81bdd2ccc6
Removed unused fields and methods, removed the G1CollectoryPolicy_BestRegionsFirst class and folded its functionality into the G1CollectorPolicy class. Reviewed-by: ysr, brutisso, jcoomes
1247 lines
42 KiB
C++
1247 lines
42 KiB
C++
/*
|
|
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
|
|
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
|
|
|
|
#include "gc_implementation/g1/collectionSetChooser.hpp"
|
|
#include "gc_implementation/g1/g1MMUTracker.hpp"
|
|
#include "memory/collectorPolicy.hpp"
|
|
|
|
// A G1CollectorPolicy makes policy decisions that determine the
|
|
// characteristics of the collector. Examples include:
|
|
// * choice of collection set.
|
|
// * when to collect.
|
|
|
|
class HeapRegion;
|
|
class CollectionSetChooser;
|
|
|
|
// Yes, this is a bit unpleasant... but it saves replicating the same thing
|
|
// over and over again and introducing subtle problems through small typos and
|
|
// cutting and pasting mistakes. The macros below introduces a number
|
|
// sequnce into the following two classes and the methods that access it.
|
|
|
|
#define define_num_seq(name) \
|
|
private: \
|
|
NumberSeq _all_##name##_times_ms; \
|
|
public: \
|
|
void record_##name##_time_ms(double ms) { \
|
|
_all_##name##_times_ms.add(ms); \
|
|
} \
|
|
NumberSeq* get_##name##_seq() { \
|
|
return &_all_##name##_times_ms; \
|
|
}
|
|
|
|
class MainBodySummary;
|
|
|
|
class PauseSummary: public CHeapObj {
|
|
define_num_seq(total)
|
|
define_num_seq(other)
|
|
|
|
public:
|
|
virtual MainBodySummary* main_body_summary() { return NULL; }
|
|
};
|
|
|
|
class MainBodySummary: public CHeapObj {
|
|
define_num_seq(satb_drain) // optional
|
|
define_num_seq(parallel) // parallel only
|
|
define_num_seq(ext_root_scan)
|
|
define_num_seq(mark_stack_scan)
|
|
define_num_seq(update_rs)
|
|
define_num_seq(scan_rs)
|
|
define_num_seq(obj_copy)
|
|
define_num_seq(termination) // parallel only
|
|
define_num_seq(parallel_other) // parallel only
|
|
define_num_seq(mark_closure)
|
|
define_num_seq(clear_ct) // parallel only
|
|
};
|
|
|
|
class Summary: public PauseSummary,
|
|
public MainBodySummary {
|
|
public:
|
|
virtual MainBodySummary* main_body_summary() { return this; }
|
|
};
|
|
|
|
class G1CollectorPolicy: public CollectorPolicy {
|
|
private:
|
|
// The number of pauses during the execution.
|
|
long _n_pauses;
|
|
|
|
// either equal to the number of parallel threads, if ParallelGCThreads
|
|
// has been set, or 1 otherwise
|
|
int _parallel_gc_threads;
|
|
|
|
enum SomePrivateConstants {
|
|
NumPrevPausesForHeuristics = 10
|
|
};
|
|
|
|
G1MMUTracker* _mmu_tracker;
|
|
|
|
void initialize_flags();
|
|
|
|
void initialize_all() {
|
|
initialize_flags();
|
|
initialize_size_info();
|
|
initialize_perm_generation(PermGen::MarkSweepCompact);
|
|
}
|
|
|
|
CollectionSetChooser* _collectionSetChooser;
|
|
|
|
double _cur_collection_start_sec;
|
|
size_t _cur_collection_pause_used_at_start_bytes;
|
|
size_t _cur_collection_pause_used_regions_at_start;
|
|
size_t _prev_collection_pause_used_at_end_bytes;
|
|
double _cur_collection_par_time_ms;
|
|
double _cur_satb_drain_time_ms;
|
|
double _cur_clear_ct_time_ms;
|
|
bool _satb_drain_time_set;
|
|
double _cur_ref_proc_time_ms;
|
|
double _cur_ref_enq_time_ms;
|
|
|
|
#ifndef PRODUCT
|
|
// Card Table Count Cache stats
|
|
double _min_clear_cc_time_ms; // min
|
|
double _max_clear_cc_time_ms; // max
|
|
double _cur_clear_cc_time_ms; // clearing time during current pause
|
|
double _cum_clear_cc_time_ms; // cummulative clearing time
|
|
jlong _num_cc_clears; // number of times the card count cache has been cleared
|
|
#endif
|
|
|
|
// Statistics for recent GC pauses. See below for how indexed.
|
|
TruncatedSeq* _recent_rs_scan_times_ms;
|
|
|
|
// These exclude marking times.
