jdk-24/jdk/test/java/lang/Math/Log1pTests.java
Brian Burkhalter 30e8183ee8 8078672: Print and allow setting by Java property seeds used to initialize Random instances in java.lang numerics tests
Add ability to initial the random number generator from the system property "seed" and print to STDOUT the seed value actually used.

Reviewed-by: darcy
2015-04-29 16:34:49 -07:00

207 lines
7.7 KiB
Java

/*
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /lib/testlibrary/
* @build jdk.testlibrary.*
* @run main Log1pTests
* @bug 4851638 4939441 8078672
* @summary Tests for {Math, StrictMath}.log1p (use -Dseed=X to set PRNG seed)
* @author Joseph D. Darcy
* @key randomness
*/
public class Log1pTests {
private Log1pTests(){}
static final double infinityD = Double.POSITIVE_INFINITY;
static final double NaNd = Double.NaN;
/**
* Formulation taken from HP-15C Advanced Functions Handbook, part
* number HP 0015-90011, p 181. This is accurate to a few ulps.
*/
static double hp15cLogp(double x) {
double u = 1.0 + x;
return (u==1.0? x : StrictMath.log(u)*x/(u-1) );
}
/*
* The Taylor expansion of ln(1 + x) for -1 < x <= 1 is:
*
* x - x^2/2 + x^3/3 - ... -(-x^j)/j
*
* Therefore, for small values of x, log1p(x) ~= x. For large
* values of x, log1p(x) ~= log(x).
*
* Also x/(x+1) < ln(1+x) < x
*/
static int testLog1p() {
int failures = 0;
double [][] testCases = {
{Double.NaN, NaNd},
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
{Double.NEGATIVE_INFINITY, NaNd},
{-8.0, NaNd},
{-1.0, -infinityD},
{-0.0, -0.0},
{+0.0, +0.0},
{infinityD, infinityD},
};
// Test special cases
for(int i = 0; i < testCases.length; i++) {
failures += testLog1pCaseWithUlpDiff(testCases[i][0],
testCases[i][1], 0);
}
// For |x| < 2^-54 log1p(x) ~= x
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
double d = Math.scalb(2, i);
failures += testLog1pCase(d, d);
failures += testLog1pCase(-d, -d);
}
// For x > 2^53 log1p(x) ~= log(x)
for(int i = 53; i <= Double.MAX_EXPONENT; i++) {
double d = Math.scalb(2, i);
failures += testLog1pCaseWithUlpDiff(d, StrictMath.log(d), 2.001);
}
// Construct random values with exponents ranging from -53 to
// 52 and compare against HP-15C formula.
java.util.Random rand = RandomFactory.getRandom();
for(int i = 0; i < 1000; i++) {
double d = rand.nextDouble();
d = Math.scalb(d, -53 - Tests.ilogb(d));
for(int j = -53; j <= 52; j++) {
failures += testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5);
d *= 2.0; // increase exponent by 1
}
}
// Test for monotonicity failures near values y-1 where y ~=
// e^x. Test two numbers before and two numbers after each
// chosen value; i.e.
//
// pcNeighbors[] =
// {nextDown(nextDown(pc)),
// nextDown(pc),
// pc,
// nextUp(pc),
// nextUp(nextUp(pc))}
//
// and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1])
{
double pcNeighbors[] = new double[5];
double pcNeighborsLog1p[] = new double[5];
double pcNeighborsStrictLog1p[] = new double[5];
for(int i = -36; i <= 36; i++) {
double pc = StrictMath.pow(Math.E, i) - 1;
pcNeighbors[2] = pc;
pcNeighbors[1] = Math.nextDown(pc);
pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
pcNeighbors[3] = Math.nextUp(pc);
pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
for(int j = 0; j < pcNeighbors.length; j++) {
pcNeighborsLog1p[j] = Math.log1p(pcNeighbors[j]);
pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]);
}
for(int j = 0; j < pcNeighborsLog1p.length-1; j++) {
if(pcNeighborsLog1p[j] > pcNeighborsLog1p[j+1] ) {
failures++;
System.err.println("Monotonicity failure for Math.log1p on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsLog1p[j] + " and " +
pcNeighborsLog1p[j+1] );
}
if(pcNeighborsStrictLog1p[j] > pcNeighborsStrictLog1p[j+1] ) {
failures++;
System.err.println("Monotonicity failure for StrictMath.log1p on " +
pcNeighbors[j] + " and " +
pcNeighbors[j+1] + "\n\treturned " +
pcNeighborsStrictLog1p[j] + " and " +
pcNeighborsStrictLog1p[j+1] );
}
}
}
}
return failures;
}
public static int testLog1pCase(double input,
double expected) {
return testLog1pCaseWithUlpDiff(input, expected, 1);
}
public static int testLog1pCaseWithUlpDiff(double input,
double expected,
double ulps) {
int failures = 0;
failures += Tests.testUlpDiff("Math.lop1p(double",
input, Math.log1p(input),
expected, ulps);
failures += Tests.testUlpDiff("StrictMath.log1p(double",
input, StrictMath.log1p(input),
expected, ulps);
return failures;
}
public static void main(String argv[]) {
int failures = 0;
failures += testLog1p();
if (failures > 0) {
System.err.println("Testing log1p incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
}