
/*
* External fragmentation metric: describes how fragmented the heap is.
*
* It is derived as:
*
* EF = 1 - largest_contiguous_free / total_free
*
* For example:
* a) Heap is completely empty => EF = 0
* b) Heap is completely full => EF = 0
* c) Heap is first-half full => EF = 1/2
* d) Heap is half full, full and empty regions interleave => EF =~ 1
*/
double ShenandoahFreeSet::external_fragmentation() {
size_t last_idx = 0;
size_t max_contig = 0;
size_t empty_contig = 0;
size_t free = 0;
for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
if (is_mutator_free(index)) {
ShenandoahHeapRegion* r = _heap->get_region(index);
if (r->is_empty()) {
free += ShenandoahHeapRegion::region_size_bytes();
if (last_idx + 1 == index) {
empty_contig++;
} else {
empty_contig = 1;
}
} else {
empty_contig = 0;
}
max_contig = MAX2(max_contig, empty_contig);
last_idx = index;
}
}
if (free > 0) {
return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
} else {
return 0;
}
}
#ifdef ASSERT
void ShenandoahFreeSet::assert_bounds() const {
// Performance invariants. Failing these would not break the free set, but performance
// would suffer.
assert (_mutator_leftmost <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_leftmost, _max);
assert (_mutator_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_rightmost, _max);
assert (_mutator_leftmost == _max || is_mutator_free(_mutator_leftmost), "leftmost region should be free: " SIZE_FORMAT, _mutator_leftmost);
assert (_mutator_rightmost == 0 || is_mutator_free(_mutator_rightmost), "rightmost region should be free: " SIZE_FORMAT, _mutator_rightmost);
size_t beg_off = _mutator_free_bitmap.get_next_one_offset(0);
size_t end_off = _mutator_free_bitmap.get_next_one_offset(_mutator_rightmost + 1);
assert (beg_off >= _mutator_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _mutator_leftmost);
assert (end_off == _max, "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, _mutator_rightmost);
assert (_collector_leftmost <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_leftmost, _max);
assert (_collector_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_rightmost, _max);
assert (_collector_leftmost == _max || is_collector_free(_collector_leftmost), "leftmost region should be free: " SIZE_FORMAT, _collector_leftmost);
assert (_collector_rightmost == 0 || is_collector_free(_collector_rightmost), "rightmost region should be free: " SIZE_FORMAT, _collector_rightmost);
beg_off = _collector_free_bitmap.get_next_one_offset(0);
end_off = _collector_free_bitmap.get_next_one_offset(_collector_rightmost + 1);
assert (beg_off >= _collector_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _collector_leftmost);
assert (end_off == _max, "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, _collector_rightmost);
}
#endif