|
|
TruncatedSeq* _recent_pause_times_ms;
|
|
TruncatedSeq* _recent_gc_times_ms;
|
|
|
|
TruncatedSeq* _recent_CS_bytes_used_before;
|
|
TruncatedSeq* _recent_CS_bytes_surviving;
|
|
|
|
TruncatedSeq* _recent_rs_sizes;
|
|
|
|
TruncatedSeq* _concurrent_mark_remark_times_ms;
|
|
TruncatedSeq* _concurrent_mark_cleanup_times_ms;
|
|
|
|
Summary* _summary;
|
|
|
|
NumberSeq* _all_pause_times_ms;
|
|
NumberSeq* _all_full_gc_times_ms;
|
|
double _stop_world_start;
|
|
NumberSeq* _all_stop_world_times_ms;
|
|
NumberSeq* _all_yield_times_ms;
|
|
|
|
size_t _region_num_young;
|
|
size_t _region_num_tenured;
|
|
size_t _prev_region_num_young;
|
|
size_t _prev_region_num_tenured;
|
|
|
|
NumberSeq* _all_mod_union_times_ms;
|
|
|
|
int _aux_num;
|
|
NumberSeq* _all_aux_times_ms;
|
|
double* _cur_aux_start_times_ms;
|
|
double* _cur_aux_times_ms;
|
|
bool* _cur_aux_times_set;
|
|
|
|
double* _par_last_gc_worker_start_times_ms;
|
|
double* _par_last_ext_root_scan_times_ms;
|
|
double* _par_last_mark_stack_scan_times_ms;
|
|
double* _par_last_update_rs_times_ms;
|
|
double* _par_last_update_rs_processed_buffers;
|
|
double* _par_last_scan_rs_times_ms;
|
|
double* _par_last_obj_copy_times_ms;
|
|
double* _par_last_termination_times_ms;
|
|
double* _par_last_termination_attempts;
|
|
double* _par_last_gc_worker_end_times_ms;
|
|
double* _par_last_gc_worker_times_ms;
|
|
|
|
// indicates whether we are in full young or partially young GC mode
|
|
bool _full_young_gcs;
|
|
|
|
// if true, then it tries to dynamically adjust the length of the
|
|
// young list
|
|
bool _adaptive_young_list_length;
|
|
size_t _young_list_target_length;
|
|
size_t _young_list_fixed_length;
|
|
size_t _prev_eden_capacity; // used for logging
|
|
|
|
// The max number of regions we can extend the eden by while the GC
|
|
// locker is active. This should be >= _young_list_target_length;
|
|
size_t _young_list_max_length;
|
|
|
|
size_t _young_cset_length;
|
|
bool _last_young_gc_full;
|
|
|
|
unsigned _full_young_pause_num;
|
|
unsigned _partial_young_pause_num;
|
|
|
|
bool _during_marking;
|
|
bool _in_marking_window;
|
|
bool _in_marking_window_im;
|
|
|
|
SurvRateGroup* _short_lived_surv_rate_group;
|
|
SurvRateGroup* _survivor_surv_rate_group;
|
|
// add here any more surv rate groups
|
|
|
|
double _gc_overhead_perc;
|
|
|
|
double _reserve_factor;
|
|
size_t _reserve_regions;
|
|
|
|
bool during_marking() {
|
|
return _during_marking;
|
|
}
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
private:
|
|
enum PredictionConstants {
|
|
TruncatedSeqLength = 10
|
|
};
|
|
|
|
TruncatedSeq* _alloc_rate_ms_seq;
|
|
double _prev_collection_pause_end_ms;
|
|
|
|
TruncatedSeq* _pending_card_diff_seq;
|
|
TruncatedSeq* _rs_length_diff_seq;
|
|
TruncatedSeq* _cost_per_card_ms_seq;
|
|
TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
|
|
TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
|
|
TruncatedSeq* _cost_per_entry_ms_seq;
|
|
TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
|
|
TruncatedSeq* _cost_per_byte_ms_seq;
|
|
TruncatedSeq* _constant_other_time_ms_seq;
|
|
TruncatedSeq* _young_other_cost_per_region_ms_seq;
|
|
TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
|
|
|
|
TruncatedSeq* _pending_cards_seq;
|
|
TruncatedSeq* _scanned_cards_seq;
|
|
TruncatedSeq* _rs_lengths_seq;
|
|
|
|
TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
|
|
|
|
TruncatedSeq* _young_gc_eff_seq;
|
|
|
|
TruncatedSeq* _max_conc_overhead_seq;
|
|
|
|
bool _using_new_ratio_calculations;
|
|
size_t _min_desired_young_length; // as set on the command line or default calculations
|
|
size_t _max_desired_young_length; // as set on the command line or default calculations
|
|
|
|
size_t _recorded_young_regions;
|
|
size_t _recorded_non_young_regions;
|
|
size_t _recorded_region_num;
|
|
|
|
size_t _free_regions_at_end_of_collection;
|
|
|
|
size_t _recorded_rs_lengths;
|
|
size_t _max_rs_lengths;
|
|
|
|
size_t _recorded_marked_bytes;
|
|
size_t _recorded_young_bytes;
|
|
|
|
size_t _predicted_pending_cards;
|
|
size_t _predicted_cards_scanned;
|
|
size_t _predicted_rs_lengths;
|
|
size_t _predicted_bytes_to_copy;
|
|
|
|
double _predicted_survival_ratio;
|
|
double _predicted_rs_update_time_ms;
|
|
double _predicted_rs_scan_time_ms;
|
|
double _predicted_object_copy_time_ms;
|
|
double _predicted_constant_other_time_ms;
|
|
double _predicted_young_other_time_ms;
|
|
double _predicted_non_young_other_time_ms;
|
|
double _predicted_pause_time_ms;
|
|
|
|
double _vtime_diff_ms;
|
|
|
|
double _recorded_young_free_cset_time_ms;
|
|
double _recorded_non_young_free_cset_time_ms;
|
|
|
|
double _sigma;
|
|
double _expensive_region_limit_ms;
|
|
|
|
size_t _rs_lengths_prediction;
|
|
|
|
size_t _known_garbage_bytes;
|
|
double _known_garbage_ratio;
|
|
|
|
double sigma() {
|
|
return _sigma;
|
|
}
|
|
|
|
// A function that prevents us putting too much stock in small sample
|
|
// sets. Returns a number between 2.0 and 1.0, depending on the number
|
|
// of samples. 5 or more samples yields one; fewer scales linearly from
|
|
// 2.0 at 1 sample to 1.0 at 5.
