jdk-24/src/hotspot/os/aix/os_perf_aix.cpp
David Holmes 7c27f9f5dd 8235741: Inappropriate uses of os::javaTimeMillis()
Reviewed-by: rehn, kbarrett, egahlin, shade
2020-01-17 00:52:10 -05:00

943 lines
27 KiB
C++

/*
* Copyright (c) 2012, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "memory/allocation.inline.hpp"
#include "os_aix.inline.hpp"
#include "runtime/os.hpp"
#include "runtime/os_perf.hpp"
#include "utilities/globalDefinitions.hpp"
#include CPU_HEADER(vm_version_ext)
#include <stdio.h>
#include <stdarg.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <pthread.h>
#include <limits.h>
/**
/proc/[number]/stat
Status information about the process. This is used by ps(1). It is defined in /usr/src/linux/fs/proc/array.c.
The fields, in order, with their proper scanf(3) format specifiers, are:
1. pid %d The process id.
2. comm %s
The filename of the executable, in parentheses. This is visible whether or not the executable is swapped out.
3. state %c
One character from the string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
4. ppid %d
The PID of the parent.
5. pgrp %d
The process group ID of the process.
6. session %d
The session ID of the process.
7. tty_nr %d
The tty the process uses.
8. tpgid %d
The process group ID of the process which currently owns the tty that the process is connected to.
9. flags %lu
The flags of the process. The math bit is decimal 4, and the traced bit is decimal 10.
10. minflt %lu
The number of minor faults the process has made which have not required loading a memory page from disk.
11. cminflt %lu
The number of minor faults that the process's waited-for children have made.
12. majflt %lu
The number of major faults the process has made which have required loading a memory page from disk.
13. cmajflt %lu
The number of major faults that the process's waited-for children have made.
14. utime %lu
The number of jiffies that this process has been scheduled in user mode.
15. stime %lu
The number of jiffies that this process has been scheduled in kernel mode.
16. cutime %ld
The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
17. cstime %ld
The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
18. priority %ld
The standard nice value, plus fifteen. The value is never negative in the kernel.
19. nice %ld
The nice value ranges from 19 (nicest) to -19 (not nice to others).
20. 0 %ld This value is hard coded to 0 as a placeholder for a removed field.
21. itrealvalue %ld
The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
22. starttime %lu
The time in jiffies the process started after system boot.
23. vsize %lu
Virtual memory size in bytes.
24. rss %ld
Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which count
towards text, data, or stack space. This does not include pages which have not been demand-loaded in, or which are swapped out.
25. rlim %lu
Current limit in bytes on the rss of the process (usually 4294967295 on i386).
26. startcode %lu
The address above which program text can run.
27. endcode %lu
The address below which program text can run.
28. startstack %lu
The address of the start of the stack.
29. kstkesp %lu
The current value of esp (stack pointer), as found in the kernel stack page for the process.
30. kstkeip %lu
The current EIP (instruction pointer).
31. signal %lu
The bitmap of pending signals (usually 0).
32. blocked %lu
The bitmap of blocked signals (usually 0, 2 for shells).
33. sigignore %lu
The bitmap of ignored signals.
34. sigcatch %lu
The bitmap of catched signals.
35. wchan %lu
This is the "channel" in which the process is waiting. It is the address of a system call, and can be looked up in a namelist if you need
a textual name. (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
36. nswap %lu
Number of pages swapped - not maintained.
37. cnswap %lu
Cumulative nswap for child processes.
38. exit_signal %d
Signal to be sent to parent when we die.
39. processor %d
CPU number last executed on.
///// SSCANF FORMAT STRING. Copy and use.
field: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
format: %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
*/
/**
* For platforms that have them, when declaring
* a printf-style function,
* formatSpec is the parameter number (starting at 1)
* that is the format argument ("%d pid %s")
* params is the parameter number where the actual args to
* the format starts. If the args are in a va_list, this
* should be 0.
