jdk-24/hotspot/src/share/vm/opto/compile.hpp
Carsten Varming cc10eca0b0 8159720: Failure of C2 compilation with tiered prevents some C1 compilations
If C2 fails to compile a method with tiered compilation, then it should mark the method as not compileable on the C2 tier only.

Reviewed-by: twisti, thartmann
2016-06-20 08:11:22 -04:00

1332 lines
62 KiB
C++

/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_COMPILE_HPP
#define SHARE_VM_OPTO_COMPILE_HPP
#include "asm/codeBuffer.hpp"
#include "ci/compilerInterface.hpp"
#include "code/debugInfoRec.hpp"
#include "code/exceptionHandlerTable.hpp"
#include "compiler/compilerOracle.hpp"
#include "compiler/compileBroker.hpp"
#include "libadt/dict.hpp"
#include "libadt/vectset.hpp"
#include "memory/resourceArea.hpp"
#include "opto/idealGraphPrinter.hpp"
#include "opto/phasetype.hpp"
#include "opto/phase.hpp"
#include "opto/regmask.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/timerTrace.hpp"
#include "runtime/vmThread.hpp"
#include "trace/tracing.hpp"
#include "utilities/ticks.hpp"
class AddPNode;
class Block;
class Bundle;
class C2Compiler;
class CallGenerator;
class CloneMap;
class ConnectionGraph;
class InlineTree;
class Int_Array;
class Matcher;
class MachConstantNode;
class MachConstantBaseNode;
class MachNode;
class MachOper;
class MachSafePointNode;
class Node;
class Node_Array;
class Node_Notes;
class NodeCloneInfo;
class OptoReg;
class PhaseCFG;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseCCP;
class PhaseCCP_DCE;
class RootNode;
class relocInfo;
class Scope;
class StartNode;
class SafePointNode;
class JVMState;
class Type;
class TypeData;
class TypeInt;
class TypePtr;
class TypeOopPtr;
class TypeFunc;
class Unique_Node_List;
class nmethod;
class WarmCallInfo;
class Node_Stack;
struct Final_Reshape_Counts;
typedef unsigned int node_idx_t;
class NodeCloneInfo {
private:
uint64_t _idx_clone_orig;
public:
void set_idx(node_idx_t idx) {
_idx_clone_orig = _idx_clone_orig & CONST64(0xFFFFFFFF00000000) | idx;
}
node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
void set_gen(int generation) {
uint64_t g = (uint64_t)generation << 32;
_idx_clone_orig = _idx_clone_orig & 0xFFFFFFFF | g;
}
int gen() const { return (int)(_idx_clone_orig >> 32); }
void set(uint64_t x) { _idx_clone_orig = x; }
void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
uint64_t get() const { return _idx_clone_orig; }
NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
void dump() const;
};
class CloneMap {
friend class Compile;
private:
bool _debug;
Dict* _dict;
int _clone_idx; // current cloning iteration/generation in loop unroll
public:
void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; }
Dict* dict() const { return _dict; }
void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); }
void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
void remove(node_idx_t key) { _dict->Delete(_2p(key)); }
uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); }
node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); }
int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); }
int gen(const void* k) const { return gen(_2_node_idx_t(k)); }
int max_gen() const;
void clone(Node* old, Node* nnn, int gen);
void verify_insert_and_clone(Node* old, Node* nnn, int gen);
void dump(node_idx_t key) const;
int clone_idx() const { return _clone_idx; }
void set_clone_idx(int x) { _clone_idx = x; }
bool is_debug() const { return _debug; }
void set_debug(bool debug) { _debug = debug; }
static const char* debug_option_name;
bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); }
bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); }
};
//------------------------------Compile----------------------------------------
// This class defines a top-level Compiler invocation.
class Compile : public Phase {
friend class VMStructs;
public:
// Fixed alias indexes. (See also MergeMemNode.)
enum {
AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value)
AliasIdxBot = 2, // pseudo-index, aliases to everything
AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM
};
// Variant of TraceTime(NULL, &_t_accumulator, CITime);
// Integrated with logging. If logging is turned on, and CITimeVerbose is true,
// then brackets are put into the log, with time stamps and node counts.