|
|
double confidence_factor(int samples) {
|
|
if (samples > 4) return 1.0;
|
|
else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
|
|
}
|
|
|
|
double get_new_neg_prediction(TruncatedSeq* seq) {
|
|
return seq->davg() - sigma() * seq->dsd();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
|
|
#endif // PRODUCT
|
|
|
|
void adjust_concurrent_refinement(double update_rs_time,
|
|
double update_rs_processed_buffers,
|
|
double goal_ms);
|
|
|
|
double _pause_time_target_ms;
|
|
double _recorded_young_cset_choice_time_ms;
|
|
double _recorded_non_young_cset_choice_time_ms;
|
|
bool _within_target;
|
|
size_t _pending_cards;
|
|
size_t _max_pending_cards;
|
|
|
|
public:
|
|
|
|
void set_region_short_lived(HeapRegion* hr) {
|
|
hr->install_surv_rate_group(_short_lived_surv_rate_group);
|
|
}
|
|
|
|
void set_region_survivors(HeapRegion* hr) {
|
|
hr->install_surv_rate_group(_survivor_surv_rate_group);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool verify_young_ages();
|
|
#endif // PRODUCT
|
|
|
|
double get_new_prediction(TruncatedSeq* seq) {
|
|
return MAX2(seq->davg() + sigma() * seq->dsd(),
|
|
seq->davg() * confidence_factor(seq->num()));
|
|
}
|
|
|
|
size_t young_cset_length() {
|
|
return _young_cset_length;
|
|
}
|
|
|
|
void record_max_rs_lengths(size_t rs_lengths) {
|
|
_max_rs_lengths = rs_lengths;
|
|
}
|
|
|
|
size_t predict_pending_card_diff() {
|
|
double prediction = get_new_neg_prediction(_pending_card_diff_seq);
|
|
if (prediction < 0.00001)
|
|
return 0;
|
|
else
|
|
return (size_t) prediction;
|
|
}
|
|
|
|
size_t predict_pending_cards() {
|
|
size_t max_pending_card_num = _g1->max_pending_card_num();
|
|
size_t diff = predict_pending_card_diff();
|
|
size_t prediction;
|
|
if (diff > max_pending_card_num)
|
|
prediction = max_pending_card_num;
|
|
else
|
|
prediction = max_pending_card_num - diff;
|
|
|
|
return prediction;
|
|
}
|
|
|
|
size_t predict_rs_length_diff() {
|
|
return (size_t) get_new_prediction(_rs_length_diff_seq);
|
|
}
|
|
|
|
double predict_alloc_rate_ms() {
|
|
return get_new_prediction(_alloc_rate_ms_seq);
|
|
}
|
|
|
|
double predict_cost_per_card_ms() {
|
|
return get_new_prediction(_cost_per_card_ms_seq);
|
|
}
|
|
|
|
double predict_rs_update_time_ms(size_t pending_cards) {
|
|
return (double) pending_cards * predict_cost_per_card_ms();
|
|
}
|
|
|
|
double predict_fully_young_cards_per_entry_ratio() {
|
|
return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
|
|
}
|
|
|
|
double predict_partially_young_cards_per_entry_ratio() {
|
|
if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
|
|
return predict_fully_young_cards_per_entry_ratio();
|
|
else
|
|
return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
|
|
}
|
|
|
|
size_t predict_young_card_num(size_t rs_length) {
|
|
return (size_t) ((double) rs_length *
|
|
predict_fully_young_cards_per_entry_ratio());
|
|
}
|
|
|
|
size_t predict_non_young_card_num(size_t rs_length) {
|
|
return (size_t) ((double) rs_length *
|
|
predict_partially_young_cards_per_entry_ratio());
|
|
}
|
|
|
|
double predict_rs_scan_time_ms(size_t card_num) {
|
|
if (full_young_gcs())
|
|
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
|
|
else
|
|
return predict_partially_young_rs_scan_time_ms(card_num);
|
|
}
|
|
|
|
double predict_partially_young_rs_scan_time_ms(size_t card_num) {
|
|
if (_partially_young_cost_per_entry_ms_seq->num() < 3)
|
|
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
|
|
else
|
|
return (double) card_num *
|
|
get_new_prediction(_partially_young_cost_per_entry_ms_seq);
|
|
}
|
|
|
|
double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
|
|
if (_cost_per_byte_ms_during_cm_seq->num() < 3)
|
|
return 1.1 * (double) bytes_to_copy *
|
|
get_new_prediction(_cost_per_byte_ms_seq);
|
|
else
|
|
return (double) bytes_to_copy *
|
|
get_new_prediction(_cost_per_byte_ms_during_cm_seq);
|
|
}
|
|
|
|
double predict_object_copy_time_ms(size_t bytes_to_copy) {
|
|
if (_in_marking_window && !_in_marking_window_im)
|
|
return predict_object_copy_time_ms_during_cm(bytes_to_copy);
|
|
else
|
|
return (double) bytes_to_copy *
|
|
get_new_prediction(_cost_per_byte_ms_seq);
|
|
}
|
|
|
|
double predict_constant_other_time_ms() {
|
|
return get_new_prediction(_constant_other_time_ms_seq);
|
|
}
|
|
|
|
double predict_young_other_time_ms(size_t young_num) {
|
|
return
|
|
(double) young_num *
|
|
get_new_prediction(_young_other_cost_per_region_ms_seq);
|
|
}
|
|
|
|
double predict_non_young_other_time_ms(size_t non_young_num) {
|
|
return
|
|
(double) non_young_num *
|
|
get_new_prediction(_non_young_other_cost_per_region_ms_seq);
|
|
}
|
|
|
|
void check_if_region_is_too_expensive(double predicted_time_ms);
|
|
|
|
double predict_young_collection_elapsed_time_ms(size_t adjustment);
|
|
double predict_base_elapsed_time_ms(size_t pending_cards);
|
|
double predict_base_elapsed_time_ms(size_t pending_cards,
|
|
size_t scanned_cards);
|
|
size_t predict_bytes_to_copy(HeapRegion* hr);
|
|
double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
|
|
|
|
void start_recording_regions();
|
|
void record_cset_region_info(HeapRegion* hr, bool young);
|
|
void record_non_young_cset_region(HeapRegion* hr);
|
|
|
|
void set_recorded_young_regions(size_t n_regions);
|
|
void set_recorded_young_bytes(size_t bytes);
|
|
void set_recorded_rs_lengths(size_t rs_lengths);
|
|
void set_predicted_bytes_to_copy(size_t bytes);
|
|
|
|
void end_recording_regions();
|
|
|
|