*/
#ifndef PRINTF_ARGS
# define PRINTF_ARGS(formatSpec, params) ATTRIBUTE_PRINTF(formatSpec, params)
#endif
#ifndef SCANF_ARGS
# define SCANF_ARGS(formatSpec, params) ATTRIBUTE_SCANF(formatSpec, params)
#endif
#ifndef _PRINTFMT_
# define _PRINTFMT_
#endif
#ifndef _SCANFMT_
# define _SCANFMT_
#endif
struct CPUPerfTicks {
uint64_t used;
uint64_t usedKernel;
uint64_t total;
};
typedef enum {
CPU_LOAD_VM_ONLY,
CPU_LOAD_GLOBAL,
} CpuLoadTarget;
enum {
UNDETECTED,
UNDETECTABLE,
LINUX26_NPTL,
BAREMETAL
};
struct CPUPerfCounters {
int nProcs;
CPUPerfTicks jvmTicks;
CPUPerfTicks* cpus;
};
static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
/** reads /proc/<pid>/stat data, with some checks and some skips.
* Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
*/
static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
FILE*f;
int n;
char buf[2048];
if ((f = fopen(procfile, "r")) == NULL) {
return -1;
}
if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
char *tmp;
buf[n-1] = '\0';
/** skip through pid and exec name. */
if ((tmp = strrchr(buf, ')')) != NULL) {
// skip the ')' and the following space
// but check that buffer is long enough
tmp += 2;
if (tmp < buf + n) {
n = vsscanf(tmp, fmt, args);
}
}
}
fclose(f);
return n;
}
static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
int n;
va_list args;
va_start(args, fmt);
n = vread_statdata(procfile, fmt, args);
va_end(args);
return n;
}
/**
* on Linux we got the ticks related information from /proc/stat
* this does not work on AIX, libperfstat might be an alternative
*/
static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) {
return OS_ERR;
}
/** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
userTicks, systemTicks);
}
/**
* Return the number of ticks spent in any of the processes belonging
* to the JVM on any CPU.
*/
static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) {
return OS_ERR;
}
/**
* Return the load of the CPU as a double. 1.0 means the CPU process uses all
* available time for user or system processes, 0.0 means the CPU uses all time
* being idle.
*
* Returns a negative value if there is a problem in determining the CPU load.
*/
static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
uint64_t udiff, kdiff, tdiff;
CPUPerfTicks* pticks;
CPUPerfTicks tmp;
double user_load;
*pkernelLoad = 0.0;
if (target == CPU_LOAD_VM_ONLY) {
pticks = &counters->jvmTicks;
} else if (-1 == which_logical_cpu) {
pticks = &counters->cpus[counters->nProcs];
} else {
pticks = &counters->cpus[which_logical_cpu];
}
tmp = *pticks;
if (target == CPU_LOAD_VM_ONLY) {
if (get_jvm_ticks(pticks) != OS_OK) {
return -1.0;
}
} else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) {
return -1.0;
}
// seems like we sometimes end up with less kernel ticks when
// reading /proc/self/stat a second time, timing issue between cpus?
if (pticks->usedKernel < tmp.usedKernel) {
kdiff = 0;
} else {
kdiff = pticks->usedKernel - tmp.usedKernel;
}
tdiff = pticks->total - tmp.total;
udiff = pticks->used - tmp.used;
if (tdiff == 0) {
return 0.0;
} else if (tdiff < (udiff + kdiff)) {
tdiff = udiff + kdiff;
}
*pkernelLoad = (kdiff / (double)tdiff);
// BUG9044876, normalize return values to sane values
*pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
*pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
user_load = (udiff / (double)tdiff);
user_load = MAX2<double>(user_load, 0.0);
user_load = MIN2<double>(user_load, 1.0);
return user_load;
}
static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
return OS_ERR;
}
static int get_noof_context_switches(uint64_t* switches) {
return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
}
/** returns boot time in _seconds_ since epoch */
static int get_boot_time(uint64_t* time) {
return parse_stat("btime " UINT64_FORMAT "\n", time);
}
static int perf_context_switch_rate(double* rate) {
static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
static uint64_t bootTime;
static uint64_t lastTimeNanos;
static uint64_t lastSwitches;
static double lastRate;
uint64_t bt = 0;
int res = 0;
// First time through bootTime will be zero.
