b68257174d
Reviewed-by: kvn, thartmann
2073 lines
71 KiB
C++
2073 lines
71 KiB
C++
/*
|
|
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "ci/bcEscapeAnalyzer.hpp"
|
|
#include "compiler/oopMap.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/c2/barrierSetC2.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "opto/callGenerator.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/castnode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/escape.hpp"
|
|
#include "opto/locknode.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/parse.hpp"
|
|
#include "opto/regalloc.hpp"
|
|
#include "opto/regmask.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
// Optimization - Graph Style
|
|
|
|
//=============================================================================
|
|
uint StartNode::size_of() const { return sizeof(*this); }
|
|
uint StartNode::cmp( const Node &n ) const
|
|
{ return _domain == ((StartNode&)n)._domain; }
|
|
const Type *StartNode::bottom_type() const { return _domain; }
|
|
const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
|
|
#ifndef PRODUCT
|
|
void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
|
|
void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
|
|
#endif
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
}
|
|
|
|
//------------------------------calling_convention-----------------------------
|
|
void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
|
|
Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
|
|
}
|
|
|
|
//------------------------------Registers--------------------------------------
|
|
const RegMask &StartNode::in_RegMask(uint) const {
|
|
return RegMask::Empty;
|
|
}
|
|
|
|
//------------------------------match------------------------------------------
|
|
// Construct projections for incoming parameters, and their RegMask info
|
|
Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
|
|
switch (proj->_con) {
|
|
case TypeFunc::Control:
|
|
case TypeFunc::I_O:
|
|
case TypeFunc::Memory:
|
|
return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
|
|
case TypeFunc::FramePtr:
|
|
return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
|
|
case TypeFunc::ReturnAdr:
|
|
return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
|
|
case TypeFunc::Parms:
|
|
default: {
|
|
uint parm_num = proj->_con - TypeFunc::Parms;
|
|
const Type *t = _domain->field_at(proj->_con);
|
|
if (t->base() == Type::Half) // 2nd half of Longs and Doubles
|
|
return new ConNode(Type::TOP);
|
|
uint ideal_reg = t->ideal_reg();
|
|
RegMask &rm = match->_calling_convention_mask[parm_num];
|
|
return new MachProjNode(this,proj->_con,rm,ideal_reg);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------StartOSRNode----------------------------------
|
|
// The method start node for an on stack replacement adapter
|
|
|
|
//------------------------------osr_domain-----------------------------
|
|
const TypeTuple *StartOSRNode::osr_domain() {
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
|
|
|
|
return TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
}
|
|
|
|
//=============================================================================
|
|
const char * const ParmNode::names[TypeFunc::Parms+1] = {
|
|
"Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
|
|
};
|
|
|
|
#ifndef PRODUCT
|
|
void ParmNode::dump_spec(outputStream *st) const {
|
|
if( _con < TypeFunc::Parms ) {
|
|
st->print("%s", names[_con]);
|
|
} else {
|
|
st->print("Parm%d: ",_con-TypeFunc::Parms);
|
|
// Verbose and WizardMode dump bottom_type for all nodes
|
|
if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
|
|
}
|
|
}
|
|
|
|
void ParmNode::dump_compact_spec(outputStream *st) const {
|
|
if (_con < TypeFunc::Parms) {
|
|
st->print("%s", names[_con]);
|
|
} else {
|
|
st->print("%d:", _con-TypeFunc::Parms);
|
|
// unconditionally dump bottom_type
|
|
bottom_type()->dump_on(st);
|
|
}
|
|
}
|
|
|
|
// For a ParmNode, all immediate inputs and outputs are considered relevant
|
|
// both in compact and standard representation.
|
|
void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
|
|
this->collect_nodes(in_rel, 1, false, false);
|
|
this->collect_nodes(out_rel, -1, false, false);
|
|
}
|
|
#endif
|
|
|
|
uint ParmNode::ideal_reg() const {
|
|
switch( _con ) {
|
|
case TypeFunc::Control : // fall through
|
|
case TypeFunc::I_O : // fall through
|
|
case TypeFunc::Memory : return 0;
|
|
case TypeFunc::FramePtr : // fall through
|
|
case TypeFunc::ReturnAdr: return Op_RegP;
|
|
default : assert( _con > TypeFunc::Parms, "" );
|
|
// fall through
|
|
case TypeFunc::Parms : {
|
|
// Type of argument being passed
|
|
const Type *t = in(0)->as_Start()->_domain->field_at(_con);
|
|
return t->ideal_reg();
|
|
}
|
|
}
|
|
ShouldNotReachHere();
|
|
return 0;
|
|
}
|
|
|
|
//=============================================================================
|
|
ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
|
|
init_req(TypeFunc::Control,cntrl);
|
|
init_req(TypeFunc::I_O,i_o);
|
|
init_req(TypeFunc::Memory,memory);
|
|
init_req(TypeFunc::FramePtr,frameptr);
|
|
init_req(TypeFunc::ReturnAdr,retadr);
|
|
}
|
|
|
|
Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
}
|
|
|
|
const Type* ReturnNode::Value(PhaseGVN* phase) const {
|
|
return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
|
|
? Type::TOP
|
|
: Type::BOTTOM;
|
|
}
|
|
|
|
// Do we Match on this edge index or not? No edges on return nodes
|
|
uint ReturnNode::match_edge(uint idx) const {
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
void ReturnNode::dump_req(outputStream *st) const {
|
|
// Dump the required inputs, enclosed in '(' and ')'
|
|
uint i; // Exit value of loop
|
|
for (i = 0; i < req(); i++) { // For all required inputs
|
|
if (i == TypeFunc::Parms) st->print("returns");
|
|
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
|
|
else st->print("_ ");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
RethrowNode::RethrowNode(
|
|
Node* cntrl,
|
|
Node* i_o,
|
|
Node* memory,
|
|
Node* frameptr,
|
|
Node* ret_adr,
|
|
Node* exception
|
|
) : Node(TypeFunc::Parms + 1) {
|
|
init_req(TypeFunc::Control , cntrl );
|
|
init_req(TypeFunc::I_O , i_o );
|
|
init_req(TypeFunc::Memory , memory );
|
|
init_req(TypeFunc::FramePtr , frameptr );
|
|
init_req(TypeFunc::ReturnAdr, ret_adr);
|
|
init_req(TypeFunc::Parms , exception);
|
|
}
|
|
|
|
Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
}
|
|
|
|
const Type* RethrowNode::Value(PhaseGVN* phase) const {
|
|
return (phase->type(in(TypeFunc::Control)) == Type::TOP)
|
|
? Type::TOP
|
|
: Type::BOTTOM;
|
|
}
|
|
|
|
uint RethrowNode::match_edge(uint idx) const {
|
|
return 0;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void RethrowNode::dump_req(outputStream *st) const {
|
|
// Dump the required inputs, enclosed in '(' and ')'
|
|
uint i; // Exit value of loop
|
|
for (i = 0; i < req(); i++) { // For all required inputs
|
|
if (i == TypeFunc::Parms) st->print("exception");
|
|
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
|
|
else st->print("_ ");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
// Do we Match on this edge index or not? Match only target address & method
|
|
uint TailCallNode::match_edge(uint idx) const {
|
|
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Do we Match on this edge index or not? Match only target address & oop
|
|
uint TailJumpNode::match_edge(uint idx) const {
|
|
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
|
|
}
|
|
|
|
//=============================================================================
|
|
JVMState::JVMState(ciMethod* method, JVMState* caller) :
|
|
_method(method) {
|
|
assert(method != NULL, "must be valid call site");
|
|
_bci = InvocationEntryBci;
|
|
_reexecute = Reexecute_Undefined;
|
|
debug_only(_bci = -99); // random garbage value
|
|
debug_only(_map = (SafePointNode*)-1);
|
|
_caller = caller;
|
|
_depth = 1 + (caller == NULL ? 0 : caller->depth());
|
|
_locoff = TypeFunc::Parms;
|
|
_stkoff = _locoff + _method->max_locals();
|
|
_monoff = _stkoff + _method->max_stack();
|
|
_scloff = _monoff;
|
|
_endoff = _monoff;
|
|
_sp = 0;
|
|
}
|
|
JVMState::JVMState(int stack_size) :
|
|
_method(NULL) {
|
|
_bci = InvocationEntryBci;
|
|
_reexecute = Reexecute_Undefined;
|
|
debug_only(_map = (SafePointNode*)-1);
|
|
_caller = NULL;
|
|
_depth = 1;
|
|
_locoff = TypeFunc::Parms;
|
|
_stkoff = _locoff;
|
|
_monoff = _stkoff + stack_size;
|
|
_scloff = _monoff;
|
|
_endoff = _monoff;
|
|
_sp = 0;
|
|
}
|
|
|
|
//--------------------------------of_depth-------------------------------------
|
|
JVMState* JVMState::of_depth(int d) const {
|
|
const JVMState* jvmp = this;
|
|
assert(0 < d && (uint)d <= depth(), "oob");
|
|
for (int skip = depth() - d; skip > 0; skip--) {
|
|
jvmp = jvmp->caller();
|
|
}
|
|
assert(jvmp->depth() == (uint)d, "found the right one");
|
|
return (JVMState*)jvmp;
|
|
}
|
|
|
|
//-----------------------------same_calls_as-----------------------------------
|
|
bool JVMState::same_calls_as(const JVMState* that) const {
|
|
if (this == that) return true;
|
|
if (this->depth() != that->depth()) return false;
|
|
const JVMState* p = this;
|
|
const JVMState* q = that;
|
|
for (;;) {
|
|
if (p->_method != q->_method) return false;
|
|
if (p->_method == NULL) return true; // bci is irrelevant
|
|
if (p->_bci != q->_bci) return false;
|
|
if (p->_reexecute != q->_reexecute) return false;
|
|
p = p->caller();
|
|
q = q->caller();
|
|
if (p == q) return true;
|
|
assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
|
|
}
|
|
}
|
|
|
|
//------------------------------debug_start------------------------------------
|
|
uint JVMState::debug_start() const {
|
|
debug_only(JVMState* jvmroot = of_depth(1));
|
|
assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
|
|
return of_depth(1)->locoff();
|
|
}
|
|
|
|
//-------------------------------debug_end-------------------------------------
|
|
uint JVMState::debug_end() const {
|
|
debug_only(JVMState* jvmroot = of_depth(1));
|
|
assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
|
|
return endoff();
|
|
}
|
|
|
|
//------------------------------debug_depth------------------------------------
|
|
uint JVMState::debug_depth() const {
|
|
uint total = 0;
|
|
for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
|
|
total += jvmp->debug_size();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
//------------------------------format_helper----------------------------------
|
|
// Given an allocation (a Chaitin object) and a Node decide if the Node carries
|
|
// any defined value or not. If it does, print out the register or constant.