void record_vtime_diff_ms(double vtime_diff_ms) {
|
|
_vtime_diff_ms = vtime_diff_ms;
|
|
}
|
|
|
|
void record_young_free_cset_time_ms(double time_ms) {
|
|
_recorded_young_free_cset_time_ms = time_ms;
|
|
}
|
|
|
|
void record_non_young_free_cset_time_ms(double time_ms) {
|
|
_recorded_non_young_free_cset_time_ms = time_ms;
|
|
}
|
|
|
|
double predict_young_gc_eff() {
|
|
return get_new_neg_prediction(_young_gc_eff_seq);
|
|
}
|
|
|
|
double predict_survivor_regions_evac_time();
|
|
|
|
// </NEW PREDICTION>
|
|
|
|
void cset_regions_freed() {
|
|
bool propagate = _last_young_gc_full && !_in_marking_window;
|
|
_short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
|
|
_survivor_surv_rate_group->all_surviving_words_recorded(propagate);
|
|
// also call it on any more surv rate groups
|
|
}
|
|
|
|
void set_known_garbage_bytes(size_t known_garbage_bytes) {
|
|
_known_garbage_bytes = known_garbage_bytes;
|
|
size_t heap_bytes = _g1->capacity();
|
|
_known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
|
|
}
|
|
|
|
void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
|
|
guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
|
|
|
|
_known_garbage_bytes -= known_garbage_bytes;
|
|
size_t heap_bytes = _g1->capacity();
|
|
_known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
|
|
}
|
|
|
|
G1MMUTracker* mmu_tracker() {
|
|
return _mmu_tracker;
|
|
}
|
|
|
|
double max_pause_time_ms() {
|
|
return _mmu_tracker->max_gc_time() * 1000.0;
|
|
}
|
|
|
|
double predict_remark_time_ms() {
|
|
return get_new_prediction(_concurrent_mark_remark_times_ms);
|
|
}
|
|
|
|
double predict_cleanup_time_ms() {
|
|
return get_new_prediction(_concurrent_mark_cleanup_times_ms);
|
|
}
|
|
|
|
// Returns an estimate of the survival rate of the region at yg-age
|
|
// "yg_age".
|
|
double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
|
|
TruncatedSeq* seq = surv_rate_group->get_seq(age);
|
|
if (seq->num() == 0)
|
|
gclog_or_tty->print("BARF! age is %d", age);
|
|
guarantee( seq->num() > 0, "invariant" );
|
|
double pred = get_new_prediction(seq);
|
|
if (pred > 1.0)
|
|
pred = 1.0;
|
|
return pred;
|
|
}
|
|
|
|
double predict_yg_surv_rate(int age) {
|
|
return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
|
|
}
|
|
|
|
double accum_yg_surv_rate_pred(int age) {
|
|
return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
|
|
}
|
|
|
|
private:
|
|
void print_stats(int level, const char* str, double value);
|
|
void print_stats(int level, const char* str, int value);
|
|
|
|
void print_par_stats(int level, const char* str, double* data);
|
|
void print_par_sizes(int level, const char* str, double* data);
|
|
|
|
void check_other_times(int level,
|
|
NumberSeq* other_times_ms,
|
|
NumberSeq* calc_other_times_ms) const;
|
|
|
|
void print_summary (PauseSummary* stats) const;
|
|
|
|
void print_summary (int level, const char* str, NumberSeq* seq) const;
|
|
void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
|
|
|
|
double avg_value (double* data);
|
|
double max_value (double* data);
|
|
double sum_of_values (double* data);
|
|
double max_sum (double* data1, double* data2);
|
|
|
|
int _last_satb_drain_processed_buffers;
|
|
int _last_update_rs_processed_buffers;
|
|
double _last_pause_time_ms;
|
|
|
|
size_t _bytes_in_collection_set_before_gc;
|
|
size_t _bytes_copied_during_gc;
|
|
|
|
// Used to count used bytes in CS.
|
|
friend class CountCSClosure;
|
|
|
|
// Statistics kept per GC stoppage, pause or full.
|
|
TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
|
|
|
|
// Add a new GC of the given duration and end time to the record.
|
|
void update_recent_gc_times(double end_time_sec, double elapsed_ms);
|
|
|
|
// The head of the list (via "next_in_collection_set()") representing the
|
|
// current collection set. Set from the incrementally built collection
|
|
// set at the start of the pause.
|
|
HeapRegion* _collection_set;
|
|
|
|
// The number of regions in the collection set. Set from the incrementally
|
|
// built collection set at the start of an evacuation pause.
|
|
size_t _collection_set_size;
|
|
|
|
// The number of bytes in the collection set before the pause. Set from
|
|
// the incrementally built collection set at the start of an evacuation
|
|
// pause.
|
|
size_t _collection_set_bytes_used_before;
|
|
|
|
// The associated information that is maintained while the incremental
|
|
// collection set is being built with young regions. Used to populate
|
|
// the recorded info for the evacuation pause.
|
|
|
|
enum CSetBuildType {
|
|
Active, // We are actively building the collection set
|
|
Inactive // We are not actively building the collection set
|
|
};
|
|
|
|
CSetBuildType _inc_cset_build_state;
|
|
|
|
// The head of the incrementally built collection set.
|
|
HeapRegion* _inc_cset_head;
|
|
|
|
// The tail of the incrementally built collection set.
|
|
HeapRegion* _inc_cset_tail;
|
|
|
|
// The number of regions in the incrementally built collection set.
|
|
// Used to set _collection_set_size at the start of an evacuation
|
|
// pause.
|
|
size_t _inc_cset_size;
|
|
|
|
// Used as the index in the surving young words structure
|
|
// which tracks the amount of space, for each young region,
|
|
// that survives the pause.
|
|
size_t _inc_cset_young_index;
|
|
|
|
// The number of bytes in the incrementally built collection set.
|
|
// Used to set _collection_set_bytes_used_before at the start of
|
|
// an evacuation pause.