if (bootTime == 0) {
uint64_t tmp;
if (get_boot_time(&tmp) < 0) {
return OS_ERR;
}
bt = tmp * 1000;
}
res = OS_OK;
pthread_mutex_lock(&contextSwitchLock);
{
uint64_t sw;
s8 t, d;
if (bootTime == 0) {
// First interval is measured from boot time which is
// seconds since the epoch. Thereafter we measure the
// elapsed time using javaTimeNanos as it is monotonic-
// non-decreasing.
lastTimeNanos = os::javaTimeNanos();
t = os::javaTimeMillis();
d = t - bt;
// keep bootTime zero for now to use as a first-time-through flag
} else {
t = os::javaTimeNanos();
d = nanos_to_millis(t - lastTimeNanos);
}
if (d == 0) {
*rate = lastRate;
} else if (get_noof_context_switches(&sw) == 0) {
*rate = ( (double)(sw - lastSwitches) / d ) * 1000;
lastRate = *rate;
lastSwitches = sw;
if (bootTime != 0) {
lastTimeNanos = t;
}
} else {
*rate = 0;
res = OS_ERR;
}
if (*rate <= 0) {
*rate = 0;
lastRate = 0;
}
if (bootTime == 0) {
bootTime = bt;
}
}
pthread_mutex_unlock(&contextSwitchLock);
return res;
}
class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
friend class CPUPerformanceInterface;
private:
CPUPerfCounters _counters;
int cpu_load(int which_logical_cpu, double* cpu_load);
int context_switch_rate(double* rate);
int cpu_load_total_process(double* cpu_load);
int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
public:
CPUPerformance();
bool initialize();
~CPUPerformance();
};
CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
_counters.nProcs = os::active_processor_count();
_counters.cpus = NULL;
}
bool CPUPerformanceInterface::CPUPerformance::initialize() {
size_t array_entry_count = _counters.nProcs + 1;
_counters.cpus = NEW_C_HEAP_ARRAY(CPUPerfTicks, array_entry_count, mtInternal);
memset(_counters.cpus, 0, array_entry_count * sizeof(*_counters.cpus));
// For the CPU load total
get_total_ticks(-1, &_counters.cpus[_counters.nProcs]);
// For each CPU
for (int i = 0; i < _counters.nProcs; i++) {
get_total_ticks(i, &_counters.cpus[i]);
}
// For JVM load
get_jvm_ticks(&_counters.jvmTicks);
// initialize context switch system
// the double is only for init
double init_ctx_switch_rate;
perf_context_switch_rate(&init_ctx_switch_rate);
return true;
}
CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
if (_counters.cpus != NULL) {
FREE_C_HEAP_ARRAY(char, _counters.cpus);
}
}
int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
double u, s;
u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
if (u < 0) {
*cpu_load = 0.0;
return OS_ERR;
}
// Cap total systemload to 1.0
*cpu_load = MIN2<double>((u + s), 1.0);
return OS_OK;
}
int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
double u, s;
u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
if (u < 0) {
*cpu_load = 0.0;
return OS_ERR;
}
*cpu_load = u + s;
return OS_OK;
}
int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
double u, s, t;
assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
if (u < 0) {
*pjvmUserLoad = 0.0;
*pjvmKernelLoad = 0.0;
*psystemTotalLoad = 0.0;
return OS_ERR;
}
cpu_load(-1, &t);
// clamp at user+system and 1.0
if (u + s > t) {
t = MIN2<double>(u + s, 1.0);
}
*pjvmUserLoad = u;
*pjvmKernelLoad = s;
*psystemTotalLoad = t;
return OS_OK;
}
int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
return perf_context_switch_rate(rate);
}
CPUPerformanceInterface::CPUPerformanceInterface() {
_impl = NULL;
}
bool CPUPerformanceInterface::initialize() {
_impl = new CPUPerformanceInterface::CPUPerformance();
return _impl->initialize();
}
CPUPerformanceInterface::~CPUPerformanceInterface() {
if (_impl != NULL) {
delete _impl;
}
}
int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
return _impl->cpu_load(which_logical_cpu, cpu_load);
}
int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
return _impl->cpu_load_total_process(cpu_load);
}
int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
}
int CPUPerformanceInterface::context_switch_rate(double* rate) const {
return _impl->context_switch_rate(rate);
}
class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
friend class SystemProcessInterface;
private:
class ProcessIterator : public CHeapObj<mtInternal> {