|
|
static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
|
|
if (n == NULL) { st->print(" NULL"); return; }
|
|
if (n->is_SafePointScalarObject()) {
|
|
// Scalar replacement.
|
|
SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
|
|
scobjs->append_if_missing(spobj);
|
|
int sco_n = scobjs->find(spobj);
|
|
assert(sco_n >= 0, "");
|
|
st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
|
|
return;
|
|
}
|
|
if (regalloc->node_regs_max_index() > 0 &&
|
|
OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
|
|
char buf[50];
|
|
regalloc->dump_register(n,buf);
|
|
st->print(" %s%d]=%s",msg,i,buf);
|
|
} else { // No register, but might be constant
|
|
const Type *t = n->bottom_type();
|
|
switch (t->base()) {
|
|
case Type::Int:
|
|
st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
|
|
break;
|
|
case Type::AnyPtr:
|
|
assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
|
|
st->print(" %s%d]=#NULL",msg,i);
|
|
break;
|
|
case Type::AryPtr:
|
|
case Type::InstPtr:
|
|
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
|
|
break;
|
|
case Type::KlassPtr:
|
|
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
|
|
break;
|
|
case Type::MetadataPtr:
|
|
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
|
|
break;
|
|
case Type::NarrowOop:
|
|
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
|
|
break;
|
|
case Type::RawPtr:
|
|
st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
|
|
break;
|
|
case Type::DoubleCon:
|
|
st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
|
|
break;
|
|
case Type::FloatCon:
|
|
st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
|
|
break;
|
|
case Type::Long:
|
|
st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
|
|
break;
|
|
case Type::Half:
|
|
case Type::Top:
|
|
st->print(" %s%d]=_",msg,i);
|
|
break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------format-----------------------------------------
|
|
void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
|
|
st->print(" #");
|
|
if (_method) {
|
|
_method->print_short_name(st);
|
|
st->print(" @ bci:%d ",_bci);
|
|
} else {
|
|
st->print_cr(" runtime stub ");
|
|
return;
|
|
}
|
|
if (n->is_MachSafePoint()) {
|
|
GrowableArray<SafePointScalarObjectNode*> scobjs;
|
|
MachSafePointNode *mcall = n->as_MachSafePoint();
|
|
uint i;
|
|
// Print locals
|
|
for (i = 0; i < (uint)loc_size(); i++)
|
|
format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
|
|
// Print stack
|
|
for (i = 0; i < (uint)stk_size(); i++) {
|
|
if ((uint)(_stkoff + i) >= mcall->len())
|
|
st->print(" oob ");
|
|
else
|
|
format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
|
|
}
|
|
for (i = 0; (int)i < nof_monitors(); i++) {
|
|
Node *box = mcall->monitor_box(this, i);
|
|
Node *obj = mcall->monitor_obj(this, i);
|
|
if (regalloc->node_regs_max_index() > 0 &&
|
|
OptoReg::is_valid(regalloc->get_reg_first(box))) {
|
|
box = BoxLockNode::box_node(box);
|
|
format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
|
|
} else {
|
|
OptoReg::Name box_reg = BoxLockNode::reg(box);
|
|
st->print(" MON-BOX%d=%s+%d",
|
|
i,
|
|
OptoReg::regname(OptoReg::c_frame_pointer),
|
|
regalloc->reg2offset(box_reg));
|
|
}
|
|
const char* obj_msg = "MON-OBJ[";
|
|
if (EliminateLocks) {
|
|
if (BoxLockNode::box_node(box)->is_eliminated())
|
|
obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
|
|
}
|
|
format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
|
|
}
|
|
|
|
for (i = 0; i < (uint)scobjs.length(); i++) {
|
|
// Scalar replaced objects.
|
|
st->cr();
|
|
st->print(" # ScObj" INT32_FORMAT " ", i);
|
|
SafePointScalarObjectNode* spobj = scobjs.at(i);
|
|
ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
|
|
assert(cik->is_instance_klass() ||
|
|
cik->is_array_klass(), "Not supported allocation.");
|
|
ciInstanceKlass *iklass = NULL;
|
|
if (cik->is_instance_klass()) {
|
|
cik->print_name_on(st);
|
|
iklass = cik->as_instance_klass();
|
|
} else if (cik->is_type_array_klass()) {
|
|
cik->as_array_klass()->base_element_type()->print_name_on(st);
|
|
st->print("[%d]", spobj->n_fields());
|
|
} else if (cik->is_obj_array_klass()) {
|
|
ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
|
|
if (cie->is_instance_klass()) {
|
|
cie->print_name_on(st);
|
|
} else if (cie->is_type_array_klass()) {
|
|
cie->as_array_klass()->base_element_type()->print_name_on(st);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
st->print("[%d]", spobj->n_fields());
|
|
int ndim = cik->as_array_klass()->dimension() - 1;
|
|
while (ndim-- > 0) {
|
|
st->print("[]");
|
|
}
|
|
}
|
|
st->print("={");
|
|
uint nf = spobj->n_fields();
|
|
if (nf > 0) {
|
|
uint first_ind = spobj->first_index(mcall->jvms());
|
|
Node* fld_node = mcall->in(first_ind);
|
|
ciField* cifield;
|
|
if (iklass != NULL) {
|
|
st->print(" [");
|
|
cifield = iklass->nonstatic_field_at(0);
|
|
cifield->print_name_on(st);
|
|
format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
|
|
} else {
|
|
format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
|
|
}
|
|
for (uint j = 1; j < nf; j++) {
|
|
fld_node = mcall->in(first_ind+j);
|
|
if (iklass != NULL) {
|
|
st->print(", [");
|
|
cifield = iklass->nonstatic_field_at(j);
|
|
cifield->print_name_on(st);
|
|
format_helper(regalloc, st, fld_node, ":", j, &scobjs);
|
|
} else {
|
|
format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
|
|
}
|
|
}
|
|
}
|
|
st->print(" }");
|
|
}
|
|
}
|
|
st->cr();
|
|
if (caller() != NULL) caller()->format(regalloc, n, st);
|
|
}
|
|
|
|
|
|
void JVMState::dump_spec(outputStream *st) const {
|
|
if (_method != NULL) {
|
|
bool printed = false;
|
|
if (!Verbose) {
|
|
// The JVMS dumps make really, really long lines.
|
|
// Take out the most boring parts, which are the package prefixes.