|
|
size_t _inc_cset_bytes_used_before;
|
|
|
|
// Used to record the highest end of heap region in collection set
|
|
HeapWord* _inc_cset_max_finger;
|
|
|
|
// The number of recorded used bytes in the young regions
|
|
// of the collection set. This is the sum of the used() bytes
|
|
// of retired young regions in the collection set.
|
|
size_t _inc_cset_recorded_young_bytes;
|
|
|
|
// The RSet lengths recorded for regions in the collection set
|
|
// (updated by the periodic sampling of the regions in the
|
|
// young list/collection set).
|
|
size_t _inc_cset_recorded_rs_lengths;
|
|
|
|
// The predicted elapsed time it will take to collect the regions
|
|
// in the collection set (updated by the periodic sampling of the
|
|
// regions in the young list/collection set).
|
|
double _inc_cset_predicted_elapsed_time_ms;
|
|
|
|
// The predicted bytes to copy for the regions in the collection
|
|
// set (updated by the periodic sampling of the regions in the
|
|
// young list/collection set).
|
|
size_t _inc_cset_predicted_bytes_to_copy;
|
|
|
|
// Stash a pointer to the g1 heap.
|
|
G1CollectedHeap* _g1;
|
|
|
|
// The average time in ms per collection pause, averaged over recent pauses.
|
|
double recent_avg_time_for_pauses_ms();
|
|
|
|
// The average time in ms for RS scanning, per pause, averaged
|
|
// over recent pauses. (Note the RS scanning time for a pause
|
|
// is itself an average of the RS scanning time for each worker
|
|
// thread.)
|
|
double recent_avg_time_for_rs_scan_ms();
|
|
|
|
// The number of "recent" GCs recorded in the number sequences
|
|
int number_of_recent_gcs();
|
|
|
|
// The average survival ratio, computed by the total number of bytes
|
|
// suriviving / total number of bytes before collection over the last
|
|
// several recent pauses.
|
|
double recent_avg_survival_fraction();
|
|
// The survival fraction of the most recent pause; if there have been no
|
|
// pauses, returns 1.0.
|
|
double last_survival_fraction();
|
|
|
|
// Returns a "conservative" estimate of the recent survival rate, i.e.,
|
|
// one that may be higher than "recent_avg_survival_fraction".
|
|
// This is conservative in several ways:
|
|
// If there have been few pauses, it will assume a potential high
|
|
// variance, and err on the side of caution.
|
|
// It puts a lower bound (currently 0.1) on the value it will return.
|
|
// To try to detect phase changes, if the most recent pause ("latest") has a
|
|
// higher-than average ("avg") survival rate, it returns that rate.
|
|
// "work" version is a utility function; young is restricted to young regions.
|
|
double conservative_avg_survival_fraction_work(double avg,
|
|
double latest);
|
|
|
|
// The arguments are the two sequences that keep track of the number of bytes
|
|
// surviving and the total number of bytes before collection, resp.,
|
|
// over the last evereal recent pauses
|
|
// Returns the survival rate for the category in the most recent pause.
|
|
// If there have been no pauses, returns 1.0.
|
|
double last_survival_fraction_work(TruncatedSeq* surviving,
|
|
TruncatedSeq* before);
|
|
|
|
// The arguments are the two sequences that keep track of the number of bytes
|
|
// surviving and the total number of bytes before collection, resp.,
|
|
// over the last several recent pauses
|
|
// Returns the average survival ration over the last several recent pauses
|
|
// If there have been no pauses, return 1.0
|
|
double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
|
|
TruncatedSeq* before);
|
|
|
|
double conservative_avg_survival_fraction() {
|
|
double avg = recent_avg_survival_fraction();
|
|
double latest = last_survival_fraction();
|
|
return conservative_avg_survival_fraction_work(avg, latest);
|
|
}
|
|
|
|
// The ratio of gc time to elapsed time, computed over recent pauses.
|
|
double _recent_avg_pause_time_ratio;
|
|
|
|
double recent_avg_pause_time_ratio() {
|
|
return _recent_avg_pause_time_ratio;
|
|
}
|
|
|
|
// Number of pauses between concurrent marking.
|
|
size_t _pauses_btwn_concurrent_mark;
|
|
|
|
// At the end of a pause we check the heap occupancy and we decide
|
|
// whether we will start a marking cycle during the next pause. If
|
|
// we decide that we want to do that, we will set this parameter to
|
|
// true. So, this parameter will stay true between the end of a
|
|
// pause and the beginning of a subsequent pause (not necessarily
|
|
// the next one, see the comments on the next field) when we decide
|
|
// that we will indeed start a marking cycle and do the initial-mark
|
|
// work.
|
|
volatile bool _initiate_conc_mark_if_possible;
|
|
|
|
// If initiate_conc_mark_if_possible() is set at the beginning of a
|
|
// pause, it is a suggestion that the pause should start a marking
|
|
// cycle by doing the initial-mark work. However, it is possible
|
|
// that the concurrent marking thread is still finishing up the
|
|
// previous marking cycle (e.g., clearing the next marking
|
|
// bitmap). If that is the case we cannot start a new cycle and
|
|
// we'll have to wait for the concurrent marking thread to finish
|
|
// what it is doing. In this case we will postpone the marking cycle
|
|
// initiation decision for the next pause. When we eventually decide
|
|
// to start a cycle, we will set _during_initial_mark_pause which
|
|
// will stay true until the end of the initial-mark pause and it's
|
|
// the condition that indicates that a pause is doing the
|
|
// initial-mark work.
|
|
volatile bool _during_initial_mark_pause;
|
|
|
|
bool _should_revert_to_full_young_gcs;
|
|
bool _last_full_young_gc;
|
|
|
|
// This set of variables tracks the collector efficiency, in order to
|
|
// determine whether we should initiate a new marking.
|
|
double _cur_mark_stop_world_time_ms;
|
|
double _mark_remark_start_sec;
|
|
double _mark_cleanup_start_sec;
|
|
double _mark_closure_time_ms;
|
|
|
|
// Update the young list target length either by setting it to the
|
|
// desired fixed value or by calculating it using G1's pause
|
|
// prediction model. If no rs_lengths parameter is passed, predict
|
|
// the RS lengths using the prediction model, otherwise use the
|
|
// given rs_lengths as the prediction.