friend class SystemProcessInterface::SystemProcesses;
private:
DIR* _dir;
struct dirent* _entry;
bool _valid;
char _exeName[PATH_MAX];
char _exePath[PATH_MAX];
ProcessIterator();
~ProcessIterator();
bool initialize();
bool is_valid() const { return _valid; }
bool is_valid_entry(struct dirent* entry) const;
bool is_dir(const char* name) const;
int fsize(const char* name, uint64_t& size) const;
char* allocate_string(const char* str) const;
void get_exe_name();
char* get_exe_path();
char* get_cmdline();
int current(SystemProcess* process_info);
int next_process();
};
ProcessIterator* _iterator;
SystemProcesses();
bool initialize();
~SystemProcesses();
//information about system processes
int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
};
bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
struct stat mystat;
int ret_val = 0;
ret_val = stat(name, &mystat);
if (ret_val < 0) {
return false;
}
ret_val = S_ISDIR(mystat.st_mode);
return ret_val > 0;
}
int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
assert(name != NULL, "name pointer is NULL!");
size = 0;
struct stat fbuf;
if (stat(name, &fbuf) < 0) {
return OS_ERR;
}
size = fbuf.st_size;
return OS_OK;
}
// if it has a numeric name, is a directory and has a 'stat' file in it
bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
char buffer[PATH_MAX];
uint64_t size = 0;
if (atoi(entry->d_name) != 0) {
jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
buffer[PATH_MAX - 1] = '\0';
if (is_dir(buffer)) {
jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
buffer[PATH_MAX - 1] = '\0';
if (fsize(buffer, size) != OS_ERR) {
return true;
}
}
}
return false;
}
// get exe-name from /proc/<pid>/stat
void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
FILE* fp;
char buffer[PATH_MAX];
jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
buffer[PATH_MAX - 1] = '\0';
if ((fp = fopen(buffer, "r")) != NULL) {
if (fgets(buffer, PATH_MAX, fp) != NULL) {
char* start, *end;
// exe-name is between the first pair of ( and )
start = strchr(buffer, '(');
if (start != NULL && start[1] != '\0') {
start++;
end = strrchr(start, ')');
if (end != NULL) {
size_t len;
len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
memcpy(_exeName, start, len);
_exeName[len] = '\0';
}
}
}
fclose(fp);
}
}
// get command line from /proc/<pid>/cmdline
char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
FILE* fp;
char buffer[PATH_MAX];
char* cmdline = NULL;
jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
buffer[PATH_MAX - 1] = '\0';
if ((fp = fopen(buffer, "r")) != NULL) {
size_t size = 0;
char dummy;
// find out how long the file is (stat always returns 0)
while (fread(&dummy, 1, 1, fp) == 1) {
size++;
}
if (size > 0) {
cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
cmdline[0] = '\0';
if (fseek(fp, 0, SEEK_SET) == 0) {
if (fread(cmdline, 1, size, fp) == size) {
// the file has the arguments separated by '\0',
// so we translate '\0' to ' '
for (size_t i = 0; i < size; i++) {
if (cmdline[i] == '\0') {
cmdline[i] = ' ';
}
}
cmdline[size] = '\0';
}
}
}
fclose(fp);
}
return cmdline;
}
// get full path to exe from /proc/<pid>/exe symlink
char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
char buffer[PATH_MAX];
jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
buffer[PATH_MAX - 1] = '\0';
return realpath(buffer, _exePath);
}
char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
if (str != NULL) {
return os::strdup_check_oom(str, mtInternal);
}
return NULL;
}
int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
if (!is_valid()) {
return OS_ERR;
}
process_info->set_pid(atoi(_entry->d_name));
get_exe_name();
process_info->set_name(allocate_string(_exeName));
if (get_exe_path() != NULL) {
process_info->set_path(allocate_string(_exePath));
}
char* cmdline = NULL;
cmdline = get_cmdline();
if (cmdline != NULL) {
process_info->set_command_line(allocate_string(cmdline));
FREE_C_HEAP_ARRAY(char, cmdline);
}
return OS_OK;
}
int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
if (!is_valid()) {
return OS_ERR;
}
do {
_entry = os::readdir(_dir);
if (_entry == NULL) {
// Error or reached end. Could use errno to distinguish those cases.
