26c780da72
6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up Reviewed-by: kvn
218 lines
8.2 KiB
C++
218 lines
8.2 KiB
C++
/*
|
|
* Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
# include "incls/_precompiled.incl"
|
|
# include "incls/_relocInfo_x86.cpp.incl"
|
|
|
|
|
|
void Relocation::pd_set_data_value(address x, intptr_t o) {
|
|
#ifdef AMD64
|
|
x += o;
|
|
typedef Assembler::WhichOperand WhichOperand;
|
|
WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm, call32, narrow oop
|
|
assert(which == Assembler::disp32_operand ||
|
|
which == Assembler::narrow_oop_operand ||
|
|
which == Assembler::imm_operand, "format unpacks ok");
|
|
if (which == Assembler::imm_operand) {
|
|
*pd_address_in_code() = x;
|
|
} else if (which == Assembler::narrow_oop_operand) {
|
|
address disp = Assembler::locate_operand(addr(), which);
|
|
*(int32_t*) disp = oopDesc::encode_heap_oop((oop)x);
|
|
} else {
|
|
// Note: Use runtime_call_type relocations for call32_operand.
|
|
address ip = addr();
|
|
address disp = Assembler::locate_operand(ip, which);
|
|
address next_ip = Assembler::locate_next_instruction(ip);
|
|
*(int32_t*) disp = x - next_ip;
|
|
}
|
|
#else
|
|
*pd_address_in_code() = x + o;
|
|
#endif // AMD64
|
|
}
|
|
|
|
|
|
address Relocation::pd_call_destination(address orig_addr) {
|
|
intptr_t adj = 0;
|
|
if (orig_addr != NULL) {
|
|
// We just moved this call instruction from orig_addr to addr().
|
|
// This means its target will appear to have grown by addr() - orig_addr.
|
|
adj = -( addr() - orig_addr );
|
|
}
|
|
NativeInstruction* ni = nativeInstruction_at(addr());
|
|
if (ni->is_call()) {
|
|
return nativeCall_at(addr())->destination() + adj;
|
|
} else if (ni->is_jump()) {
|
|
return nativeJump_at(addr())->jump_destination() + adj;
|
|
} else if (ni->is_cond_jump()) {
|
|
return nativeGeneralJump_at(addr())->jump_destination() + adj;
|
|
} else if (ni->is_mov_literal64()) {
|
|
return (address) ((NativeMovConstReg*)ni)->data();
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void Relocation::pd_set_call_destination(address x) {
|
|
NativeInstruction* ni = nativeInstruction_at(addr());
|
|
if (ni->is_call()) {
|
|
nativeCall_at(addr())->set_destination(x);
|
|
} else if (ni->is_jump()) {
|
|
NativeJump* nj = nativeJump_at(addr());
|
|
|
|
// Unresolved jumps are recognized by a destination of -1
|
|
// However 64bit can't actually produce such an address
|
|
// and encodes a jump to self but jump_destination will
|
|
// return a -1 as the signal. We must not relocate this
|
|
// jmp or the ic code will not see it as unresolved.
|
|
|
|
if (nj->jump_destination() == (address) -1) {
|
|
x = addr(); // jump to self
|
|
}
|
|
nj->set_jump_destination(x);
|
|
} else if (ni->is_cond_jump()) {
|
|
// %%%% kludge this, for now, until we get a jump_destination method
|
|
address old_dest = nativeGeneralJump_at(addr())->jump_destination();
|
|
address disp = Assembler::locate_operand(addr(), Assembler::call32_operand);
|
|
*(jint*)disp += (x - old_dest);
|
|
} else if (ni->is_mov_literal64()) {
|
|
((NativeMovConstReg*)ni)->set_data((intptr_t)x);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
address* Relocation::pd_address_in_code() {
|
|
// All embedded Intel addresses are stored in 32-bit words.
|
|
// Since the addr points at the start of the instruction,
|
|
// we must parse the instruction a bit to find the embedded word.
