2a0815a55e
The IDX_INIT macro used by Node::Node(...) to retrieve the Compile object is removed and replaced by a call to Compile::current(). The Node constructor, new operator and all calls to it are adapted accordingly. Reviewed-by: kvn, jrose, iveresov, goetz
790 lines
30 KiB
C++
790 lines
30 KiB
C++
/*
|
|
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "opto/coalesce.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/indexSet.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/regmask.hpp"
|
|
|
|
#ifndef PRODUCT
|
|
void PhaseCoalesce::dump(Node *n) const {
|
|
// Being a const function means I cannot use 'Find'
|
|
uint r = _phc._lrg_map.find(n);
|
|
tty->print("L%d/N%d ",r,n->_idx);
|
|
}
|
|
|
|
void PhaseCoalesce::dump() const {
|
|
// I know I have a block layout now, so I can print blocks in a loop
|
|
for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
|
|
uint j;
|
|
Block* b = _phc._cfg.get_block(i);
|
|
// Print a nice block header
|
|
tty->print("B%d: ",b->_pre_order);
|
|
for( j=1; j<b->num_preds(); j++ )
|
|
tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
|
|
tty->print("-> ");
|
|
for( j=0; j<b->_num_succs; j++ )
|
|
tty->print("B%d ",b->_succs[j]->_pre_order);
|
|
tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
|
|
uint cnt = b->number_of_nodes();
|
|
for( j=0; j<cnt; j++ ) {
|
|
Node *n = b->get_node(j);
|
|
dump( n );
|
|
tty->print("\t%s\t",n->Name());
|
|
|
|
// Dump the inputs
|
|
uint k; // Exit value of loop
|
|
for( k=0; k<n->req(); k++ ) // For all required inputs
|
|
if( n->in(k) ) dump( n->in(k) );
|
|
else tty->print("_ ");
|
|
int any_prec = 0;
|
|
for( ; k<n->len(); k++ ) // For all precedence inputs
|
|
if( n->in(k) ) {
|
|
if( !any_prec++ ) tty->print(" |");
|
|
dump( n->in(k) );
|
|
}
|
|
|
|
// Dump node-specific info
|
|
n->dump_spec(tty);
|
|
tty->print("\n");
|
|
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1.
|
|
void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
|
|
uint lr1 = _phc._lrg_map.find(n1);
|
|
uint lr2 = _phc._lrg_map.find(n2);
|
|
if( lr1 != lr2 && // Different live ranges already AND
|
|
!_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere
|
|
LRG *lrg1 = &_phc.lrgs(lr1);
|
|
LRG *lrg2 = &_phc.lrgs(lr2);
|
|
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
|
|
|
|
// Now, why is int->oop OK? We end up declaring a raw-pointer as an oop
|
|
// and in general that's a bad thing. However, int->oop conversions only
|
|
// happen at GC points, so the lifetime of the misclassified raw-pointer
|
|
// is from the CheckCastPP (that converts it to an oop) backwards up
|
|
// through a merge point and into the slow-path call, and around the
|
|
// diamond up to the heap-top check and back down into the slow-path call.
|
|
// The misclassified raw pointer is NOT live across the slow-path call,
|
|
// and so does not appear in any GC info, so the fact that it is
|
|
// misclassified is OK.
|
|
|
|
if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
|
|
// Compatible final mask
|
|
lrg1->mask().overlap( lrg2->mask() ) ) {
|
|
// Merge larger into smaller.