_valid = false;
return OS_ERR;
}
} while(!is_valid_entry(_entry));
_valid = true;
return OS_OK;
}
SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
_dir = NULL;
_entry = NULL;
_valid = false;
}
bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
// Not yet implemented.
return false;
}
SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
if (_dir != NULL) {
os::closedir(_dir);
}
}
SystemProcessInterface::SystemProcesses::SystemProcesses() {
_iterator = NULL;
}
bool SystemProcessInterface::SystemProcesses::initialize() {
_iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
return _iterator->initialize();
}
SystemProcessInterface::SystemProcesses::~SystemProcesses() {
if (_iterator != NULL) {
delete _iterator;
}
}
int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
assert(system_processes != NULL, "system_processes pointer is NULL!");
assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
assert(_iterator != NULL, "iterator is NULL!");
// initialize pointers
*no_of_sys_processes = 0;
*system_processes = NULL;
while (_iterator->is_valid()) {
SystemProcess* tmp = new SystemProcess();
_iterator->current(tmp);
//if already existing head
if (*system_processes != NULL) {
//move "first to second"
tmp->set_next(*system_processes);
}
// new head
*system_processes = tmp;
// increment
(*no_of_sys_processes)++;
// step forward
_iterator->next_process();
}
return OS_OK;
}
int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
return _impl->system_processes(system_procs, no_of_sys_processes);
}
SystemProcessInterface::SystemProcessInterface() {
_impl = NULL;
}
bool SystemProcessInterface::initialize() {
_impl = new SystemProcessInterface::SystemProcesses();
return _impl->initialize();
}
SystemProcessInterface::~SystemProcessInterface() {
if (_impl != NULL) {
delete _impl;
}
}
CPUInformationInterface::CPUInformationInterface() {
_cpu_info = NULL;
}
bool CPUInformationInterface::initialize() {
_cpu_info = new CPUInformation();
_cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
_cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
_cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
_cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
_cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
return true;
}
CPUInformationInterface::~CPUInformationInterface() {
if (_cpu_info != NULL) {
if (_cpu_info->cpu_name() != NULL) {
const char* cpu_name = _cpu_info->cpu_name();
FREE_C_HEAP_ARRAY(char, cpu_name);
_cpu_info->set_cpu_name(NULL);
}
if (_cpu_info->cpu_description() != NULL) {
const char* cpu_desc = _cpu_info->cpu_description();
FREE_C_HEAP_ARRAY(char, cpu_desc);
_cpu_info->set_cpu_description(NULL);
}
delete _cpu_info;
}
}
int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
if (_cpu_info == NULL) {
return OS_ERR;
}
cpu_info = *_cpu_info; // shallow copy assignment
return OS_OK;
}
class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
friend class NetworkPerformanceInterface;
private:
NetworkPerformance();
NONCOPYABLE(NetworkPerformance);
bool initialize();
~NetworkPerformance();
int network_utilization(NetworkInterface** network_interfaces) const;
};
NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
}
bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
return true;
}
NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
}
int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
{
return FUNCTIONALITY_NOT_IMPLEMENTED;
}
NetworkPerformanceInterface::NetworkPerformanceInterface() {
_impl = NULL;
}
NetworkPerformanceInterface::~NetworkPerformanceInterface() {
if (_impl != NULL) {
delete _impl;
}
}
bool NetworkPerformanceInterface::initialize() {
_impl = new NetworkPerformanceInterface::NetworkPerformance();
return _impl->initialize();
}
int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
return _impl->network_utilization(network_interfaces);
}