jdk-24/src/hotspot/cpu/s390/c1_CodeStubs_s390.cpp
2018-03-06 08:36:44 +01:00

499 lines
18 KiB
C++

/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_CodeStubs.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "nativeInst_s390.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#include "vmreg_s390.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#endif // INCLUDE_ALL_GCS
#define __ ce->masm()->
#undef CHECK_BAILOUT
#define CHECK_BAILOUT() { if (ce->compilation()->bailed_out()) return; }
RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
bool throw_index_out_of_bounds_exception) :
_throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception),
_index(index) {
assert(info != NULL, "must have info");
_info = new CodeEmitInfo(info);
}
void RangeCheckStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_info->deoptimize_on_exception()) {
address a = Runtime1::entry_for (Runtime1::predicate_failed_trap_id);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
return;
}
// Pass the array index in Z_R1_scratch which is not managed by linear scan.
if (_index->is_cpu_register()) {
__ lgr_if_needed(Z_R1_scratch, _index->as_register());
} else {
__ load_const_optimized(Z_R1_scratch, _index->as_jint());
}
Runtime1::StubID stub_id;
if (_throw_index_out_of_bounds_exception) {
stub_id = Runtime1::throw_index_exception_id;
} else {
stub_id = Runtime1::throw_range_check_failed_id;
}
ce->emit_call_c(Runtime1::entry_for (stub_id));
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
_info = new CodeEmitInfo(info);
}
void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
address a = Runtime1::entry_for (Runtime1::predicate_failed_trap_id);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
Metadata *m = _method->as_constant_ptr()->as_metadata();
bool success = __ set_metadata_constant(m, Z_R1_scratch);
if (!success) {
ce->compilation()->bailout("const section overflow");
return;
}
ce->store_parameter(/*_method->as_register()*/ Z_R1_scratch, 1);
ce->store_parameter(_bci, 0);
ce->emit_call_c(Runtime1::entry_for (Runtime1::counter_overflow_id));
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
__ branch_optimized(Assembler::bcondAlways, _continuation);
}
void DivByZeroStub::emit_code(LIR_Assembler* ce) {
if (_offset != -1) {
ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
}
__ bind(_entry);
ce->emit_call_c(Runtime1::entry_for (Runtime1::throw_div0_exception_id));
CHECK_BAILOUT();
ce->add_call_info_here(_info);
debug_only(__ should_not_reach_here());
}
void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
address a;
if (_info->deoptimize_on_exception()) {
// Deoptimize, do not throw the exception, because it is probably wrong to do it here.
a = Runtime1::entry_for (Runtime1::predicate_failed_trap_id);
} else {
a = Runtime1::entry_for (Runtime1::throw_null_pointer_exception_id);
}
ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
__ bind(_entry);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
// Note: pass object in Z_R1_scratch
void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_obj->is_valid()) {
__ z_lgr(Z_R1_scratch, _obj->as_register()); // _obj contains the optional argument to the stub
}
address a = Runtime1::entry_for (_stub);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
debug_only(__ should_not_reach_here());
}
NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
_result = result;
_klass = klass;
_klass_reg = klass_reg;
_info = new CodeEmitInfo(info);
assert(stub_id == Runtime1::new_instance_id ||
stub_id == Runtime1::fast_new_instance_id ||
stub_id == Runtime1::fast_new_instance_init_check_id,
"need new_instance id");
_stub_id = stub_id;
}
void NewInstanceStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
assert(_klass_reg->as_register() == Z_R11, "call target expects klass in Z_R11");
address a = Runtime1::entry_for (_stub_id);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
assert(_result->as_register() == Z_R2, "callee returns result in Z_R2,");
__ z_brul(_continuation);
}
NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
_klass_reg = klass_reg;
_length = length;
_result = result;
_info = new CodeEmitInfo(info);
}
void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
assert(_klass_reg->as_register() == Z_R11, "call target expects klass in Z_R11");
__ lgr_if_needed(Z_R13, _length->as_register());
address a = Runtime1::entry_for (Runtime1::new_type_array_id);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
assert(_result->as_register() == Z_R2, "callee returns result in Z_R2,");
__ z_brul(_continuation);
}
NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
_klass_reg = klass_reg;
_length = length;
_result = result;
_info = new CodeEmitInfo(info);
}
void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
assert(_klass_reg->as_register() == Z_R11, "call target expects klass in Z_R11");
__ lgr_if_needed(Z_R13, _length->as_register());
address a = Runtime1::entry_for (Runtime1::new_object_array_id);
ce->emit_call_c(a);
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
assert(_result->as_register() == Z_R2, "callee returns result in Z_R2,");
__ z_brul(_continuation);
}
MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
: MonitorAccessStub(obj_reg, lock_reg) {
_info = new CodeEmitInfo(info);
}
void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
Runtime1::StubID enter_id;
if (ce->compilation()->has_fpu_code()) {
enter_id = Runtime1::monitorenter_id;
} else {
enter_id = Runtime1::monitorenter_nofpu_id;
}
__ lgr_if_needed(Z_R1_scratch, _obj_reg->as_register());
__ lgr_if_needed(Z_R13, _lock_reg->as_register()); // See LIRGenerator::syncTempOpr().
ce->emit_call_c(Runtime1::entry_for (enter_id));
CHECK_BAILOUT();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
__ branch_optimized(Assembler::bcondAlways, _continuation);
}
void MonitorExitStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
// Move address of the BasicObjectLock into Z_R1_scratch.