|
|
if( lr1 > lr2 ) {
|
|
uint tmp = lr1; lr1 = lr2; lr2 = tmp;
|
|
Node *n = n1; n1 = n2; n2 = n;
|
|
LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
|
|
}
|
|
// Union lr2 into lr1
|
|
_phc.Union( n1, n2 );
|
|
if (lrg1->_maxfreq < lrg2->_maxfreq)
|
|
lrg1->_maxfreq = lrg2->_maxfreq;
|
|
// Merge in the IFG
|
|
_phc._ifg->Union( lr1, lr2 );
|
|
// Combine register restrictions
|
|
lrg1->AND(lrg2->mask());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy coalescing
|
|
void PhaseCoalesce::coalesce_driver() {
|
|
verify();
|
|
// Coalesce from high frequency to low
|
|
for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
|
|
coalesce(_phc._blks[i]);
|
|
}
|
|
}
|
|
|
|
// I am inserting copies to come out of SSA form. In the general case, I am
|
|
// doing a parallel renaming. I'm in the Named world now, so I can't do a
|
|
// general parallel renaming. All the copies now use "names" (live-ranges)
|
|
// to carry values instead of the explicit use-def chains. Suppose I need to
|
|
// insert 2 copies into the same block. They copy L161->L128 and L128->L132.
|
|
// If I insert them in the wrong order then L128 will get clobbered before it
|
|
// can get used by the second copy. This cannot happen in the SSA model;
|
|
// direct use-def chains get me the right value. It DOES happen in the named
|
|
// model so I have to handle the reordering of copies.
|
|
//
|
|
// In general, I need to topo-sort the placed copies to avoid conflicts.
|
|
// Its possible to have a closed cycle of copies (e.g., recirculating the same
|
|
// values around a loop). In this case I need a temp to break the cycle.
|
|
void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
|
|
|
|
// Scan backwards for the locations of the last use of the dst_name.
|
|
// I am about to clobber the dst_name, so the copy must be inserted
|
|
// after the last use. Last use is really first-use on a backwards scan.
|
|
uint i = b->end_idx()-1;
|
|
while(1) {
|
|
Node *n = b->get_node(i);
|
|
// Check for end of virtual copies; this is also the end of the
|
|
// parallel renaming effort.
|
|
if (n->_idx < _unique) {
|
|
break;
|
|
}
|
|
uint idx = n->is_Copy();
|
|
assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
|
|
if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
|
|
break;
|
|
}
|
|
i--;
|
|
}
|
|
uint last_use_idx = i;
|
|
|
|
// Also search for any kill of src_name that exits the block.
|
|
// Since the copy uses src_name, I have to come before any kill.
|
|
uint kill_src_idx = b->end_idx();
|
|
// There can be only 1 kill that exits any block and that is
|
|
// the last kill. Thus it is the first kill on a backwards scan.
|
|
i = b->end_idx()-1;
|
|
while (1) {
|
|
Node *n = b->get_node(i);
|
|
// Check for end of virtual copies; this is also the end of the
|
|
// parallel renaming effort.
|
|
if (n->_idx < _unique) {
|
|
break;
|
|
}
|
|
assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
|
|
if (_phc._lrg_map.find(n) == src_name) {
|
|
kill_src_idx = i;
|
|
break;
|
|
}
|
|
i--;
|
|
}
|
|
// Need a temp? Last use of dst comes after the kill of src?
|
|
if (last_use_idx >= kill_src_idx) {
|
|
// Need to break a cycle with a temp
|
|
uint idx = copy->is_Copy();
|
|
Node *tmp = copy->clone();
|
|
uint max_lrg_id = _phc._lrg_map.max_lrg_id();
|
|
_phc.new_lrg(tmp, max_lrg_id);
|
|
_phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
|
|
|
|
// Insert new temp between copy and source
|
|
tmp ->set_req(idx,copy->in(idx));
|
|
copy->set_req(idx,tmp);
|
|
// Save source in temp early, before source is killed
|
|
b->insert_node(tmp, kill_src_idx);
|
|
_phc._cfg.map_node_to_block(tmp, b);
|
|
last_use_idx++;
|
|
}
|
|
|
|
// Insert just after last use
|
|
b->insert_node(copy, last_use_idx + 1);
|
|
}
|
|
|
|
void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
|
|
// We do LRGs compressing and fix a liveout data only here since the other
|
|
// place in Split() is guarded by the assert which we never hit.