|
|
char buf[500];
|
|
stringStream namest(buf, sizeof(buf));
|
|
_method->print_short_name(&namest);
|
|
if (namest.count() < sizeof(buf)) {
|
|
const char* name = namest.base();
|
|
if (name[0] == ' ') ++name;
|
|
const char* endcn = strchr(name, ':'); // end of class name
|
|
if (endcn == NULL) endcn = strchr(name, '(');
|
|
if (endcn == NULL) endcn = name + strlen(name);
|
|
while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
|
|
--endcn;
|
|
st->print(" %s", endcn);
|
|
printed = true;
|
|
}
|
|
}
|
|
if (!printed)
|
|
_method->print_short_name(st);
|
|
st->print(" @ bci:%d",_bci);
|
|
if(_reexecute == Reexecute_True)
|
|
st->print(" reexecute");
|
|
} else {
|
|
st->print(" runtime stub");
|
|
}
|
|
if (caller() != NULL) caller()->dump_spec(st);
|
|
}
|
|
|
|
|
|
void JVMState::dump_on(outputStream* st) const {
|
|
bool print_map = _map && !((uintptr_t)_map & 1) &&
|
|
((caller() == NULL) || (caller()->map() != _map));
|
|
if (print_map) {
|
|
if (_map->len() > _map->req()) { // _map->has_exceptions()
|
|
Node* ex = _map->in(_map->req()); // _map->next_exception()
|
|
// skip the first one; it's already being printed
|
|
while (ex != NULL && ex->len() > ex->req()) {
|
|
ex = ex->in(ex->req()); // ex->next_exception()
|
|
ex->dump(1);
|
|
}
|
|
}
|
|
_map->dump(Verbose ? 2 : 1);
|
|
}
|
|
if (caller() != NULL) {
|
|
caller()->dump_on(st);
|
|
}
|
|
st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
|
|
depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
|
|
if (_method == NULL) {
|
|
st->print_cr("(none)");
|
|
} else {
|
|
_method->print_name(st);
|
|
st->cr();
|
|
if (bci() >= 0 && bci() < _method->code_size()) {
|
|
st->print(" bc: ");
|
|
_method->print_codes_on(bci(), bci()+1, st);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extra way to dump a jvms from the debugger,
|
|
// to avoid a bug with C++ member function calls.
|
|
void dump_jvms(JVMState* jvms) {
|
|
jvms->dump();
|
|
}
|
|
#endif
|
|
|
|
//--------------------------clone_shallow--------------------------------------
|
|
JVMState* JVMState::clone_shallow(Compile* C) const {
|
|
JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
|
|
n->set_bci(_bci);
|
|
n->_reexecute = _reexecute;
|
|
n->set_locoff(_locoff);
|
|
n->set_stkoff(_stkoff);
|
|
n->set_monoff(_monoff);
|
|
n->set_scloff(_scloff);
|
|
n->set_endoff(_endoff);
|
|
n->set_sp(_sp);
|
|
n->set_map(_map);
|
|
return n;
|
|
}
|
|
|
|
//---------------------------clone_deep----------------------------------------
|
|
JVMState* JVMState::clone_deep(Compile* C) const {
|
|
JVMState* n = clone_shallow(C);
|
|
for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
|
|
p->_caller = p->_caller->clone_shallow(C);
|
|
}
|
|
assert(n->depth() == depth(), "sanity");
|
|
assert(n->debug_depth() == debug_depth(), "sanity");
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Reset map for all callers
|
|
*/
|
|
void JVMState::set_map_deep(SafePointNode* map) {
|
|
for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
|
|
p->set_map(map);
|
|
}
|
|
}
|
|
|
|
// Adapt offsets in in-array after adding or removing an edge.
|
|
// Prerequisite is that the JVMState is used by only one node.
|
|
void JVMState::adapt_position(int delta) {
|
|
for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
|
|
jvms->set_locoff(jvms->locoff() + delta);
|
|
jvms->set_stkoff(jvms->stkoff() + delta);
|
|
jvms->set_monoff(jvms->monoff() + delta);
|
|
jvms->set_scloff(jvms->scloff() + delta);
|
|
jvms->set_endoff(jvms->endoff() + delta);
|
|
}
|
|
}
|
|
|
|
// Mirror the stack size calculation in the deopt code
|
|
// How much stack space would we need at this point in the program in
|
|
// case of deoptimization?
|
|
int JVMState::interpreter_frame_size() const {
|
|
const JVMState* jvms = this;
|
|
int size = 0;
|
|
int callee_parameters = 0;
|
|
int callee_locals = 0;
|
|
int extra_args = method()->max_stack() - stk_size();
|
|
|
|
while (jvms != NULL) {
|
|
int locks = jvms->nof_monitors();
|
|
int temps = jvms->stk_size();
|
|
bool is_top_frame = (jvms == this);
|
|
ciMethod* method = jvms->method();
|
|
|
|
int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
|
|
temps + callee_parameters,
|
|
extra_args,
|
|
locks,
|
|
callee_parameters,
|
|
callee_locals,
|
|
is_top_frame);
|
|
size += frame_size;
|
|
|
|
callee_parameters = method->size_of_parameters();
|
|
callee_locals = method->max_locals();
|
|
extra_args = 0;
|
|
jvms = jvms->caller();
|
|
}
|
|
return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
|
|
}
|
|
|
|
//=============================================================================
|
|
uint CallNode::cmp( const Node &n ) const
|
|
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
|
|
#ifndef PRODUCT
|
|
void CallNode::dump_req(outputStream *st) const {
|
|
// Dump the required inputs, enclosed in '(' and ')'
|
|
uint i; // Exit value of loop
|
|
for (i = 0; i < req(); i++) { // For all required inputs
|
|
if (i == TypeFunc::Parms) st->print("(");
|
|
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
|
|
else st->print("_ ");
|
|
}
|
|
st->print(")");
|
|
}
|
|
|
|
void CallNode::dump_spec(outputStream *st) const {
|
|
st->print(" ");
|
|
if (tf() != NULL) tf()->dump_on(st);
|
|
if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
|
|
if (jvms() != NULL) jvms()->dump_spec(st);
|
|
}
|
|
#endif
|
|
|
|
const Type *CallNode::bottom_type() const { return tf()->range(); }
|
|
const Type* CallNode::Value(PhaseGVN* phase) const {
|
|
if (phase->type(in(0)) == Type::TOP) return Type::TOP;
|
|
return tf()->range();
|
|
}
|
|
|
|
//------------------------------calling_convention-----------------------------
|
|
void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
|
|
// Use the standard compiler calling convention
|
|
Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
|
|
}
|
|
|
|
|
|
//------------------------------match------------------------------------------
|
|
// Construct projections for control, I/O, memory-fields, ..., and
|
|
// return result(s) along with their RegMask info
|
|
Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
|
|
switch (proj->_con) {
|
|
case TypeFunc::Control:
|
|
case TypeFunc::I_O:
|
|
case TypeFunc::Memory:
|
|
return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
|
|
|
|
case TypeFunc::Parms+1: // For LONG & DOUBLE returns
|
|
assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
|
|
// 2nd half of doubles and longs
|
|
return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
|
|
|
|
case TypeFunc::Parms: { // Normal returns
|
|
uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
|
|
OptoRegPair regs = is_CallRuntime()
|
|
? match->c_return_value(ideal_reg,true) // Calls into C runtime
|
|
: match-> return_value(ideal_reg,true); // Calls into compiled Java code
|
|
RegMask rm = RegMask(regs.first());
|
|
if( OptoReg::is_valid(regs.second()) )
|
|
rm.Insert( regs.second() );
|
|
return new MachProjNode(this,proj->_con,rm,ideal_reg);
|
|
}
|
|
|
|
case TypeFunc::ReturnAdr:
|
|
case TypeFunc::FramePtr:
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Do we Match on this edge index or not? Match no edges
|
|
uint CallNode::match_edge(uint idx) const {
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Determine whether the call could modify the field of the specified
|
|
// instance at the specified offset.
|
|
//
|
|
bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
|
|
assert((t_oop != NULL), "sanity");
|
|
if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
|
|
const TypeTuple* args = _tf->domain();
|
|
Node* dest = NULL;
|
|
// Stubs that can be called once an ArrayCopyNode is expanded have
|
|
// different signatures. Look for the second pointer argument,
|
|
// that is the destination of the copy.
|
|
for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
|
|
if (args->field_at(i)->isa_ptr()) {
|
|
j++;
|
|
if (j == 2) {
|
|
dest = in(i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
|
|
if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
if (t_oop->is_known_instance()) {
|
|
// The instance_id is set only for scalar-replaceable allocations which
|
|
// are not passed as arguments according to Escape Analysis.
|
|
return false;
|
|
}
|
|
if (t_oop->is_ptr_to_boxed_value()) {
|
|
ciKlass* boxing_klass = t_oop->klass();
|
|
if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
|
|
// Skip unrelated boxing methods.