if (_compute_lock) {
// Lock_reg was destroyed by fast unlocking attempt => recompute it.
ce->monitor_address(_monitor_ix, FrameMap::as_opr(Z_R1_scratch));
} else {
__ lgr_if_needed(Z_R1_scratch, _lock_reg->as_register());
}
// Note: non-blocking leaf routine => no call info needed.
Runtime1::StubID exit_id;
if (ce->compilation()->has_fpu_code()) {
exit_id = Runtime1::monitorexit_id;
} else {
exit_id = Runtime1::monitorexit_nofpu_id;
}
ce->emit_call_c(Runtime1::entry_for (exit_id));
CHECK_BAILOUT();
__ branch_optimized(Assembler::bcondAlways, _continuation);
}
// Implementation of patching:
// - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes).
// - Replace original code with a call to the stub.
// At Runtime:
// - call to stub, jump to runtime.
// - in runtime: Preserve all registers (especially objects, i.e., source and destination object).
// - in runtime: After initializing class, restore original code, reexecute instruction.
int PatchingStub::_patch_info_offset = - (12 /* load const */ + 2 /*BASR*/);
void PatchingStub::align_patch_site(MacroAssembler* masm) {
#ifndef PRODUCT
const char* bc;
switch (_id) {
case access_field_id: bc = "patch site (access_field)"; break;
case load_klass_id: bc = "patch site (load_klass)"; break;
case load_mirror_id: bc = "patch site (load_mirror)"; break;
case load_appendix_id: bc = "patch site (load_appendix)"; break;
default: bc = "patch site (unknown patch id)"; break;
}
masm->block_comment(bc);
#endif
masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize));
}
void PatchingStub::emit_code(LIR_Assembler* ce) {
// Copy original code here.
assert(NativeGeneralJump::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF,
"not enough room for call");
NearLabel call_patch;
int being_initialized_entry = __ offset();
if (_id == load_klass_id) {
// Produce a copy of the load klass instruction for use by the case being initialized.
#ifdef ASSERT
address start = __ pc();
#endif
AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(_index));
__ load_const(_obj, addrlit);
#ifdef ASSERT
for (int i = 0; i < _bytes_to_copy; i++) {
address ptr = (address)(_pc_start + i);
int a_byte = (*ptr) & 0xFF;
assert(a_byte == *start++, "should be the same code");
}
#endif
} else if (_id == load_mirror_id || _id == load_appendix_id) {
// Produce a copy of the load mirror instruction for use by the case being initialized.
#ifdef ASSERT
address start = __ pc();
#endif
AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(_index));
__ load_const(_obj, addrlit);
#ifdef ASSERT
for (int i = 0; i < _bytes_to_copy; i++) {
address ptr = (address)(_pc_start + i);
int a_byte = (*ptr) & 0xFF;
assert(a_byte == *start++, "should be the same code");
}
#endif
} else {
// Make a copy the code which is going to be patched.
for (int i = 0; i < _bytes_to_copy; i++) {
address ptr = (address)(_pc_start + i);
int a_byte = (*ptr) & 0xFF;
__ emit_int8 (a_byte);
}
}
address end_of_patch = __ pc();
int bytes_to_skip = 0;
if (_id == load_mirror_id) {
int offset = __ offset();
if (CommentedAssembly) {
__ block_comment(" being_initialized check");
}
// Static field accesses have special semantics while the class
// initializer is being run, so we emit a test which can be used to
// check that this code is being executed by the initializing
// thread.
assert(_obj != noreg, "must be a valid register");
assert(_index >= 0, "must have oop index");
__ z_lg(Z_R1_scratch, java_lang_Class::klass_offset_in_bytes(), _obj);
__ z_cg(Z_thread, Address(Z_R1_scratch, InstanceKlass::init_thread_offset()));
__ branch_optimized(Assembler::bcondNotEqual, call_patch);
// Load_klass patches may execute the patched code before it's
// copied back into place so we need to jump back into the main
// code of the nmethod to continue execution.
__ branch_optimized(Assembler::bcondAlways, _patch_site_continuation);
// Make sure this extra code gets skipped.
bytes_to_skip += __ offset() - offset;
}
// Now emit the patch record telling the runtime how to find the
// pieces of the patch. We only need 3 bytes but to help the disassembler
// we make the data look like a the following add instruction:
// A R1, D2(X2, B2)
// which requires 4 bytes.
int sizeof_patch_record = 4;
bytes_to_skip += sizeof_patch_record;
// Emit the offsets needed to find the code to patch.
int being_initialized_entry_offset = __ offset() - being_initialized_entry + sizeof_patch_record;
// Emit the patch record: opcode of the add followed by 3 bytes patch record data.