|
|
_phc._lrg_map.compress_uf_map_for_nodes();
|
|
// Fix block's liveout data for compressed live ranges.
|
|
for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
|
|
uint compressed_lrg = _phc._lrg_map.find(lrg);
|
|
if (lrg != compressed_lrg) {
|
|
for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
|
|
IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
|
|
if (liveout->member(lrg)) {
|
|
liveout->remove(lrg);
|
|
liveout->insert(compressed_lrg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// All new nodes added are actual copies to replace virtual copies.
|
|
// Nodes with index less than '_unique' are original, non-virtual Nodes.
|
|
_unique = C->unique();
|
|
|
|
for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
|
|
C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
|
|
if (C->failing()) return;
|
|
Block *b = _phc._cfg.get_block(i);
|
|
uint cnt = b->num_preds(); // Number of inputs to the Phi
|
|
|
|
for( uint l = 1; l<b->number_of_nodes(); l++ ) {
|
|
Node *n = b->get_node(l);
|
|
|
|
// Do not use removed-copies, use copied value instead
|
|
uint ncnt = n->req();
|
|
for( uint k = 1; k<ncnt; k++ ) {
|
|
Node *copy = n->in(k);
|
|
uint cidx = copy->is_Copy();
|
|
if( cidx ) {
|
|
Node *def = copy->in(cidx);
|
|
if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
|
|
n->set_req(k, def);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove any explicit copies that get coalesced.
|
|
uint cidx = n->is_Copy();
|
|
if( cidx ) {
|
|
Node *def = n->in(cidx);
|
|
if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
|
|
n->replace_by(def);
|
|
n->set_req(cidx,NULL);
|
|
b->remove_node(l);
|
|
l--;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (n->is_Phi()) {
|
|
// Get the chosen name for the Phi
|
|
uint phi_name = _phc._lrg_map.find(n);
|
|
// Ignore the pre-allocated specials
|
|
if (!phi_name) {
|
|
continue;
|
|
}
|
|
// Check for mismatch inputs to Phi
|
|
for (uint j = 1; j < cnt; j++) {
|
|
Node *m = n->in(j);
|
|
uint src_name = _phc._lrg_map.find(m);
|
|
if (src_name != phi_name) {
|
|
Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
|
|
Node *copy;
|
|
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
|
|
// Rematerialize constants instead of copying them
|
|
if( m->is_Mach() && m->as_Mach()->is_Con() &&
|
|
m->as_Mach()->rematerialize() ) {
|
|
copy = m->clone();
|
|
// Insert the copy in the predecessor basic block
|
|
pred->add_inst(copy);
|
|
// Copy any flags as well
|
|
_phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
|
|
} else {
|
|
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
|
|
copy = new MachSpillCopyNode(MachSpillCopyNode::PhiInput, m, *rm, *rm);
|
|
// Find a good place to insert. Kinda tricky, use a subroutine
|
|
insert_copy_with_overlap(pred,copy,phi_name,src_name);
|
|
}
|
|
// Insert the copy in the use-def chain
|
|
n->set_req(j, copy);
|
|
_phc._cfg.map_node_to_block(copy, pred);
|
|
// Extend ("register allocate") the names array for the copy.
|
|
_phc._lrg_map.extend(copy->_idx, phi_name);
|
|
} // End of if Phi names do not match
|
|
} // End of for all inputs to Phi
|
|
} else { // End of if Phi
|
|
|
|
// Now check for 2-address instructions
|
|
uint idx;
|
|
if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
|
|
// Get the chosen name for the Node
|
|
uint name = _phc._lrg_map.find(n);
|
|
assert (name, "no 2-address specials");
|
|
// Check for name mis-match on the 2-address input
|
|
Node *m = n->in(idx);
|
|
if (_phc._lrg_map.find(m) != name) {
|
|
Node *copy;
|
|
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
|
|
// At this point it is unsafe to extend live ranges (6550579).
|
|
// Rematerialize only constants as we do for Phi above.