// (The time collection itself is always conditionalized on CITime.)
class TracePhase : public TraceTime {
private:
Compile* C;
CompileLog* _log;
const char* _phase_name;
bool _dolog;
public:
TracePhase(const char* name, elapsedTimer* accumulator);
~TracePhase();
};
// Information per category of alias (memory slice)
class AliasType {
private:
friend class Compile;
int _index; // unique index, used with MergeMemNode
const TypePtr* _adr_type; // normalized address type
ciField* _field; // relevant instance field, or null if none
const Type* _element; // relevant array element type, or null if none
bool _is_rewritable; // false if the memory is write-once only
int _general_index; // if this is type is an instance, the general
// type that this is an instance of
void Init(int i, const TypePtr* at);
public:
int index() const { return _index; }
const TypePtr* adr_type() const { return _adr_type; }
ciField* field() const { return _field; }
const Type* element() const { return _element; }
bool is_rewritable() const { return _is_rewritable; }
bool is_volatile() const { return (_field ? _field->is_volatile() : false); }
int general_index() const { return (_general_index != 0) ? _general_index : _index; }
void set_rewritable(bool z) { _is_rewritable = z; }
void set_field(ciField* f) {
assert(!_field,"");
_field = f;
if (f->is_final() || f->is_stable()) {
// In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
_is_rewritable = false;
}
}
void set_element(const Type* e) {
assert(_element == NULL, "");
_element = e;
}
BasicType basic_type() const;
void print_on(outputStream* st) PRODUCT_RETURN;
};
enum {
logAliasCacheSize = 6,
AliasCacheSize = (1<<logAliasCacheSize)
};
struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type
enum {
trapHistLength = MethodData::_trap_hist_limit
};
// Constant entry of the constant table.
class Constant {
private:
BasicType _type;
union {
jvalue _value;
Metadata* _metadata;
} _v;
int _offset; // offset of this constant (in bytes) relative to the constant table base.
float _freq;
bool _can_be_reused; // true (default) if the value can be shared with other users.
public:
Constant() : _type(T_ILLEGAL), _offset(-1), _freq(0.0f), _can_be_reused(true) { _v._value.l = 0; }
Constant(BasicType type, jvalue value, float freq = 0.0f, bool can_be_reused = true) :
_type(type),
_offset(-1),
_freq(freq),
_can_be_reused(can_be_reused)
{
assert(type != T_METADATA, "wrong constructor");
_v._value = value;
}
Constant(Metadata* metadata, bool can_be_reused = true) :
_type(T_METADATA),
_offset(-1),
_freq(0.0f),
_can_be_reused(can_be_reused)
{
_v._metadata = metadata;
}
bool operator==(const Constant& other);
BasicType type() const { return _type; }
jlong get_jlong() const { return _v._value.j; }
jfloat get_jfloat() const { return _v._value.f; }
jdouble get_jdouble() const { return _v._value.d; }
jobject get_jobject() const { return _v._value.l; }
Metadata* get_metadata() const { return _v._metadata; }
int offset() const { return _offset; }
void set_offset(int offset) { _offset = offset; }
float freq() const { return _freq; }
void inc_freq(float freq) { _freq += freq; }
bool can_be_reused() const { return _can_be_reused; }
};
// Constant table.
class ConstantTable {
private:
GrowableArray<Constant> _constants; // Constants of this table.
int _size; // Size in bytes the emitted constant table takes (including padding).
int _table_base_offset; // Offset of the table base that gets added to the constant offsets.
int _nof_jump_tables; // Number of jump-tables in this constant table.
static int qsort_comparator(Constant* a, Constant* b);
// We use negative frequencies to keep the order of the
// jump-tables in which they were added. Otherwise we get into
// trouble with relocation.
float next_jump_table_freq() { return -1.0f * (++_nof_jump_tables); }
public:
ConstantTable() :
_size(-1),
_table_base_offset(-1), // We can use -1 here since the constant table is always bigger than 2 bytes (-(size / 2), see MachConstantBaseNode::emit).
_nof_jump_tables(0)
{}
int size() const { assert(_size != -1, "not calculated yet"); return _size; }
int calculate_table_base_offset() const; // AD specific
void set_table_base_offset(int x) { assert(_table_base_offset == -1 || x == _table_base_offset, "can't change"); _table_base_offset = x; }
int table_base_offset() const { assert(_table_base_offset != -1, "not set yet"); return _table_base_offset; }
void emit(CodeBuffer& cb);
// Returns the offset of the last entry (the top) of the constant table.
int top_offset() const { assert(_constants.top().offset() != -1, "not bound yet"); return _constants.top().offset(); }
void calculate_offsets_and_size();
int find_offset(Constant& con) const;
void add(Constant& con);
Constant add(MachConstantNode* n, BasicType type, jvalue value);
Constant add(Metadata* metadata);
Constant add(MachConstantNode* n, MachOper* oper);
Constant add(MachConstantNode* n, jfloat f) {
jvalue value; value.f = f;
return add(n, T_FLOAT, value);
}
Constant add(MachConstantNode* n, jdouble d) {
jvalue value; value.d = d;
return add(n, T_DOUBLE, value);
}
// Jump-table
Constant add_jump_table(MachConstantNode* n);
void fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const;
};
private:
// Fixed parameters to this compilation.
