7318b22209
Reviewed-by: psandoz, jrose
89 lines
3.2 KiB
Java
89 lines
3.2 KiB
Java
/*
|
|
* Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 8289551
|
|
* @summary Verify NaN sign and significand bits are preserved across conversions
|
|
*/
|
|
|
|
/*
|
|
* The behavior tested below is an implementation property not
|
|
* required by the specification. It would be acceptable for this
|
|
* information to not be preserved (as long as a NaN is returned) if,
|
|
* say, a intrinsified version using native hardware instructions
|
|
* behaved differently.
|
|
*
|
|
* If that is the case, this test should be modified to disable
|
|
* intrinsics or to otherwise not run on platforms with an differently
|
|
* behaving intrinsic.
|
|
*/
|
|
public class Binary16ConversionNaN {
|
|
public static void main(String... argv) {
|
|
int errors = 0;
|
|
errors += binary16NaNRoundTrip();
|
|
|
|
if (errors > 0)
|
|
throw new RuntimeException(errors + " errors");
|
|
}
|
|
|
|
/*
|
|
* Put all 16-bit NaN values through a conversion loop and make
|
|
* sure the significand, sign, and exponent are all preserved.
|
|
*/
|
|
private static int binary16NaNRoundTrip() {
|
|
int errors = 0;
|
|
final int NAN_EXPONENT = 0x7c00;
|
|
final int SIGN_BIT = 0x8000;
|
|
|
|
// A NaN has a nonzero significand
|
|
for (int i = 1; i <= 0x3ff; i++) {
|
|
short binary16NaN = (short)(NAN_EXPONENT | i);
|
|
assert isNaN(binary16NaN);
|
|
errors += testRoundTrip( binary16NaN);
|
|
errors += testRoundTrip((short)(SIGN_BIT | binary16NaN));
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static boolean isNaN(short binary16) {
|
|
return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and...
|
|
&& ((binary16 & 0x03ff) != 0 ); // significand nonzero.
|
|
}
|
|
|
|
private static int testRoundTrip(int i) {
|
|
int errors = 0;
|
|
short s = (short)i;
|
|
float f = Float.float16ToFloat(s);
|
|
short s2 = Float.floatToFloat16(f);
|
|
|
|
if (s != s2) {
|
|
errors++;
|
|
System.out.println("Roundtrip failure on NaN value " +
|
|
Integer.toHexString(0xFFFF & (int)s) +
|
|
"\t got back " + Integer.toHexString(0xFFFF & (int)s2));
|
|
}
|
|
return errors;
|
|
}
|
|
}
|