|
|
if(m->is_Mach() && m->as_Mach()->is_Con() &&
|
|
m->as_Mach()->rematerialize()) {
|
|
copy = m->clone();
|
|
// Insert the copy in the basic block, just before us
|
|
b->insert_node(copy, l++);
|
|
l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
|
|
} else {
|
|
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
|
|
copy = new MachSpillCopyNode(MachSpillCopyNode::TwoAddress, m, *rm, *rm);
|
|
// Insert the copy in the basic block, just before us
|
|
b->insert_node(copy, l++);
|
|
}
|
|
// Insert the copy in the use-def chain
|
|
n->set_req(idx, copy);
|
|
// Extend ("register allocate") the names array for the copy.
|
|
_phc._lrg_map.extend(copy->_idx, name);
|
|
_phc._cfg.map_node_to_block(copy, b);
|
|
}
|
|
|
|
} // End of is two-adr
|
|
|
|
// Insert a copy at a debug use for a lrg which has high frequency
|
|
if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
|
|
// Walk the debug inputs to the node and check for lrg freq
|
|
JVMState* jvms = n->jvms();
|
|
uint debug_start = jvms ? jvms->debug_start() : 999999;
|
|
uint debug_end = jvms ? jvms->debug_end() : 999999;
|
|
for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
|
|
// Do not split monitors; they are only needed for debug table
|
|
// entries and need no code.
|
|
if (jvms->is_monitor_use(inpidx)) {
|
|
continue;
|
|
}
|
|
Node *inp = n->in(inpidx);
|
|
uint nidx = _phc._lrg_map.live_range_id(inp);
|
|
LRG &lrg = lrgs(nidx);
|
|
|
|
// If this lrg has a high frequency use/def
|
|
if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
|
|
// If the live range is also live out of this block (like it
|
|
// would be for a fast/slow idiom), the normal spill mechanism
|
|
// does an excellent job. If it is not live out of this block
|
|
// (like it would be for debug info to uncommon trap) splitting
|
|
// the live range now allows a better allocation in the high
|
|
// frequency blocks.
|
|
// Build_IFG_virtual has converted the live sets to
|
|
// live-IN info, not live-OUT info.
|
|
uint k;
|
|
for( k=0; k < b->_num_succs; k++ )
|
|
if( _phc._live->live(b->_succs[k])->member( nidx ) )
|
|
break; // Live in to some successor block?
|
|
if( k < b->_num_succs )
|
|
continue; // Live out; do not pre-split
|
|
// Split the lrg at this use
|
|
const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
|
|
Node* copy = new MachSpillCopyNode(MachSpillCopyNode::DebugUse, inp, *rm, *rm);
|
|
// Insert the copy in the use-def chain
|
|
n->set_req(inpidx, copy );
|
|
// Insert the copy in the basic block, just before us
|
|
b->insert_node(copy, l++);
|
|
// Extend ("register allocate") the names array for the copy.
|
|
uint max_lrg_id = _phc._lrg_map.max_lrg_id();
|
|
_phc.new_lrg(copy, max_lrg_id);
|
|
_phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
|
|
_phc._cfg.map_node_to_block(copy, b);
|
|
//tty->print_cr("Split a debug use in Aggressive Coalesce");
|
|
} // End of if high frequency use/def
|
|
} // End of for all debug inputs
|
|
} // End of if low frequency safepoint
|
|
|
|
} // End of if Phi
|
|
|
|
} // End of for all instructions
|
|
} // End of for all blocks
|
|
}
|
|
|
|
|
|
// Aggressive (but pessimistic) copy coalescing of a single block
|
|
|
|
// The following coalesce pass represents a single round of aggressive
|
|
// pessimistic coalesce. "Aggressive" means no attempt to preserve
|
|
// colorability when coalescing. This occasionally means more spills, but
|
|
// it also means fewer rounds of coalescing for better code - and that means
|
|
// faster compiles.