|
|
void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
|
|
|
|
// Calculate and return the minimum desired young list target
|
|
// length. This is the minimum desired young list length according
|
|
// to the user's inputs.
|
|
size_t calculate_young_list_desired_min_length(size_t base_min_length);
|
|
|
|
// Calculate and return the maximum desired young list target
|
|
// length. This is the maximum desired young list length according
|
|
// to the user's inputs.
|
|
size_t calculate_young_list_desired_max_length();
|
|
|
|
// Calculate and return the maximum young list target length that
|
|
// can fit into the pause time goal. The parameters are: rs_lengths
|
|
// represent the prediction of how large the young RSet lengths will
|
|
// be, base_min_length is the alreay existing number of regions in
|
|
// the young list, min_length and max_length are the desired min and
|
|
// max young list length according to the user's inputs.
|
|
size_t calculate_young_list_target_length(size_t rs_lengths,
|
|
size_t base_min_length,
|
|
size_t desired_min_length,
|
|
size_t desired_max_length);
|
|
|
|
// Check whether a given young length (young_length) fits into the
|
|
// given target pause time and whether the prediction for the amount
|
|
// of objects to be copied for the given length will fit into the
|
|
// given free space (expressed by base_free_regions). It is used by
|
|
// calculate_young_list_target_length().
|
|
bool predict_will_fit(size_t young_length, double base_time_ms,
|
|
size_t base_free_regions, double target_pause_time_ms);
|
|
|
|
// Count the number of bytes used in the CS.
|
|
void count_CS_bytes_used();
|
|
|
|
void update_young_list_size_using_newratio(size_t number_of_heap_regions);
|
|
|
|
public:
|
|
|
|
G1CollectorPolicy();
|
|
|
|
virtual G1CollectorPolicy* as_g1_policy() { return this; }
|
|
|
|
virtual CollectorPolicy::Name kind() {
|
|
return CollectorPolicy::G1CollectorPolicyKind;
|
|
}
|
|
|
|
// Check the current value of the young list RSet lengths and
|
|
// compare it against the last prediction. If the current value is
|
|
// higher, recalculate the young list target length prediction.
|
|
void revise_young_list_target_length_if_necessary();
|
|
|
|
size_t bytes_in_collection_set() {
|
|
return _bytes_in_collection_set_before_gc;
|
|
}
|
|
|
|
unsigned calc_gc_alloc_time_stamp() {
|
|
return _all_pause_times_ms->num() + 1;
|
|
}
|
|
|
|
// This should be called after the heap is resized.
|
|
void record_new_heap_size(size_t new_number_of_regions);
|
|
|
|
public:
|
|
|
|
void init();
|
|
|
|
// Create jstat counters for the policy.
|
|
virtual void initialize_gc_policy_counters();
|
|
|
|
virtual HeapWord* mem_allocate_work(size_t size,
|
|
bool is_tlab,
|
|
bool* gc_overhead_limit_was_exceeded);
|
|
|
|
// This method controls how a collector handles one or more
|
|
// of its generations being fully allocated.
|
|
virtual HeapWord* satisfy_failed_allocation(size_t size,
|
|
bool is_tlab);
|
|
|
|
BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
|
|
|
|
GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
|
|
|
|
// The number of collection pauses so far.
|
|
long n_pauses() const { return _n_pauses; }
|
|
|
|
// Update the heuristic info to record a collection pause of the given
|
|
// start time, where the given number of bytes were used at the start.
|
|
// This may involve changing the desired size of a collection set.
|
|
|
|
void record_stop_world_start();
|
|
|
|
void record_collection_pause_start(double start_time_sec, size_t start_used);
|
|
|
|
// Must currently be called while the world is stopped.
|
|
void record_concurrent_mark_init_end(double
|
|
mark_init_elapsed_time_ms);
|
|
|
|
void record_mark_closure_time(double mark_closure_time_ms);
|
|
|
|
void record_concurrent_mark_remark_start();
|
|
void record_concurrent_mark_remark_end();
|
|
|
|
void record_concurrent_mark_cleanup_start();
|
|
void record_concurrent_mark_cleanup_end();
|
|
void record_concurrent_mark_cleanup_completed();
|
|
|
|
void record_concurrent_pause();
|
|
void record_concurrent_pause_end();
|
|
|
|
void record_collection_pause_end();
|
|
void print_heap_transition();
|
|
|
|
// Record the fact that a full collection occurred.