__ emit_int8((int8_t)(A_ZOPC>>24));
__ emit_int8(being_initialized_entry_offset);
__ emit_int8(bytes_to_skip);
__ emit_int8(_bytes_to_copy);
address patch_info_pc = __ pc();
assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
address entry = __ pc();
NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
address target = NULL;
relocInfo::relocType reloc_type = relocInfo::none;
switch (_id) {
case access_field_id: target = Runtime1::entry_for (Runtime1::access_field_patching_id); break;
case load_klass_id: target = Runtime1::entry_for (Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
case load_mirror_id: target = Runtime1::entry_for (Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
case load_appendix_id: target = Runtime1::entry_for (Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
default: ShouldNotReachHere();
}
__ bind(call_patch);
if (CommentedAssembly) {
__ block_comment("patch entry point");
}
// Cannot use call_c_opt() because its size is not constant.
__ load_const(Z_R1_scratch, target); // Must not optimize in order to keep constant _patch_info_offset constant.
__ z_basr(Z_R14, Z_R1_scratch);
assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
ce->add_call_info_here(_info);
__ z_brcl(Assembler::bcondAlways, _patch_site_entry);
if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
CodeSection* cs = __ code_section();
address pc = (address)_pc_start;
RelocIterator iter(cs, pc, pc + 1);
relocInfo::change_reloc_info_for_address(&iter, (address) pc, reloc_type, relocInfo::none);
}
}
void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
__ load_const_optimized(Z_R1_scratch, _trap_request); // Pass trap request in Z_R1_scratch.
ce->emit_call_c(Runtime1::entry_for (Runtime1::deoptimize_id));
CHECK_BAILOUT();
ce->add_call_info_here(_info);
DEBUG_ONLY(__ should_not_reach_here());
}
void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
// Slow case: call to native.
__ bind(_entry);
__ lgr_if_needed(Z_ARG1, src()->as_register());
__ lgr_if_needed(Z_ARG2, src_pos()->as_register());
__ lgr_if_needed(Z_ARG3, dst()->as_register());
__ lgr_if_needed(Z_ARG4, dst_pos()->as_register());
__ lgr_if_needed(Z_ARG5, length()->as_register());
// Must align calls sites, otherwise they can't be updated atomically on MP hardware.
ce->align_call(lir_static_call);
assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
"must be aligned");
ce->emit_static_call_stub();
// Prepend each BRASL with a nop.
__ relocate(relocInfo::static_call_type);
__ z_nop();
__ z_brasl(Z_R14, SharedRuntime::get_resolve_static_call_stub());
ce->add_call_info_here(info());
ce->verify_oop_map(info());
#ifndef PRODUCT
__ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_slowcase_cnt);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
#endif
__ branch_optimized(Assembler::bcondAlways, _continuation);
}
///////////////////////////////////////////////////////////////////////////////////
#if INCLUDE_ALL_GCS
void G1PreBarrierStub::emit_code(LIR_Assembler* ce) {
// At this point we know that marking is in progress.
// If do_load() is true then we have to emit the
// load of the previous value; otherwise it has already
// been loaded into _pre_val.
__ bind(_entry);
ce->check_reserved_argument_area(16); // RT stub needs 2 spill slots.
assert(pre_val()->is_register(), "Precondition.");
Register pre_val_reg = pre_val()->as_register();
if (do_load()) {
ce->mem2reg(addr(), pre_val(), T_OBJECT, patch_code(), info(), false /*wide*/, false /*unaligned*/);
}
__ z_ltgr(Z_R1_scratch, pre_val_reg); // Pass oop in Z_R1_scratch to Runtime1::g1_pre_barrier_slow_id.
__ branch_optimized(Assembler::bcondZero, _continuation);
ce->emit_call_c(Runtime1::entry_for (Runtime1::g1_pre_barrier_slow_id));
CHECK_BAILOUT();
__ branch_optimized(Assembler::bcondAlways, _continuation);
}
void G1PostBarrierStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
ce->check_reserved_argument_area(16); // RT stub needs 2 spill slots.
assert(addr()->is_register(), "Precondition.");
assert(new_val()->is_register(), "Precondition.");
Register new_val_reg = new_val()->as_register();
__ z_ltgr(new_val_reg, new_val_reg);
__ branch_optimized(Assembler::bcondZero, _continuation);
__ z_lgr(Z_R1_scratch, addr()->as_pointer_register());
ce->emit_call_c(Runtime1::entry_for (Runtime1::g1_post_barrier_slow_id));
CHECK_BAILOUT();
__ branch_optimized(Assembler::bcondAlways, _continuation);
}
#endif // INCLUDE_ALL_GCS
#undef __