|
|
|
|
// "Pessimistic" means we do not hit the fixed point in one pass (and we are
|
|
// reaching for the least fixed point to boot). This is typically solved
|
|
// with a few more rounds of coalescing, but the compiler must run fast. We
|
|
// could optimistically coalescing everything touching PhiNodes together
|
|
// into one big live range, then check for self-interference. Everywhere
|
|
// the live range interferes with self it would have to be split. Finding
|
|
// the right split points can be done with some heuristics (based on
|
|
// expected frequency of edges in the live range). In short, it's a real
|
|
// research problem and the timeline is too short to allow such research.
|
|
// Further thoughts: (1) build the LR in a pass, (2) find self-interference
|
|
// in another pass, (3) per each self-conflict, split, (4) split by finding
|
|
// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
|
|
// according to the GCM algorithm (or just exec freq on CFG edges).
|
|
|
|
void PhaseAggressiveCoalesce::coalesce( Block *b ) {
|
|
// Copies are still "virtual" - meaning we have not made them explicitly
|
|
// copies. Instead, Phi functions of successor blocks have mis-matched
|
|
// live-ranges. If I fail to coalesce, I'll have to insert a copy to line
|
|
// up the live-ranges. Check for Phis in successor blocks.
|
|
uint i;
|
|
for( i=0; i<b->_num_succs; i++ ) {
|
|
Block *bs = b->_succs[i];
|
|
// Find index of 'b' in 'bs' predecessors
|
|
uint j=1;
|
|
while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
|
|
j++;
|
|
}
|
|
|
|
// Visit all the Phis in successor block
|
|
for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
|
|
Node *n = bs->get_node(k);
|
|
if( !n->is_Phi() ) break;
|
|
combine_these_two( n, n->in(j) );
|
|
}
|
|
} // End of for all successor blocks
|
|
|
|
|
|
// Check _this_ block for 2-address instructions and copies.
|
|
uint cnt = b->end_idx();
|
|
for( i = 1; i<cnt; i++ ) {
|
|
Node *n = b->get_node(i);
|
|
uint idx;
|
|
// 2-address instructions have a virtual Copy matching their input
|
|
// to their output
|
|
if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
|
|
MachNode *mach = n->as_Mach();
|
|
combine_these_two(mach, mach->in(idx));
|
|
}
|
|
} // End of for all instructions in block
|
|
}
|
|
|
|
PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
|
|
_ulr.initialize(_phc._lrg_map.max_lrg_id());
|
|
}
|
|
|
|
void PhaseConservativeCoalesce::verify() {
|
|
#ifdef ASSERT
|
|
_phc.set_was_low();
|
|
#endif
|
|
}
|
|
|
|
void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
|
|
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
|
|
// union-find tree
|
|
_phc.Union( lr1_node, lr2_node );
|
|
|
|
// Single-def live range ONLY if both live ranges are single-def.
|
|
// If both are single def, then src_def powers one live range
|
|
// and def_copy powers the other. After merging, src_def powers
|
|
// the combined live range.
|
|
lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
|
|
lrgs(lr2).is_multidef() )
|
|
? NodeSentinel : src_def;
|
|
lrgs(lr2)._def = NULL; // No def for lrg 2
|
|
lrgs(lr2).Clear(); // Force empty mask for LRG 2
|
|
//lrgs(lr2)._size = 0; // Live-range 2 goes dead
|
|
lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
|
|
lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info
|
|
|
|
if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
|
|
lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
|
|
|
|
// Copy original value instead. Intermediate copies go dead, and
|
|
// the dst_copy becomes useless.