|
|
Node* proj = proj_out_or_null(TypeFunc::Parms);
|
|
if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (is_CallJava() && as_CallJava()->method() != NULL) {
|
|
ciMethod* meth = as_CallJava()->method();
|
|
if (meth->is_getter()) {
|
|
return false;
|
|
}
|
|
// May modify (by reflection) if an boxing object is passed
|
|
// as argument or returned.
|
|
Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
|
|
if (proj != NULL) {
|
|
const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
|
|
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
|
|
(inst_t->klass() == boxing_klass))) {
|
|
return true;
|
|
}
|
|
}
|
|
const TypeTuple* d = tf()->domain();
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
|
|
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
|
|
(inst_t->klass() == boxing_klass))) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Does this call have a direct reference to n other than debug information?
|
|
bool CallNode::has_non_debug_use(Node *n) {
|
|
const TypeTuple * d = tf()->domain();
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
Node *arg = in(i);
|
|
if (arg == n) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns the unique CheckCastPP of a call
|
|
// or 'this' if there are several CheckCastPP or unexpected uses
|
|
// or returns NULL if there is no one.
|
|
Node *CallNode::result_cast() {
|
|
Node *cast = NULL;
|
|
|
|
Node *p = proj_out_or_null(TypeFunc::Parms);
|
|
if (p == NULL)
|
|
return NULL;
|
|
|
|
for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
|
|
Node *use = p->fast_out(i);
|
|
if (use->is_CheckCastPP()) {
|
|
if (cast != NULL) {
|
|
return this; // more than 1 CheckCastPP
|
|
}
|
|
cast = use;
|
|
} else if (!use->is_Initialize() &&
|
|
!use->is_AddP() &&
|
|
use->Opcode() != Op_MemBarStoreStore) {
|
|
// Expected uses are restricted to a CheckCastPP, an Initialize
|
|
// node, a MemBarStoreStore (clone) and AddP nodes. If we
|
|
// encounter any other use (a Phi node can be seen in rare
|
|
// cases) return this to prevent incorrect optimizations.
|
|
return this;
|
|
}
|
|
}
|
|
return cast;
|
|
}
|
|
|
|
|
|
void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
|
|
projs->fallthrough_proj = NULL;
|
|
projs->fallthrough_catchproj = NULL;
|
|
projs->fallthrough_ioproj = NULL;
|
|
projs->catchall_ioproj = NULL;
|
|
projs->catchall_catchproj = NULL;
|
|
projs->fallthrough_memproj = NULL;
|
|
projs->catchall_memproj = NULL;
|
|
projs->resproj = NULL;
|
|
projs->exobj = NULL;
|
|
|
|
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
|
|
ProjNode *pn = fast_out(i)->as_Proj();
|
|
if (pn->outcnt() == 0) continue;
|
|
switch (pn->_con) {
|
|
case TypeFunc::Control:
|
|
{
|
|
// For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
|
|
projs->fallthrough_proj = pn;
|
|
DUIterator_Fast jmax, j = pn->fast_outs(jmax);
|
|
const Node *cn = pn->fast_out(j);
|
|
if (cn->is_Catch()) {
|
|
ProjNode *cpn = NULL;
|
|
for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
|
|
cpn = cn->fast_out(k)->as_Proj();
|
|
assert(cpn->is_CatchProj(), "must be a CatchProjNode");
|
|
if (cpn->_con == CatchProjNode::fall_through_index)
|
|
projs->fallthrough_catchproj = cpn;
|
|
else {
|
|
assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
|
|
projs->catchall_catchproj = cpn;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TypeFunc::I_O:
|
|
if (pn->_is_io_use)
|
|
projs->catchall_ioproj = pn;
|
|
else
|
|
projs->fallthrough_ioproj = pn;
|
|
for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
|
|
Node* e = pn->out(j);
|
|
if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
|
|
assert(projs->exobj == NULL, "only one");
|
|
projs->exobj = e;
|
|
}
|
|
}
|
|
break;
|
|
case TypeFunc::Memory:
|
|
if (pn->_is_io_use)
|
|
projs->catchall_memproj = pn;
|
|
else
|
|
projs->fallthrough_memproj = pn;
|
|
break;
|
|
case TypeFunc::Parms:
|
|
projs->resproj = pn;
|
|
break;
|
|
default:
|
|
assert(false, "unexpected projection from allocation node.");
|
|
}
|
|
}
|
|
|
|
// The resproj may not exist because the result could be ignored
|
|
// and the exception object may not exist if an exception handler
|
|
// swallows the exception but all the other must exist and be found.
|
|
assert(projs->fallthrough_proj != NULL, "must be found");
|
|
do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
|
|
assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
|
|
assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found");
|
|
assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found");
|
|
assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found");
|
|
if (separate_io_proj) {
|
|
assert(!do_asserts || projs->catchall_memproj != NULL, "must be found");
|
|
assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found");
|
|
}
|
|
}
|
|
|
|
Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
CallGenerator* cg = generator();
|
|
if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
|
|
// Check whether this MH handle call becomes a candidate for inlining
|
|
ciMethod* callee = cg->method();
|
|
vmIntrinsics::ID iid = callee->intrinsic_id();
|
|
if (iid == vmIntrinsics::_invokeBasic) {
|
|
if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
|
|
phase->C->prepend_late_inline(cg);
|
|
set_generator(NULL);
|
|
}
|
|
} else {
|
|
assert(callee->has_member_arg(), "wrong type of call?");
|
|
if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
|
|
phase->C->prepend_late_inline(cg);
|
|
set_generator(NULL);
|
|
}
|
|
}
|
|
}
|
|
return SafePointNode::Ideal(phase, can_reshape);
|
|
}
|
|
|
|
bool CallNode::is_call_to_arraycopystub() const {
|
|
if (_name != NULL && strstr(_name, "arraycopy") != 0) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//=============================================================================
|
|
uint CallJavaNode::size_of() const { return sizeof(*this); }
|
|
uint CallJavaNode::cmp( const Node &n ) const {
|
|
CallJavaNode &call = (CallJavaNode&)n;
|
|
return CallNode::cmp(call) && _method == call._method &&
|
|
_override_symbolic_info == call._override_symbolic_info;
|
|
}
|
|
#ifndef PRODUCT
|
|
void CallJavaNode::dump_spec(outputStream *st) const {
|
|
if( _method ) _method->print_short_name(st);
|
|
CallNode::dump_spec(st);
|
|
}
|
|
|
|
void CallJavaNode::dump_compact_spec(outputStream* st) const {
|
|
if (_method) {
|
|
_method->print_short_name(st);
|
|
} else {
|
|
st->print("<?>");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
|
|
uint CallStaticJavaNode::cmp( const Node &n ) const {
|
|
CallStaticJavaNode &call = (CallStaticJavaNode&)n;
|
|
return CallJavaNode::cmp(call);
|
|
}
|
|
|
|
//----------------------------uncommon_trap_request----------------------------
|
|
// If this is an uncommon trap, return the request code, else zero.
|
|
int CallStaticJavaNode::uncommon_trap_request() const {
|
|
if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
|
|
return extract_uncommon_trap_request(this);
|
|
}
|
|
return 0;
|
|
}
|
|
int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
|
|
#ifndef PRODUCT
|
|
if (!(call->req() > TypeFunc::Parms &&
|
|
call->in(TypeFunc::Parms) != NULL &&
|
|
call->in(TypeFunc::Parms)->is_Con() &&
|
|
call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
|
|
assert(in_dump() != 0, "OK if dumping");
|
|
tty->print("[bad uncommon trap]");
|
|
return 0;
|
|
}
|
|
#endif
|
|
return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void CallStaticJavaNode::dump_spec(outputStream *st) const {
|
|
st->print("# Static ");
|
|
if (_name != NULL) {
|
|
st->print("%s", _name);
|
|
int trap_req = uncommon_trap_request();
|
|
if (trap_req != 0) {
|
|
char buf[100];
|
|
st->print("(%s)",
|
|
Deoptimization::format_trap_request(buf, sizeof(buf),
|
|
trap_req));
|
|
}
|
|
st->print(" ");
|
|
}
|
|
CallJavaNode::dump_spec(st);
|
|
}
|
|
|
|
void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
|
|
if (_method) {
|
|
_method->print_short_name(st);
|
|
} else if (_name) {
|
|
st->print("%s", _name);
|
|
} else {
|
|
st->print("<?>");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
|
|
uint CallDynamicJavaNode::cmp( const Node &n ) const {
|
|
CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
|
|
return CallJavaNode::cmp(call);
|
|
}
|
|
#ifndef PRODUCT
|
|
void CallDynamicJavaNode::dump_spec(outputStream *st) const {
|
|
st->print("# Dynamic ");
|
|
CallJavaNode::dump_spec(st);
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
uint CallRuntimeNode::size_of() const { return sizeof(*this); }
|
|
uint CallRuntimeNode::cmp( const Node &n ) const {
|
|
CallRuntimeNode &call = (CallRuntimeNode&)n;
|
|
return CallNode::cmp(call) && !strcmp(_name,call._name);
|
|
}
|
|
#ifndef PRODUCT
|
|
void CallRuntimeNode::dump_spec(outputStream *st) const {
|
|
st->print("# ");
|
|
st->print("%s", _name);
|
|
CallNode::dump_spec(st);
|
|
}
|
|
#endif
|
|
|
|
//------------------------------calling_convention-----------------------------
|
|
void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
|
|
Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------calling_convention-----------------------------
|
|
|
|
|
|
//=============================================================================
|
|
#ifndef PRODUCT
|
|
void CallLeafNode::dump_spec(outputStream *st) const {
|
|
st->print("# ");
|
|
st->print("%s", _name);
|
|
CallNode::dump_spec(st);
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
|
|
void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
|
|
assert(verify_jvms(jvms), "jvms must match");
|
|
int loc = jvms->locoff() + idx;
|
|
if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
|
|
// If current local idx is top then local idx - 1 could
|
|
// be a long/double that needs to be killed since top could
|
|
// represent the 2nd half ofthe long/double.