|
|
void record_full_collection_start();
|
|
void record_full_collection_end();
|
|
|
|
void record_gc_worker_start_time(int worker_i, double ms) {
|
|
_par_last_gc_worker_start_times_ms[worker_i] = ms;
|
|
}
|
|
|
|
void record_ext_root_scan_time(int worker_i, double ms) {
|
|
_par_last_ext_root_scan_times_ms[worker_i] = ms;
|
|
}
|
|
|
|
void record_mark_stack_scan_time(int worker_i, double ms) {
|
|
_par_last_mark_stack_scan_times_ms[worker_i] = ms;
|
|
}
|
|
|
|
void record_satb_drain_time(double ms) {
|
|
_cur_satb_drain_time_ms = ms;
|
|
_satb_drain_time_set = true;
|
|
}
|
|
|
|
void record_satb_drain_processed_buffers (int processed_buffers) {
|
|
_last_satb_drain_processed_buffers = processed_buffers;
|
|
}
|
|
|
|
void record_mod_union_time(double ms) {
|
|
_all_mod_union_times_ms->add(ms);
|
|
}
|
|
|
|
void record_update_rs_time(int thread, double ms) {
|
|
_par_last_update_rs_times_ms[thread] = ms;
|
|
}
|
|
|
|
void record_update_rs_processed_buffers (int thread,
|
|
double processed_buffers) {
|
|
_par_last_update_rs_processed_buffers[thread] = processed_buffers;
|
|
}
|
|
|
|
void record_scan_rs_time(int thread, double ms) {
|
|
_par_last_scan_rs_times_ms[thread] = ms;
|
|
}
|
|
|
|
void reset_obj_copy_time(int thread) {
|
|
_par_last_obj_copy_times_ms[thread] = 0.0;
|
|
}
|
|
|
|
void reset_obj_copy_time() {
|
|
reset_obj_copy_time(0);
|
|
}
|
|
|
|
void record_obj_copy_time(int thread, double ms) {
|
|
_par_last_obj_copy_times_ms[thread] += ms;
|
|
}
|
|
|
|
void record_termination(int thread, double ms, size_t attempts) {
|
|
_par_last_termination_times_ms[thread] = ms;
|
|
_par_last_termination_attempts[thread] = (double) attempts;
|
|
}
|
|
|
|
void record_gc_worker_end_time(int worker_i, double ms) {
|
|
_par_last_gc_worker_end_times_ms[worker_i] = ms;
|
|
}
|
|
|
|
void record_pause_time_ms(double ms) {
|
|
_last_pause_time_ms = ms;
|
|
}
|
|
|
|
void record_clear_ct_time(double ms) {
|
|
_cur_clear_ct_time_ms = ms;
|
|
}
|
|
|
|
void record_par_time(double ms) {
|
|
_cur_collection_par_time_ms = ms;
|
|
}
|
|
|
|
void record_aux_start_time(int i) {
|
|
guarantee(i < _aux_num, "should be within range");
|
|
_cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
|
|
}
|
|
|
|
void record_aux_end_time(int i) {
|
|
guarantee(i < _aux_num, "should be within range");
|
|
double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
|
|
_cur_aux_times_set[i] = true;
|
|
_cur_aux_times_ms[i] += ms;
|
|
}
|
|
|
|
void record_ref_proc_time(double ms) {
|
|
_cur_ref_proc_time_ms = ms;
|
|
}
|
|
|
|
void record_ref_enq_time(double ms) {
|
|
_cur_ref_enq_time_ms = ms;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void record_cc_clear_time(double ms) {
|
|
if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
|
|
_min_clear_cc_time_ms = ms;
|
|
if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
|
|
_max_clear_cc_time_ms = ms;
|
|
_cur_clear_cc_time_ms = ms;
|
|
_cum_clear_cc_time_ms += ms;
|
|
_num_cc_clears++;
|
|
}
|
|
#endif
|
|
|
|
// Record how much space we copied during a GC. This is typically
|
|
// called when a GC alloc region is being retired.
|
|
void record_bytes_copied_during_gc(size_t bytes) {
|
|
_bytes_copied_during_gc += bytes;
|
|
}
|
|
|
|
// The amount of space we copied during a GC.
|
|
size_t bytes_copied_during_gc() {
|
|
return _bytes_copied_during_gc;
|
|
}
|
|
|
|
// Choose a new collection set. Marks the chosen regions as being
|
|
// "in_collection_set", and links them together. The head and number of
|
|
// the collection set are available via access methods.
|
|
void choose_collection_set(double target_pause_time_ms);
|
|
|
|
// The head of the list (via "next_in_collection_set()") representing the
|
|
// current collection set.
|
|
HeapRegion* collection_set() { return _collection_set; }
|
|
|
|
void clear_collection_set() { _collection_set = NULL; }
|
|
|
|
// The number of elements in the current collection set.
|
|
size_t collection_set_size() { return _collection_set_size; }
|
|
|
|
// Add "hr" to the CS.
|
|
void add_to_collection_set(HeapRegion* hr);
|
|
|
|
// Incremental CSet Support
|
|
|
|
// The head of the incrementally built collection set.
|
|
HeapRegion* inc_cset_head() { return _inc_cset_head; }
|
|
|
|
// The tail of the incrementally built collection set.
|
|
HeapRegion* inc_set_tail() { return _inc_cset_tail; }
|
|
|
|
// The number of elements in the incrementally built collection set.
|
|
size_t inc_cset_size() { return _inc_cset_size; }
|
|
|
|
// Initialize incremental collection set info.
|
|
void start_incremental_cset_building();
|
|
|
|
void clear_incremental_cset() {
|
|
_inc_cset_head = NULL;
|
|
_inc_cset_tail = NULL;
|
|
}
|
|
|
|
// Stop adding regions to the incremental collection set
|
|
void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
|
|
|
|
// Add/remove information about hr to the aggregated information
|
|
// for the incrementally built collection set.
|
|
void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
|
|
void remove_from_incremental_cset_info(HeapRegion* hr);
|
|
|
|
// Update information about hr in the aggregated information for
|
|
// the incrementally built collection set.
|
|
void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
|
|
|
|
private:
|
|
// Update the incremental cset information when adding a region
|
|
// (should not be called directly).
|
|
void add_region_to_incremental_cset_common(HeapRegion* hr);
|
|
|
|
public:
|
|
// Add hr to the LHS of the incremental collection set.
|
|
void add_region_to_incremental_cset_lhs(HeapRegion* hr);
|
|
|
|
// Add hr to the RHS of the incremental collection set.
|
|
void add_region_to_incremental_cset_rhs(HeapRegion* hr);
|
|
|
|
#ifndef PRODUCT
|
|
void print_collection_set(HeapRegion* list_head, outputStream* st);
|
|
#endif // !PRODUCT
|
|
|
|
bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
|
|
void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
|
|
void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
|
|
|
|
bool during_initial_mark_pause() { return _during_initial_mark_pause; }
|
|
void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
|
|
void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
|
|
|
|
// This sets the initiate_conc_mark_if_possible() flag to start a
|
|
// new cycle, as long as we are not already in one. It's best if it
|
|
// is called during a safepoint when the test whether a cycle is in
|
|
// progress or not is stable.