|
|
int didx = dst_copy->is_Copy();
|
|
dst_copy->set_req( didx, src_def );
|
|
// Add copy to free list
|
|
// _phc.free_spillcopy(b->_nodes[bindex]);
|
|
assert( b->get_node(bindex) == dst_copy, "" );
|
|
dst_copy->replace_by( dst_copy->in(didx) );
|
|
dst_copy->set_req( didx, NULL);
|
|
b->remove_node(bindex);
|
|
if( bindex < b->_ihrp_index ) b->_ihrp_index--;
|
|
if( bindex < b->_fhrp_index ) b->_fhrp_index--;
|
|
|
|
// Stretched lr1; add it to liveness of intermediate blocks
|
|
Block *b2 = _phc._cfg.get_block_for_node(src_copy);
|
|
while( b != b2 ) {
|
|
b = _phc._cfg.get_block_for_node(b->pred(1));
|
|
_phc._live->live(b)->insert(lr1);
|
|
}
|
|
}
|
|
|
|
// Factored code from copy_copy that computes extra interferences from
|
|
// lengthening a live range by double-coalescing.
|
|
uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
|
|
|
|
assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
|
|
assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
|
|
Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
|
|
Block *b2 = b;
|
|
uint bindex2 = bindex;
|
|
while( 1 ) {
|
|
// Find previous instruction
|
|
bindex2--; // Chain backwards 1 instruction
|
|
while( bindex2 == 0 ) { // At block start, find prior block
|
|
assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
|
|
b2 = _phc._cfg.get_block_for_node(b2->pred(1));
|
|
bindex2 = b2->end_idx()-1;
|
|
}
|
|
// Get prior instruction
|
|
assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
|
|
Node *x = b2->get_node(bindex2);
|
|
if( x == prev_copy ) { // Previous copy in copy chain?
|
|
if( prev_copy == src_copy)// Found end of chain and all interferences
|
|
break; // So break out of loop
|
|
// Else work back one in copy chain
|
|
prev_copy = prev_copy->in(prev_copy->is_Copy());
|
|
} else { // Else collect interferences
|
|
uint lidx = _phc._lrg_map.find(x);
|
|
// Found another def of live-range being stretched?
|
|
if(lidx == lr1) {
|
|
return max_juint;
|
|
}
|
|
if(lidx == lr2) {
|
|
return max_juint;
|
|
}
|
|
|
|
// If we attempt to coalesce across a bound def
|
|
if( lrgs(lidx).is_bound() ) {
|
|
// Do not let the coalesced LRG expect to get the bound color
|
|
rm.SUBTRACT( lrgs(lidx).mask() );
|
|
// Recompute rm_size
|
|
rm_size = rm.Size();
|
|
//if( rm._flags ) rm_size += 1000000;
|
|
if( reg_degree >= rm_size ) return max_juint;
|
|
}
|
|
if( rm.overlap(lrgs(lidx).mask()) ) {
|
|
// Insert lidx into union LRG; returns TRUE if actually inserted
|
|
if( _ulr.insert(lidx) ) {
|
|
// Infinite-stack neighbors do not alter colorability, as they
|
|
// can always color to some other color.
|
|
if( !lrgs(lidx).mask().is_AllStack() ) {
|
|
// If this coalesce will make any new neighbor uncolorable,
|
|
// do not coalesce.
|
|
if( lrgs(lidx).just_lo_degree() )
|
|
return max_juint;
|
|
// Bump our degree
|
|
if( ++reg_degree >= rm_size )
|
|
return max_juint;
|
|
} // End of if not infinite-stack neighbor
|
|
} // End of if actually inserted
|
|
} // End of if live range overlaps
|
|
} // End of else collect interferences for 1 node
|
|
} // End of while forever, scan back for interferences
|
|
return reg_degree;
|
|
}
|
|
|
|
void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
|
|
// Some original neighbors of lr1 might have gone away
|
|
// because the constrained register mask prevented them.
|
|
// Remove lr1 from such neighbors.
|
|
IndexSetIterator one(n_lr1);
|
|
uint neighbor;
|
|
LRG &lrg1 = lrgs(lr1);
|
|
while ((neighbor = one.next()) != 0)
|
|
if( !_ulr.member(neighbor) )
|
|
if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
|
|
lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
|
|
|
|
|
|
// lr2 is now called (coalesced into) lr1.
|
|
// Remove lr2 from the IFG.