|
|
uint ideal = in(loc -1)->ideal_reg();
|
|
if (ideal == Op_RegD || ideal == Op_RegL) {
|
|
// set other (low index) half to top
|
|
set_req(loc - 1, in(loc));
|
|
}
|
|
}
|
|
set_req(loc, c);
|
|
}
|
|
|
|
uint SafePointNode::size_of() const { return sizeof(*this); }
|
|
uint SafePointNode::cmp( const Node &n ) const {
|
|
return (&n == this); // Always fail except on self
|
|
}
|
|
|
|
//-------------------------set_next_exception----------------------------------
|
|
void SafePointNode::set_next_exception(SafePointNode* n) {
|
|
assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
|
|
if (len() == req()) {
|
|
if (n != NULL) add_prec(n);
|
|
} else {
|
|
set_prec(req(), n);
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------next_exception-----------------------------------
|
|
SafePointNode* SafePointNode::next_exception() const {
|
|
if (len() == req()) {
|
|
return NULL;
|
|
} else {
|
|
Node* n = in(req());
|
|
assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
|
|
return (SafePointNode*) n;
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Skip over any collapsed Regions
|
|
Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
return remove_dead_region(phase, can_reshape) ? this : NULL;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
// Remove obviously duplicate safepoints
|
|
Node* SafePointNode::Identity(PhaseGVN* phase) {
|
|
|
|
// If you have back to back safepoints, remove one
|
|
if( in(TypeFunc::Control)->is_SafePoint() )
|
|
return in(TypeFunc::Control);
|
|
|
|
if( in(0)->is_Proj() ) {
|
|
Node *n0 = in(0)->in(0);
|
|
// Check if he is a call projection (except Leaf Call)
|
|
if( n0->is_Catch() ) {
|
|
n0 = n0->in(0)->in(0);
|
|
assert( n0->is_Call(), "expect a call here" );
|
|
}
|
|
if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
|
|
// Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
|
|
// If the loop dies, they will be removed together.
|
|
if (has_out_with(Op_OuterStripMinedLoopEnd)) {
|
|
return this;
|
|
}
|
|
// Useless Safepoint, so remove it
|
|
return in(TypeFunc::Control);
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* SafePointNode::Value(PhaseGVN* phase) const {
|
|
if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
|
|
if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
|
|
return Type::CONTROL;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void SafePointNode::dump_spec(outputStream *st) const {
|
|
st->print(" SafePoint ");
|
|
_replaced_nodes.dump(st);
|
|
}
|
|
|
|
// The related nodes of a SafepointNode are all data inputs, excluding the
|
|
// control boundary, as well as all outputs till level 2 (to include projection
|
|
// nodes and targets). In compact mode, just include inputs till level 1 and
|
|
// outputs as before.
|
|
void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
|
|
if (compact) {
|
|
this->collect_nodes(in_rel, 1, false, false);
|
|
} else {
|
|
this->collect_nodes_in_all_data(in_rel, false);
|
|
}
|
|
this->collect_nodes(out_rel, -2, false, false);
|
|
}
|
|
#endif
|
|
|
|
const RegMask &SafePointNode::in_RegMask(uint idx) const {
|
|
if( idx < TypeFunc::Parms ) return RegMask::Empty;
|
|
// Values outside the domain represent debug info
|
|
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
|
|
}
|
|
const RegMask &SafePointNode::out_RegMask() const {
|
|
return RegMask::Empty;
|
|
}
|
|
|
|
|
|
void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
|
|
assert((int)grow_by > 0, "sanity");
|
|
int monoff = jvms->monoff();
|
|
int scloff = jvms->scloff();
|
|
int endoff = jvms->endoff();
|
|
assert(endoff == (int)req(), "no other states or debug info after me");
|
|
Node* top = Compile::current()->top();
|
|
for (uint i = 0; i < grow_by; i++) {
|
|
ins_req(monoff, top);
|
|
}
|
|
jvms->set_monoff(monoff + grow_by);
|
|
jvms->set_scloff(scloff + grow_by);
|
|
jvms->set_endoff(endoff + grow_by);
|
|
}
|
|
|
|
void SafePointNode::push_monitor(const FastLockNode *lock) {
|
|
// Add a LockNode, which points to both the original BoxLockNode (the
|
|
// stack space for the monitor) and the Object being locked.
|
|
const int MonitorEdges = 2;
|
|
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
|
|
assert(req() == jvms()->endoff(), "correct sizing");
|
|
int nextmon = jvms()->scloff();
|
|
if (GenerateSynchronizationCode) {
|
|
ins_req(nextmon, lock->box_node());
|
|
ins_req(nextmon+1, lock->obj_node());
|
|
} else {
|
|
Node* top = Compile::current()->top();
|
|
ins_req(nextmon, top);
|
|
ins_req(nextmon, top);
|
|
}
|
|
jvms()->set_scloff(nextmon + MonitorEdges);
|
|
jvms()->set_endoff(req());
|
|
}
|
|
|
|
void SafePointNode::pop_monitor() {
|
|
// Delete last monitor from debug info
|
|
debug_only(int num_before_pop = jvms()->nof_monitors());
|
|
const int MonitorEdges = 2;
|
|
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
|
|
int scloff = jvms()->scloff();
|
|
int endoff = jvms()->endoff();
|
|
int new_scloff = scloff - MonitorEdges;
|
|
int new_endoff = endoff - MonitorEdges;
|
|
jvms()->set_scloff(new_scloff);
|
|
jvms()->set_endoff(new_endoff);
|
|
while (scloff > new_scloff) del_req_ordered(--scloff);
|
|
assert(jvms()->nof_monitors() == num_before_pop-1, "");
|
|
}
|
|
|
|
Node *SafePointNode::peek_monitor_box() const {
|
|
int mon = jvms()->nof_monitors() - 1;
|
|
assert(mon >= 0, "must have a monitor");
|
|
return monitor_box(jvms(), mon);
|
|
}
|
|
|
|
Node *SafePointNode::peek_monitor_obj() const {
|
|
int mon = jvms()->nof_monitors() - 1;
|
|
assert(mon >= 0, "must have a monitor");
|
|
return monitor_obj(jvms(), mon);
|
|
}
|
|
|
|
// Do we Match on this edge index or not? Match no edges
|
|
uint SafePointNode::match_edge(uint idx) const {
|
|
if( !needs_polling_address_input() )
|
|
return 0;
|
|
|
|
return (TypeFunc::Parms == idx);
|
|
}
|
|
|
|
void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
|
|
assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
|
|
int nb = igvn->C->root()->find_prec_edge(this);
|
|
if (nb != -1) {
|
|
igvn->C->root()->rm_prec(nb);
|
|
}
|
|
}
|
|
|
|
//============== SafePointScalarObjectNode ==============
|
|
|
|
SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
|
|
#ifdef ASSERT
|
|
AllocateNode* alloc,
|
|
#endif
|
|
uint first_index,
|
|
uint n_fields) :
|
|
TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
|
|
_first_index(first_index),
|
|
_n_fields(n_fields)
|
|
#ifdef ASSERT
|
|
, _alloc(alloc)
|
|
#endif
|
|
{
|
|
init_class_id(Class_SafePointScalarObject);
|
|
}
|
|
|
|
// Do not allow value-numbering for SafePointScalarObject node.