const int _compile_id;
const bool _save_argument_registers; // save/restore arg regs for trampolines
const bool _subsume_loads; // Load can be matched as part of a larger op.
const bool _do_escape_analysis; // Do escape analysis.
const bool _eliminate_boxing; // Do boxing elimination.
ciMethod* _method; // The method being compiled.
int _entry_bci; // entry bci for osr methods.
const TypeFunc* _tf; // My kind of signature
InlineTree* _ilt; // Ditto (temporary).
address _stub_function; // VM entry for stub being compiled, or NULL
const char* _stub_name; // Name of stub or adapter being compiled, or NULL
address _stub_entry_point; // Compile code entry for generated stub, or NULL
// Control of this compilation.
int _num_loop_opts; // Number of iterations for doing loop optimiztions
int _max_inline_size; // Max inline size for this compilation
int _freq_inline_size; // Max hot method inline size for this compilation
int _fixed_slots; // count of frame slots not allocated by the register
// allocator i.e. locks, original deopt pc, etc.
uintx _max_node_limit; // Max unique node count during a single compilation.
// For deopt
int _orig_pc_slot;
int _orig_pc_slot_offset_in_bytes;
int _major_progress; // Count of something big happening
bool _inlining_progress; // progress doing incremental inlining?
bool _inlining_incrementally;// Are we doing incremental inlining (post parse)
bool _has_loops; // True if the method _may_ have some loops
bool _has_split_ifs; // True if the method _may_ have some split-if
bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores.
bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated
bool _has_boxed_value; // True if a boxed object is allocated
bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
int _max_vector_size; // Maximum size of generated vectors
uint _trap_hist[trapHistLength]; // Cumulative traps
bool _trap_can_recompile; // Have we emitted a recompiling trap?
uint _decompile_count; // Cumulative decompilation counts.
bool _do_inlining; // True if we intend to do inlining
bool _do_scheduling; // True if we intend to do scheduling
bool _do_freq_based_layout; // True if we intend to do frequency based block layout
bool _do_count_invocations; // True if we generate code to count invocations
bool _do_method_data_update; // True if we generate code to update MethodData*s
bool _do_vector_loop; // True if allowed to execute loop in parallel iterations
bool _use_cmove; // True if CMove should be used without profitability analysis
bool _age_code; // True if we need to profile code age (decrement the aging counter)
int _AliasLevel; // Locally-adjusted version of AliasLevel flag.
bool _print_assembly; // True if we should dump assembly code for this compilation
bool _print_inlining; // True if we should print inlining for this compilation
bool _print_intrinsics; // True if we should print intrinsics for this compilation
#ifndef PRODUCT
bool _trace_opto_output;
bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
#endif
bool _has_irreducible_loop; // Found irreducible loops
// JSR 292
bool _has_method_handle_invokes; // True if this method has MethodHandle invokes.
RTMState _rtm_state; // State of Restricted Transactional Memory usage
// Compilation environment.
Arena _comp_arena; // Arena with lifetime equivalent to Compile
ciEnv* _env; // CI interface
DirectiveSet* _directive; // Compiler directive
CompileLog* _log; // from CompilerThread
const char* _failure_reason; // for record_failure/failing pattern
GrowableArray<CallGenerator*>* _intrinsics; // List of intrinsics.
GrowableArray<Node*>* _macro_nodes; // List of nodes which need to be expanded before matching.
GrowableArray<Node*>* _predicate_opaqs; // List of Opaque1 nodes for the loop predicates.
GrowableArray<Node*>* _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
GrowableArray<Node*>* _range_check_casts; // List of CastII nodes with a range check dependency
ConnectionGraph* _congraph;
#ifndef PRODUCT
IdealGraphPrinter* _printer;
#endif
// Node management
uint _unique; // Counter for unique Node indices
VectorSet _dead_node_list; // Set of dead nodes
uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N).
// So use this to keep count and make the call O(1).
DEBUG_ONLY( Unique_Node_List* _modified_nodes; ) // List of nodes which inputs were modified
debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode=<idx>
Arena _node_arena; // Arena for new-space Nodes
Arena _old_arena; // Arena for old-space Nodes, lifetime during xform
RootNode* _root; // Unique root of compilation, or NULL after bail-out.
Node* _top; // Unique top node. (Reset by various phases.)
Node* _immutable_memory; // Initial memory state
Node* _recent_alloc_obj;
Node* _recent_alloc_ctl;
// Constant table
ConstantTable _constant_table; // The constant table for this compile.
MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton.
// Blocked array of debugging and profiling information,
// tracked per node.
enum { _log2_node_notes_block_size = 8,
_node_notes_block_size = (1<<_log2_node_notes_block_size)
};
GrowableArray<Node_Notes*>* _node_note_array;
Node_Notes* _default_node_notes; // default notes for new nodes
// After parsing and every bulk phase we hang onto the Root instruction.