|
|
IndexSetIterator two(n_lr2);
|
|
LRG &lrg2 = lrgs(lr2);
|
|
while ((neighbor = two.next()) != 0)
|
|
if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
|
|
lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
|
|
|
|
// Some neighbors of intermediate copies now interfere with the
|
|
// combined live range.
|
|
IndexSetIterator three(&_ulr);
|
|
while ((neighbor = three.next()) != 0)
|
|
if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
|
|
lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
|
|
}
|
|
|
|
static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
|
|
// Tag copy bias here
|
|
if( !ifg->lrgs(lr1)._copy_bias )
|
|
ifg->lrgs(lr1)._copy_bias = lr2;
|
|
if( !ifg->lrgs(lr2)._copy_bias )
|
|
ifg->lrgs(lr2)._copy_bias = lr1;
|
|
}
|
|
|
|
// See if I can coalesce a series of multiple copies together. I need the
|
|
// final dest copy and the original src copy. They can be the same Node.
|
|
// Compute the compatible register masks.
|
|
bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
|
|
|
|
if (!dst_copy->is_SpillCopy()) {
|
|
return false;
|
|
}
|
|
if (!src_copy->is_SpillCopy()) {
|
|
return false;
|
|
}
|
|
Node *src_def = src_copy->in(src_copy->is_Copy());
|
|
uint lr1 = _phc._lrg_map.find(dst_copy);
|
|
uint lr2 = _phc._lrg_map.find(src_def);
|
|
|
|
// Same live ranges already?
|
|
if (lr1 == lr2) {
|
|
return false;
|
|
}
|
|
|
|
// Interfere?
|
|
if (_phc._ifg->test_edge_sq(lr1, lr2)) {
|
|
return false;
|
|
}
|
|
|
|
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
|
|
if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
|
|
return false;
|
|
}
|
|
|
|
// Coalescing between an aligned live range and a mis-aligned live range?
|
|
// No, no! Alignment changes how we count degree.
|
|
if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
|
|
return false;
|
|
}
|
|
|
|
// Sort; use smaller live-range number
|
|
Node *lr1_node = dst_copy;
|
|
Node *lr2_node = src_def;
|
|
if (lr1 > lr2) {
|
|
uint tmp = lr1; lr1 = lr2; lr2 = tmp;
|
|
lr1_node = src_def; lr2_node = dst_copy;
|
|
}
|
|
|
|
// Check for compatibility of the 2 live ranges by
|
|
// intersecting their allowed register sets.
|
|
RegMask rm = lrgs(lr1).mask();
|
|
rm.AND(lrgs(lr2).mask());
|
|
// Number of bits free
|
|
uint rm_size = rm.Size();
|
|
|
|
if (UseFPUForSpilling && rm.is_AllStack() ) {
|
|
// Don't coalesce when frequency difference is large
|
|
Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
|
|
Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
|
|
if (src_def_b->_freq > 10*dst_b->_freq )
|
|
return false;
|
|
}
|
|
|
|
// If we can use any stack slot, then effective size is infinite
|
|
if( rm.is_AllStack() ) rm_size += 1000000;
|
|
// Incompatible masks, no way to coalesce
|
|
if( rm_size == 0 ) return false;
|
|
|
|
// Another early bail-out test is when we are double-coalescing and the
|
|
// 2 copies are separated by some control flow.
|
|
if( dst_copy != src_copy ) {
|
|
Block *src_b = _phc._cfg.get_block_for_node(src_copy);
|
|
Block *b2 = b;
|
|
while( b2 != src_b ) {
|
|
if( b2->num_preds() > 2 ){// Found merge-point
|
|
_phc._lost_opp_cflow_coalesce++;
|
|
// extra record_bias commented out because Chris believes it is not
|
|
// productive. Since we can record only 1 bias, we want to choose one
|
|
// that stands a chance of working and this one probably does not.