|
|
uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
|
|
uint SafePointScalarObjectNode::cmp( const Node &n ) const {
|
|
return (&n == this); // Always fail except on self
|
|
}
|
|
|
|
uint SafePointScalarObjectNode::ideal_reg() const {
|
|
return 0; // No matching to machine instruction
|
|
}
|
|
|
|
const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
|
|
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
|
|
}
|
|
|
|
const RegMask &SafePointScalarObjectNode::out_RegMask() const {
|
|
return RegMask::Empty;
|
|
}
|
|
|
|
uint SafePointScalarObjectNode::match_edge(uint idx) const {
|
|
return 0;
|
|
}
|
|
|
|
SafePointScalarObjectNode*
|
|
SafePointScalarObjectNode::clone(Dict* sosn_map) const {
|
|
void* cached = (*sosn_map)[(void*)this];
|
|
if (cached != NULL) {
|
|
return (SafePointScalarObjectNode*)cached;
|
|
}
|
|
SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
|
|
sosn_map->Insert((void*)this, (void*)res);
|
|
return res;
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
|
|
st->print(" # fields@[%d..%d]", first_index(),
|
|
first_index() + n_fields() - 1);
|
|
}
|
|
|
|
#endif
|
|
|
|
//=============================================================================
|
|
uint AllocateNode::size_of() const { return sizeof(*this); }
|
|
|
|
AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
|
|
Node *ctrl, Node *mem, Node *abio,
|
|
Node *size, Node *klass_node, Node *initial_test)
|
|
: CallNode(atype, NULL, TypeRawPtr::BOTTOM)
|
|
{
|
|
init_class_id(Class_Allocate);
|
|
init_flags(Flag_is_macro);
|
|
_is_scalar_replaceable = false;
|
|
_is_non_escaping = false;
|
|
_is_allocation_MemBar_redundant = false;
|
|
Node *topnode = C->top();
|
|
|
|
init_req( TypeFunc::Control , ctrl );
|
|
init_req( TypeFunc::I_O , abio );
|
|
init_req( TypeFunc::Memory , mem );
|
|
init_req( TypeFunc::ReturnAdr, topnode );
|
|
init_req( TypeFunc::FramePtr , topnode );
|
|
init_req( AllocSize , size);
|
|
init_req( KlassNode , klass_node);
|
|
init_req( InitialTest , initial_test);
|
|
init_req( ALength , topnode);
|
|
C->add_macro_node(this);
|
|
}
|
|
|
|
void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
|
|
{
|
|
assert(initializer != NULL &&
|
|
initializer->is_initializer() &&
|
|
!initializer->is_static(),
|
|
"unexpected initializer method");
|
|
BCEscapeAnalyzer* analyzer = initializer->get_bcea();
|
|
if (analyzer == NULL) {
|
|
return;
|
|
}
|
|
|
|
// Allocation node is first parameter in its initializer
|
|
if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
|
|
_is_allocation_MemBar_redundant = true;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if (remove_dead_region(phase, can_reshape)) return this;
|
|
// Don't bother trying to transform a dead node
|
|
if (in(0) && in(0)->is_top()) return NULL;
|
|
|
|
const Type* type = phase->type(Ideal_length());
|
|
if (type->isa_int() && type->is_int()->_hi < 0) {
|
|
if (can_reshape) {
|
|
PhaseIterGVN *igvn = phase->is_IterGVN();
|
|
// Unreachable fall through path (negative array length),
|
|
// the allocation can only throw so disconnect it.
|
|
Node* proj = proj_out_or_null(TypeFunc::Control);
|
|
Node* catchproj = NULL;
|
|
if (proj != NULL) {
|
|
for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
|
|
Node *cn = proj->fast_out(i);
|
|
if (cn->is_Catch()) {
|
|
catchproj = cn->as_Multi()->proj_out_or_null(CatchProjNode::fall_through_index);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (catchproj != NULL && catchproj->outcnt() > 0 &&
|
|
(catchproj->outcnt() > 1 ||
|
|
catchproj->unique_out()->Opcode() != Op_Halt)) {
|
|
assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
|
|
Node* nproj = catchproj->clone();
|
|
igvn->register_new_node_with_optimizer(nproj);
|
|
|
|
Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
|
|
frame = phase->transform(frame);
|
|
// Halt & Catch Fire
|
|
Node *halt = new HaltNode( nproj, frame );
|
|
phase->C->root()->add_req(halt);
|
|
phase->transform(halt);
|
|
|
|
igvn->replace_node(catchproj, phase->C->top());
|
|
return this;
|
|
}
|
|
} else {
|
|
// Can't correct it during regular GVN so register for IGVN
|
|
phase->C->record_for_igvn(this);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Retrieve the length from the AllocateArrayNode. Narrow the type with a
|
|
// CastII, if appropriate. If we are not allowed to create new nodes, and
|
|
// a CastII is appropriate, return NULL.
|
|
Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
|
|
Node *length = in(AllocateNode::ALength);
|
|
assert(length != NULL, "length is not null");
|
|
|
|
const TypeInt* length_type = phase->find_int_type(length);
|
|
const TypeAryPtr* ary_type = oop_type->isa_aryptr();
|
|
|
|
if (ary_type != NULL && length_type != NULL) {
|
|
const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
|
|
if (narrow_length_type != length_type) {
|
|
// Assert one of:
|
|
// - the narrow_length is 0
|
|
// - the narrow_length is not wider than length
|
|
assert(narrow_length_type == TypeInt::ZERO ||
|
|
length_type->is_con() && narrow_length_type->is_con() &&
|
|
(narrow_length_type->_hi <= length_type->_lo) ||
|
|
(narrow_length_type->_hi <= length_type->_hi &&
|
|
narrow_length_type->_lo >= length_type->_lo),
|
|
"narrow type must be narrower than length type");
|
|
|
|
// Return NULL if new nodes are not allowed
|
|
if (!allow_new_nodes) return NULL;
|
|
// Create a cast which is control dependent on the initialization to
|
|
// propagate the fact that the array length must be positive.
|
|
InitializeNode* init = initialization();
|
|
assert(init != NULL, "initialization not found");
|
|
length = new CastIINode(length, narrow_length_type);
|
|
length->set_req(0, init->proj_out_or_null(0));
|
|
}
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
//=============================================================================
|
|
uint LockNode::size_of() const { return sizeof(*this); }
|
|
|
|
// Redundant lock elimination
|
|
//
|
|
// There are various patterns of locking where we release and
|
|
// immediately reacquire a lock in a piece of code where no operations
|
|
// occur in between that would be observable. In those cases we can
|
|
// skip releasing and reacquiring the lock without violating any
|
|
// fairness requirements. Doing this around a loop could cause a lock
|
|
// to be held for a very long time so we concentrate on non-looping
|
|
// control flow. We also require that the operations are fully
|
|
// redundant meaning that we don't introduce new lock operations on
|
|
// some paths so to be able to eliminate it on others ala PRE. This
|
|
// would probably require some more extensive graph manipulation to
|
|
// guarantee that the memory edges were all handled correctly.
|
|
//
|
|
// Assuming p is a simple predicate which can't trap in any way and s
|
|
// is a synchronized method consider this code:
|
|
//
|
|
// s();
|
|
// if (p)
|
|
// s();
|
|
// else
|
|
// s();
|
|
// s();
|
|
//
|
|
// 1. The unlocks of the first call to s can be eliminated if the
|
|
// locks inside the then and else branches are eliminated.
|
|
//
|
|
// 2. The unlocks of the then and else branches can be eliminated if
|
|
// the lock of the final call to s is eliminated.
|
|
//
|
|
// Either of these cases subsumes the simple case of sequential control flow
|
|
//
|
|
// Addtionally we can eliminate versions without the else case:
|
|
//
|
|
// s();
|
|
// if (p)
|
|
// s();
|
|
// s();
|
|
//
|
|
// 3. In this case we eliminate the unlock of the first s, the lock
|
|
// and unlock in the then case and the lock in the final s.
|
|
//
|
|
// Note also that in all these cases the then/else pieces don't have
|
|
// to be trivial as long as they begin and end with synchronization
|
|
// operations.
|
|
//
|
|
// s();
|
|
// if (p)
|
|
// s();
|
|
// f();
|
|
// s();
|
|
// s();
|
|
//
|
|
// The code will work properly for this case, leaving in the unlock
|
|
// before the call to f and the relock after it.
|
|
//
|
|
// A potentially interesting case which isn't handled here is when the
|
|
// locking is partially redundant.
|
|
//
|
|
// s();
|
|
// if (p)
|
|
// s();
|
|
//
|
|
// This could be eliminated putting unlocking on the else case and
|
|
// eliminating the first unlock and the lock in the then side.