|
|
assert(is_data(), "must be a DataRelocation");
|
|
typedef Assembler::WhichOperand WhichOperand;
|
|
WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
|
|
#ifdef AMD64
|
|
assert(which == Assembler::disp32_operand ||
|
|
which == Assembler::call32_operand ||
|
|
which == Assembler::imm_operand, "format unpacks ok");
|
|
if (which != Assembler::imm_operand) {
|
|
// The "address" in the code is a displacement can't return it as
|
|
// and address* since it is really a jint*
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
#else
|
|
assert(which == Assembler::disp32_operand || which == Assembler::imm_operand, "format unpacks ok");
|
|
#endif // AMD64
|
|
return (address*) Assembler::locate_operand(addr(), which);
|
|
}
|
|
|
|
|
|
address Relocation::pd_get_address_from_code() {
|
|
#ifdef AMD64
|
|
// All embedded Intel addresses are stored in 32-bit words.
|
|
// Since the addr points at the start of the instruction,
|
|
// we must parse the instruction a bit to find the embedded word.
|
|
assert(is_data(), "must be a DataRelocation");
|
|
typedef Assembler::WhichOperand WhichOperand;
|
|
WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
|
|
assert(which == Assembler::disp32_operand ||
|
|
which == Assembler::call32_operand ||
|
|
which == Assembler::imm_operand, "format unpacks ok");
|
|
if (which != Assembler::imm_operand) {
|
|
address ip = addr();
|
|
address disp = Assembler::locate_operand(ip, which);
|
|
address next_ip = Assembler::locate_next_instruction(ip);
|
|
address a = next_ip + *(int32_t*) disp;
|
|
return a;
|
|
}
|
|
#endif // AMD64
|
|
return *pd_address_in_code();
|
|
}
|
|
|
|
int Relocation::pd_breakpoint_size() {
|
|
// minimum breakpoint size, in short words
|
|
return NativeIllegalInstruction::instruction_size / sizeof(short);
|
|
}
|
|
|
|
void Relocation::pd_swap_in_breakpoint(address x, short* instrs, int instrlen) {
|
|
Untested("pd_swap_in_breakpoint");
|
|
if (instrs != NULL) {
|
|
assert(instrlen * sizeof(short) == NativeIllegalInstruction::instruction_size, "enough instrlen in reloc. data");
|
|
for (int i = 0; i < instrlen; i++) {
|
|
instrs[i] = ((short*)x)[i];
|
|
}
|
|
}
|
|
NativeIllegalInstruction::insert(x);
|
|
}
|
|
|
|
|
|
void Relocation::pd_swap_out_breakpoint(address x, short* instrs, int instrlen) {
|
|
Untested("pd_swap_out_breakpoint");
|
|
assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
|
|
NativeInstruction* ni = nativeInstruction_at(x);
|
|
*(short*)ni->addr_at(0) = instrs[0];
|
|
}
|
|
|
|
void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
|
|
#ifdef _LP64
|
|
typedef Assembler::WhichOperand WhichOperand;
|
|
WhichOperand which = (WhichOperand) format();
|
|
// This format is imm but it is really disp32
|
|
which = Assembler::disp32_operand;
|
|
address orig_addr = old_addr_for(addr(), src, dest);
|
|
NativeInstruction* oni = nativeInstruction_at(orig_addr);
|
|
int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
|
|
// This poll_addr is incorrect by the size of the instruction it is irrelevant
|
|
intptr_t poll_addr = (intptr_t)oni + *orig_disp;
|
|
|
|
NativeInstruction* ni = nativeInstruction_at(addr());
|
|
intptr_t new_disp = poll_addr - (intptr_t) ni;
|
|
|
|
int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
|
|
* disp = (int32_t)new_disp;
|
|
|
|
#endif // _LP64
|
|
}
|
|
|
|
void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
|
|
#ifdef _LP64
|
|
typedef Assembler::WhichOperand WhichOperand;
|
|
WhichOperand which = (WhichOperand) format();
|
|
// This format is imm but it is really disp32
|
|
which = Assembler::disp32_operand;
|
|
address orig_addr = old_addr_for(addr(), src, dest);
|
|
NativeInstruction* oni = nativeInstruction_at(orig_addr);
|
|
int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
|
|
// This poll_addr is incorrect by the size of the instruction it is irrelevant
|
|
intptr_t poll_addr = (intptr_t)oni + *orig_disp;
|
|
|
|
NativeInstruction* ni = nativeInstruction_at(addr());
|
|
intptr_t new_disp = poll_addr - (intptr_t) ni;
|
|
|
|
int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
|
|
* disp = (int32_t)new_disp;
|
|
#endif // _LP64
|
|
}
|