|
|
//record_bias( _phc._lrgs, lr1, lr2 );
|
|
return false; // To hard to find all interferences
|
|
}
|
|
b2 = _phc._cfg.get_block_for_node(b2->pred(1));
|
|
}
|
|
}
|
|
|
|
// Union the two interference sets together into '_ulr'
|
|
uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
|
|
|
|
if( reg_degree >= rm_size ) {
|
|
record_bias( _phc._ifg, lr1, lr2 );
|
|
return false;
|
|
}
|
|
|
|
// Now I need to compute all the interferences between dst_copy and
|
|
// src_copy. I'm not willing visit the entire interference graph, so
|
|
// I limit my search to things in dst_copy's block or in a straight
|
|
// line of previous blocks. I give up at merge points or when I get
|
|
// more interferences than my degree. I can stop when I find src_copy.
|
|
if( dst_copy != src_copy ) {
|
|
reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
|
|
if( reg_degree == max_juint ) {
|
|
record_bias( _phc._ifg, lr1, lr2 );
|
|
return false;
|
|
}
|
|
} // End of if dst_copy & src_copy are different
|
|
|
|
|
|
// ---- THE COMBINED LRG IS COLORABLE ----
|
|
|
|
// YEAH - Now coalesce this copy away
|
|
assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" );
|
|
|
|
IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
|
|
IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
|
|
|
|
// Update the interference graph
|
|
update_ifg(lr1, lr2, n_lr1, n_lr2);
|
|
|
|
_ulr.remove(lr1);
|
|
|
|
// Uncomment the following code to trace Coalescing in great detail.
|
|
//
|
|
//if (false) {
|
|
// tty->cr();
|
|
// tty->print_cr("#######################################");
|
|
// tty->print_cr("union %d and %d", lr1, lr2);
|
|
// n_lr1->dump();
|
|
// n_lr2->dump();
|
|
// tty->print_cr("resulting set is");
|
|
// _ulr.dump();
|
|
//}
|
|
|
|
// Replace n_lr1 with the new combined live range. _ulr will use
|
|
// n_lr1's old memory on the next iteration. n_lr2 is cleared to
|
|
// send its internal memory to the free list.
|
|
_ulr.swap(n_lr1);
|
|
_ulr.clear();
|
|
n_lr2->clear();
|
|
|
|
lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
|
|
lrgs(lr2).set_degree( 0 );
|
|
|
|
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
|
|
// union-find tree
|
|
union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
|
|
// Combine register restrictions
|
|
lrgs(lr1).set_mask(rm);
|
|
lrgs(lr1).compute_set_mask_size();
|
|
lrgs(lr1)._cost += lrgs(lr2)._cost;
|
|
lrgs(lr1)._area += lrgs(lr2)._area;
|
|
|
|
// While its uncommon to successfully coalesce live ranges that started out
|
|
// being not-lo-degree, it can happen. In any case the combined coalesced
|
|
// live range better Simplify nicely.
|
|
lrgs(lr1)._was_lo = 1;
|
|
|
|
// kinda expensive to do all the time
|
|
//tty->print_cr("warning: slow verify happening");
|
|
//_phc._ifg->verify( &_phc );
|
|
return true;
|
|
}
|
|
|
|
// Conservative (but pessimistic) copy coalescing of a single block
|
|
void PhaseConservativeCoalesce::coalesce( Block *b ) {
|
|
// Bail out on infrequent blocks
|
|
if (_phc._cfg.is_uncommon(b)) {
|
|
return;
|
|
}
|
|
// Check this block for copies.
|
|
for( uint i = 1; i<b->end_idx(); i++ ) {
|
|
// Check for actual copies on inputs. Coalesce a copy into its
|
|
// input if use and copy's input are compatible.
|
|
Node *copy1 = b->get_node(i);
|
|
uint idx1 = copy1->is_Copy();
|
|
if( !idx1 ) continue; // Not a copy
|
|
|
|
if( copy_copy(copy1,copy1,b,i) ) {
|
|
i--; // Retry, same location in block
|
|
PhaseChaitin::_conserv_coalesce++; // Collect stats on success
|
|
continue;
|
|
}
|
|
}
|
|
}
|