|
|
// Alternatively the unlock could be moved out of the then side so it
|
|
// was after the merge and the first unlock and second lock
|
|
// eliminated. This might require less manipulation of the memory
|
|
// state to get correct.
|
|
//
|
|
// Additionally we might allow work between a unlock and lock before
|
|
// giving up eliminating the locks. The current code disallows any
|
|
// conditional control flow between these operations. A formulation
|
|
// similar to partial redundancy elimination computing the
|
|
// availability of unlocking and the anticipatability of locking at a
|
|
// program point would allow detection of fully redundant locking with
|
|
// some amount of work in between. I'm not sure how often I really
|
|
// think that would occur though. Most of the cases I've seen
|
|
// indicate it's likely non-trivial work would occur in between.
|
|
// There may be other more complicated constructs where we could
|
|
// eliminate locking but I haven't seen any others appear as hot or
|
|
// interesting.
|
|
//
|
|
// Locking and unlocking have a canonical form in ideal that looks
|
|
// roughly like this:
|
|
//
|
|
// <obj>
|
|
// | \\------+
|
|
// | \ \
|
|
// | BoxLock \
|
|
// | | | \
|
|
// | | \ \
|
|
// | | FastLock
|
|
// | | /
|
|
// | | /
|
|
// | | |
|
|
//
|
|
// Lock
|
|
// |
|
|
// Proj #0
|
|
// |
|
|
// MembarAcquire
|
|
// |
|
|
// Proj #0
|
|
//
|
|
// MembarRelease
|
|
// |
|
|
// Proj #0
|
|
// |
|
|
// Unlock
|
|
// |
|
|
// Proj #0
|
|
//
|
|
//
|
|
// This code proceeds by processing Lock nodes during PhaseIterGVN
|
|
// and searching back through its control for the proper code
|
|
// patterns. Once it finds a set of lock and unlock operations to
|
|
// eliminate they are marked as eliminatable which causes the
|
|
// expansion of the Lock and Unlock macro nodes to make the operation a NOP
|
|
//
|
|
//=============================================================================
|
|
|
|
//
|
|
// Utility function to skip over uninteresting control nodes. Nodes skipped are:
|
|
// - copy regions. (These may not have been optimized away yet.)
|
|
// - eliminated locking nodes
|
|
//
|
|
static Node *next_control(Node *ctrl) {
|
|
if (ctrl == NULL)
|
|
return NULL;
|
|
while (1) {
|
|
if (ctrl->is_Region()) {
|
|
RegionNode *r = ctrl->as_Region();
|
|
Node *n = r->is_copy();
|
|
if (n == NULL)
|
|
break; // hit a region, return it
|
|
else
|
|
ctrl = n;
|
|
} else if (ctrl->is_Proj()) {
|
|
Node *in0 = ctrl->in(0);
|
|
if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
|
|
ctrl = in0->in(0);
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
break; // found an interesting control
|
|
}
|
|
}
|
|
return ctrl;
|
|
}
|
|
//
|
|
// Given a control, see if it's the control projection of an Unlock which
|
|
// operating on the same object as lock.
|
|
//
|
|
bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
|
|
GrowableArray<AbstractLockNode*> &lock_ops) {
|
|
ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
|
|
if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
|
|
Node *n = ctrl_proj->in(0);
|
|
if (n != NULL && n->is_Unlock()) {
|
|
UnlockNode *unlock = n->as_Unlock();
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
|
|
Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
|
|
if (lock_obj->eqv_uncast(unlock_obj) &&
|
|
BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
|
|
!unlock->is_eliminated()) {
|
|
lock_ops.append(unlock);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Find the lock matching an unlock. Returns null if a safepoint
|
|
// or complicated control is encountered first.
|
|
LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
|
|
LockNode *lock_result = NULL;
|
|
// find the matching lock, or an intervening safepoint
|
|
Node *ctrl = next_control(unlock->in(0));
|
|
while (1) {
|
|
assert(ctrl != NULL, "invalid control graph");
|
|
assert(!ctrl->is_Start(), "missing lock for unlock");
|
|
if (ctrl->is_top()) break; // dead control path
|
|
if (ctrl->is_Proj()) ctrl = ctrl->in(0);
|
|
if (ctrl->is_SafePoint()) {
|
|
break; // found a safepoint (may be the lock we are searching for)
|
|
} else if (ctrl->is_Region()) {
|
|
// Check for a simple diamond pattern. Punt on anything more complicated
|
|
if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
|
|
Node *in1 = next_control(ctrl->in(1));
|
|
Node *in2 = next_control(ctrl->in(2));
|
|
if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
|
|
(in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
|
|
ctrl = next_control(in1->in(0)->in(0));
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
ctrl = next_control(ctrl->in(0)); // keep searching
|
|
}
|
|
}
|
|
if (ctrl->is_Lock()) {
|
|
LockNode *lock = ctrl->as_Lock();
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
|
|
Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
|
|
if (lock_obj->eqv_uncast(unlock_obj) &&
|
|
BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
|
|
lock_result = lock;
|
|
}
|
|
}
|
|
return lock_result;
|
|
}
|
|
|
|
// This code corresponds to case 3 above.
|
|
|
|
bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
|
|
GrowableArray<AbstractLockNode*> &lock_ops) {
|
|
Node* if_node = node->in(0);
|
|
bool if_true = node->is_IfTrue();
|
|
|
|
if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
|
|
Node *lock_ctrl = next_control(if_node->in(0));
|
|
if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
|
|
Node* lock1_node = NULL;
|
|
ProjNode* proj = if_node->as_If()->proj_out(!if_true);
|
|
if (if_true) {
|
|
if (proj->is_IfFalse() && proj->outcnt() == 1) {
|
|
lock1_node = proj->unique_out();
|
|
}
|
|
} else {
|
|
if (proj->is_IfTrue() && proj->outcnt() == 1) {
|
|
lock1_node = proj->unique_out();
|
|
}
|
|
}
|
|
if (lock1_node != NULL && lock1_node->is_Lock()) {
|
|
LockNode *lock1 = lock1_node->as_Lock();
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
|
|
Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
|
|
if (lock_obj->eqv_uncast(lock1_obj) &&
|
|
BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
|
|
!lock1->is_eliminated()) {
|
|
lock_ops.append(lock1);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
lock_ops.trunc_to(0);
|
|
return false;
|
|
}
|
|
|
|
bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
|
|
GrowableArray<AbstractLockNode*> &lock_ops) {
|
|
// check each control merging at this point for a matching unlock.
|
|
// in(0) should be self edge so skip it.
|
|
for (int i = 1; i < (int)region->req(); i++) {
|
|
Node *in_node = next_control(region->in(i));
|
|
if (in_node != NULL) {
|
|
if (find_matching_unlock(in_node, lock, lock_ops)) {
|
|
// found a match so keep on checking.
|
|
continue;
|
|
} else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
|
|
continue;
|
|
}
|
|
|
|
// If we fall through to here then it was some kind of node we
|
|
// don't understand or there wasn't a matching unlock, so give
|
|
// up trying to merge locks.
|
|
lock_ops.trunc_to(0);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
//
|
|
// Create a counter which counts the number of times this lock is acquired
|
|
//
|
|
void AbstractLockNode::create_lock_counter(JVMState* state) {
|
|
_counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
|
|
}
|
|
|
|
void AbstractLockNode::set_eliminated_lock_counter() {
|
|
if (_counter) {
|
|
// Update the counter to indicate that this lock was eliminated.
|
|
// The counter update code will stay around even though the
|
|
// optimizer will eliminate the lock operation itself.
|
|
_counter->set_tag(NamedCounter::EliminatedLockCounter);
|
|
}
|
|
}
|
|
|
|
const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
|
|
|
|
void AbstractLockNode::dump_spec(outputStream* st) const {
|
|
st->print("%s ", _kind_names[_kind]);
|
|
CallNode::dump_spec(st);
|
|
}
|
|
|
|
void AbstractLockNode::dump_compact_spec(outputStream* st) const {
|
|
st->print("%s", _kind_names[_kind]);
|
|
}
|
|
|
|
// The related set of lock nodes includes the control boundary.
|
|
void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
|
|
if (compact) {
|
|
this->collect_nodes(in_rel, 1, false, false);
|
|
} else {
|
|
this->collect_nodes_in_all_data(in_rel, true);
|
|
}
|
|
this->collect_nodes(out_rel, -2, false, false);
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
|
|
// perform any generic optimizations first (returns 'this' or NULL)
|
|
Node *result = SafePointNode::Ideal(phase, can_reshape);
|
|
if (result != NULL) return result;
|
|
// Don't bother trying to transform a dead node
|
|
if (in(0) && in(0)->is_top()) return NULL;
|
|
|
|
// Now see if we can optimize away this lock. We don't actually
|
|
// remove the locking here, we simply set the _eliminate flag which
|
|
// prevents macro expansion from expanding the lock. Since we don't
|
|
// modify the graph, the value returned from this function is the
|
|
// one computed above.