|
|
bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
|
|
|
|
// This is called at the very beginning of an evacuation pause (it
|
|
// has to be the first thing that the pause does). If
|
|
// initiate_conc_mark_if_possible() is true, and the concurrent
|
|
// marking thread has completed its work during the previous cycle,
|
|
// it will set during_initial_mark_pause() to so that the pause does
|
|
// the initial-mark work and start a marking cycle.
|
|
void decide_on_conc_mark_initiation();
|
|
|
|
// If an expansion would be appropriate, because recent GC overhead had
|
|
// exceeded the desired limit, return an amount to expand by.
|
|
size_t expansion_amount();
|
|
|
|
#ifndef PRODUCT
|
|
// Check any appropriate marked bytes info, asserting false if
|
|
// something's wrong, else returning "true".
|
|
bool assertMarkedBytesDataOK();
|
|
#endif
|
|
|
|
// Print tracing information.
|
|
void print_tracing_info() const;
|
|
|
|
// Print stats on young survival ratio
|
|
void print_yg_surv_rate_info() const;
|
|
|
|
void finished_recalculating_age_indexes(bool is_survivors) {
|
|
if (is_survivors) {
|
|
_survivor_surv_rate_group->finished_recalculating_age_indexes();
|
|
} else {
|
|
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
|
|
}
|
|
// do that for any other surv rate groups
|
|
}
|
|
|
|
bool is_young_list_full() {
|
|
size_t young_list_length = _g1->young_list()->length();
|
|
size_t young_list_target_length = _young_list_target_length;
|
|
return young_list_length >= young_list_target_length;
|
|
}
|
|
|
|
bool can_expand_young_list() {
|
|
size_t young_list_length = _g1->young_list()->length();
|
|
size_t young_list_max_length = _young_list_max_length;
|
|
return young_list_length < young_list_max_length;
|
|
}
|
|
|
|
size_t young_list_max_length() {
|
|
return _young_list_max_length;
|
|
}
|
|
|
|
void update_region_num(bool young);
|
|
|
|
bool full_young_gcs() {
|
|
return _full_young_gcs;
|
|
}
|
|
void set_full_young_gcs(bool full_young_gcs) {
|
|
_full_young_gcs = full_young_gcs;
|
|
}
|
|
|
|
bool adaptive_young_list_length() {
|
|
return _adaptive_young_list_length;
|
|
}
|
|
void set_adaptive_young_list_length(bool adaptive_young_list_length) {
|
|
_adaptive_young_list_length = adaptive_young_list_length;
|
|
}
|
|
|
|
inline double get_gc_eff_factor() {
|
|
double ratio = _known_garbage_ratio;
|
|
|
|
double square = ratio * ratio;
|
|
// square = square * square;
|
|
double ret = square * 9.0 + 1.0;
|
|
#if 0
|
|
gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
|
|
#endif // 0
|
|
guarantee(0.0 <= ret && ret < 10.0, "invariant!");
|
|
return ret;
|
|
}
|
|
|
|
private:
|
|
//
|
|
// Survivor regions policy.
|
|
//
|
|
|
|
// Current tenuring threshold, set to 0 if the collector reaches the
|
|
// maximum amount of suvivors regions.
|
|
int _tenuring_threshold;
|
|
|
|
// The limit on the number of regions allocated for survivors.
|
|
size_t _max_survivor_regions;
|
|
|
|
// For reporting purposes.
|
|
size_t _eden_bytes_before_gc;
|
|
size_t _survivor_bytes_before_gc;
|
|
size_t _capacity_before_gc;
|
|
|
|
// The amount of survor regions after a collection.
|
|
size_t _recorded_survivor_regions;
|
|
// List of survivor regions.
|
|
HeapRegion* _recorded_survivor_head;
|
|
HeapRegion* _recorded_survivor_tail;
|
|
|
|
ageTable _survivors_age_table;
|
|
|
|
public:
|
|
|
|
inline GCAllocPurpose
|
|
evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
|
|
if (age < _tenuring_threshold && src_region->is_young()) {
|
|
return GCAllocForSurvived;
|
|
} else {
|
|
return GCAllocForTenured;
|
|
}
|
|
}
|
|
|
|
inline bool track_object_age(GCAllocPurpose purpose) {
|
|
return purpose == GCAllocForSurvived;
|
|
}
|
|
|
|
static const size_t REGIONS_UNLIMITED = ~(size_t)0;
|
|
|
|
size_t max_regions(int purpose);
|
|
|
|
// The limit on regions for a particular purpose is reached.
|
|
void note_alloc_region_limit_reached(int purpose) {
|
|
if (purpose == GCAllocForSurvived) {
|
|
_tenuring_threshold = 0;
|
|
}
|
|
}
|
|
|
|
void note_start_adding_survivor_regions() {
|
|
_survivor_surv_rate_group->start_adding_regions();
|
|
}
|
|
|
|
void note_stop_adding_survivor_regions() {
|
|
_survivor_surv_rate_group->stop_adding_regions();
|
|
}
|
|
|
|
void record_survivor_regions(size_t regions,
|
|
HeapRegion* head,
|
|
HeapRegion* tail) {
|
|
_recorded_survivor_regions = regions;
|
|
_recorded_survivor_head = head;
|
|
_recorded_survivor_tail = tail;
|
|
}
|
|
|
|
size_t recorded_survivor_regions() {
|
|
return _recorded_survivor_regions;
|
|
}
|
|
|
|
void record_thread_age_table(ageTable* age_table)
|
|
{
|
|
_survivors_age_table.merge_par(age_table);
|
|
}
|
|
|
|
void update_max_gc_locker_expansion();
|
|
|
|
// Calculates survivor space parameters.
|
|
void update_survivors_policy();
|
|
|
|
};
|
|
|
|
// This should move to some place more general...
|
|
|
|
// If we have "n" measurements, and we've kept track of their "sum" and the
|
|
// "sum_of_squares" of the measurements, this returns the variance of the
|
|
// sequence.
|
|
inline double variance(int n, double sum_of_squares, double sum) {
|
|
double n_d = (double)n;
|
|
double avg = sum/n_d;
|
|
return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
|
|
}
|
|
|
|
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
|