|
|
if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
|
|
//
|
|
// If we are locking an unescaped object, the lock/unlock is unnecessary
|
|
//
|
|
ConnectionGraph *cgr = phase->C->congraph();
|
|
if (cgr != NULL && cgr->not_global_escape(obj_node())) {
|
|
assert(!is_eliminated() || is_coarsened(), "sanity");
|
|
// The lock could be marked eliminated by lock coarsening
|
|
// code during first IGVN before EA. Replace coarsened flag
|
|
// to eliminate all associated locks/unlocks.
|
|
#ifdef ASSERT
|
|
this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
|
|
#endif
|
|
this->set_non_esc_obj();
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Try lock coarsening
|
|
//
|
|
PhaseIterGVN* iter = phase->is_IterGVN();
|
|
if (iter != NULL && !is_eliminated()) {
|
|
|
|
GrowableArray<AbstractLockNode*> lock_ops;
|
|
|
|
Node *ctrl = next_control(in(0));
|
|
|
|
// now search back for a matching Unlock
|
|
if (find_matching_unlock(ctrl, this, lock_ops)) {
|
|
// found an unlock directly preceding this lock. This is the
|
|
// case of single unlock directly control dependent on a
|
|
// single lock which is the trivial version of case 1 or 2.
|
|
} else if (ctrl->is_Region() ) {
|
|
if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
|
|
// found lock preceded by multiple unlocks along all paths
|
|
// joining at this point which is case 3 in description above.
|
|
}
|
|
} else {
|
|
// see if this lock comes from either half of an if and the
|
|
// predecessors merges unlocks and the other half of the if
|
|
// performs a lock.
|
|
if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
|
|
// found unlock splitting to an if with locks on both branches.
|
|
}
|
|
}
|
|
|
|
if (lock_ops.length() > 0) {
|
|
// add ourselves to the list of locks to be eliminated.
|
|
lock_ops.append(this);
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateLocks) {
|
|
int locks = 0;
|
|
int unlocks = 0;
|
|
for (int i = 0; i < lock_ops.length(); i++) {
|
|
AbstractLockNode* lock = lock_ops.at(i);
|
|
if (lock->Opcode() == Op_Lock)
|
|
locks++;
|
|
else
|
|
unlocks++;
|
|
if (Verbose) {
|
|
lock->dump(1);
|
|
}
|
|
}
|
|
tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
|
|
}
|
|
#endif
|
|
|
|
// for each of the identified locks, mark them
|
|
// as eliminatable
|
|
for (int i = 0; i < lock_ops.length(); i++) {
|
|
AbstractLockNode* lock = lock_ops.at(i);
|
|
|
|
// Mark it eliminated by coarsening and update any counters
|
|
#ifdef ASSERT
|
|
lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
|
|
#endif
|
|
lock->set_coarsened();
|
|
}
|
|
} else if (ctrl->is_Region() &&
|
|
iter->_worklist.member(ctrl)) {
|
|
// We weren't able to find any opportunities but the region this
|
|
// lock is control dependent on hasn't been processed yet so put
|
|
// this lock back on the worklist so we can check again once any
|
|
// region simplification has occurred.
|
|
iter->_worklist.push(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//=============================================================================
|
|
bool LockNode::is_nested_lock_region() {
|
|
return is_nested_lock_region(NULL);
|
|
}
|
|
|
|
// p is used for access to compilation log; no logging if NULL
|
|
bool LockNode::is_nested_lock_region(Compile * c) {
|
|
BoxLockNode* box = box_node()->as_BoxLock();
|
|
int stk_slot = box->stack_slot();
|
|
if (stk_slot <= 0) {
|
|
#ifdef ASSERT
|
|
this->log_lock_optimization(c, "eliminate_lock_INLR_1");
|
|
#endif
|
|
return false; // External lock or it is not Box (Phi node).
|
|
}
|
|
|
|
// Ignore complex cases: merged locks or multiple locks.
|
|
Node* obj = obj_node();
|
|
LockNode* unique_lock = NULL;
|
|
if (!box->is_simple_lock_region(&unique_lock, obj)) {
|
|
#ifdef ASSERT
|
|
this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
|
|
#endif
|
|
return false;
|
|
}
|
|
if (unique_lock != this) {
|
|
#ifdef ASSERT
|
|
this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
obj = bs->step_over_gc_barrier(obj);
|
|
// Look for external lock for the same object.
|
|
SafePointNode* sfn = this->as_SafePoint();
|
|
JVMState* youngest_jvms = sfn->jvms();
|
|
int max_depth = youngest_jvms->depth();
|
|
for (int depth = 1; depth <= max_depth; depth++) {
|
|
JVMState* jvms = youngest_jvms->of_depth(depth);
|
|
int num_mon = jvms->nof_monitors();
|
|
// Loop over monitors
|
|
for (int idx = 0; idx < num_mon; idx++) {
|
|
Node* obj_node = sfn->monitor_obj(jvms, idx);
|
|
obj_node = bs->step_over_gc_barrier(obj_node);
|
|
BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
|
|
if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
this->log_lock_optimization(c, "eliminate_lock_INLR_3");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
//=============================================================================
|
|
uint UnlockNode::size_of() const { return sizeof(*this); }
|
|
|
|
//=============================================================================
|
|
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
|
|
// perform any generic optimizations first (returns 'this' or NULL)
|
|
Node *result = SafePointNode::Ideal(phase, can_reshape);
|
|
if (result != NULL) return result;
|
|
// Don't bother trying to transform a dead node
|
|
if (in(0) && in(0)->is_top()) return NULL;
|
|
|
|
// Now see if we can optimize away this unlock. We don't actually
|
|
// remove the unlocking here, we simply set the _eliminate flag which
|
|
// prevents macro expansion from expanding the unlock. Since we don't
|
|
// modify the graph, the value returned from this function is the
|
|
// one computed above.
|
|
// Escape state is defined after Parse phase.
|
|
if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
|
|
//
|
|
// If we are unlocking an unescaped object, the lock/unlock is unnecessary.
|
|
//
|
|
ConnectionGraph *cgr = phase->C->congraph();
|
|
if (cgr != NULL && cgr->not_global_escape(obj_node())) {
|
|
assert(!is_eliminated() || is_coarsened(), "sanity");
|
|
// The lock could be marked eliminated by lock coarsening
|
|
// code during first IGVN before EA. Replace coarsened flag
|
|
// to eliminate all associated locks/unlocks.
|
|
#ifdef ASSERT
|
|
this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
|
|
#endif
|
|
this->set_non_esc_obj();
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const char * AbstractLockNode::kind_as_string() const {
|
|
return is_coarsened() ? "coarsened" :
|
|
is_nested() ? "nested" :
|
|
is_non_esc_obj() ? "non_escaping" :
|
|
"?";
|
|
}
|
|
|
|
void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const {
|
|
if (C == NULL) {
|
|
return;
|
|
}
|
|
CompileLog* log = C->log();
|
|
if (log != NULL) {
|
|
log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
|
|
tag, is_Lock(), C->compile_id(),
|
|
is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
|
|
kind_as_string());
|
|
log->stamp();
|
|
log->end_head();
|
|
JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
|
|
while (p != NULL) {
|
|
log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
|
|
p = p->caller();
|
|
}
|
|
log->tail(tag);
|
|
}
|
|
}
|
|
|
|
bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
|
|
if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
|
|
return dest_t->instance_id() == t_oop->instance_id();
|
|
}
|
|
|
|
if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) {
|
|
// clone
|
|
if (t_oop->isa_aryptr()) {
|
|
return false;
|
|
}
|
|
if (!t_oop->isa_instptr()) {
|
|
return true;
|
|
}
|
|
if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) {
|
|
return true;
|
|
}
|
|
// unrelated
|
|
return false;
|
|
}
|
|
|
|
if (dest_t->isa_aryptr()) {
|
|
// arraycopy or array clone
|
|
if (t_oop->isa_instptr()) {
|
|
return false;
|
|
}
|
|
if (!t_oop->isa_aryptr()) {
|
|
return true;
|
|
}
|
|
|
|
const Type* elem = dest_t->is_aryptr()->elem();
|
|
if (elem == Type::BOTTOM) {
|
|
// An array but we don't know what elements are
|
|
return true;
|
|
}
|
|
|
|
dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
|
|
uint dest_alias = phase->C->get_alias_index(dest_t);
|
|
uint t_oop_alias = phase->C->get_alias_index(t_oop);
|
|
|
|
return dest_alias == t_oop_alias;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|