// The RootNode instruction is where the whole program begins. It produces
// the initial Control and BOTTOM for everybody else.
// Type management
Arena _Compile_types; // Arena for all types
Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared()
Dict* _type_dict; // Intern table
CloneMap _clone_map; // used for recording history of cloned nodes
void* _type_hwm; // Last allocation (see Type::operator new/delete)
size_t _type_last_size; // Last allocation size (see Type::operator new/delete)
ciMethod* _last_tf_m; // Cache for
const TypeFunc* _last_tf; // TypeFunc::make
AliasType** _alias_types; // List of alias types seen so far.
int _num_alias_types; // Logical length of _alias_types
int _max_alias_types; // Physical length of _alias_types
AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
// Parsing, optimization
PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN
Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN
WarmCallInfo* _warm_calls; // Sorted work-list for heat-based inlining.
GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after
// main parsing has finished.
GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
uint _number_of_mh_late_inlines; // number of method handle late inlining still pending
// Inlining may not happen in parse order which would make
// PrintInlining output confusing. Keep track of PrintInlining
// pieces in order.
class PrintInliningBuffer : public ResourceObj {
private:
CallGenerator* _cg;
stringStream* _ss;
public:
PrintInliningBuffer()
: _cg(NULL) { _ss = new stringStream(); }
stringStream* ss() const { return _ss; }
CallGenerator* cg() const { return _cg; }
void set_cg(CallGenerator* cg) { _cg = cg; }
};
stringStream* _print_inlining_stream;
GrowableArray<PrintInliningBuffer>* _print_inlining_list;
int _print_inlining_idx;
char* _print_inlining_output;
// Only keep nodes in the expensive node list that need to be optimized
void cleanup_expensive_nodes(PhaseIterGVN &igvn);
// Use for sorting expensive nodes to bring similar nodes together
static int cmp_expensive_nodes(Node** n1, Node** n2);
// Expensive nodes list already sorted?
bool expensive_nodes_sorted() const;
// Remove the speculative part of types and clean up the graph
void remove_speculative_types(PhaseIterGVN &igvn);
void* _replay_inline_data; // Pointer to data loaded from file
void print_inlining_init();
void print_inlining_reinit();
void print_inlining_commit();
void print_inlining_push();
PrintInliningBuffer& print_inlining_current();
void log_late_inline_failure(CallGenerator* cg, const char* msg);
public:
outputStream* print_inlining_stream() const {
assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
return _print_inlining_stream;
}
void print_inlining_update(CallGenerator* cg);
void print_inlining_update_delayed(CallGenerator* cg);
void print_inlining_move_to(CallGenerator* cg);
void print_inlining_assert_ready();
void print_inlining_reset();
void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) {
stringStream ss;
CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg);
print_inlining_stream()->print("%s", ss.as_string());
}
#ifndef PRODUCT
IdealGraphPrinter* printer() { return _printer; }
#endif
void log_late_inline(CallGenerator* cg);
void log_inline_id(CallGenerator* cg);
void log_inline_failure(const char* msg);
void* replay_inline_data() const { return _replay_inline_data; }
// Dump inlining replay data to the stream.
void dump_inline_data(outputStream* out);
private:
// Matching, CFG layout, allocation, code generation
PhaseCFG* _cfg; // Results of CFG finding
bool _select_24_bit_instr; // We selected an instruction with a 24-bit result
bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results
int _java_calls; // Number of java calls in the method
int _inner_loops; // Number of inner loops in the method
Matcher* _matcher; // Engine to map ideal to machine instructions
PhaseRegAlloc* _regalloc; // Results of register allocation.
int _frame_slots; // Size of total frame in stack slots
CodeOffsets _code_offsets; // Offsets into the code for various interesting entries
RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout)
Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin
void* _indexSet_free_block_list; // free list of IndexSet bit blocks
int _interpreter_frame_size;
uint _node_bundling_limit;
Bundle* _node_bundling_base; // Information for instruction bundling
// Instruction bits passed off to the VM
int _method_size; // Size of nmethod code segment in bytes
CodeBuffer _code_buffer; // Where the code is assembled
int _first_block_size; // Size of unvalidated entry point code / OSR poison code
ExceptionHandlerTable _handler_table; // Table of native-code exception handlers
ImplicitExceptionTable _inc_table; // Table of implicit null checks in native code
OopMapSet* _oop_map_set; // Table of oop maps (one for each safepoint location)
static int _CompiledZap_count; // counter compared against CompileZap[First/Last]
BufferBlob* _scratch_buffer_blob; // For temporary code buffers.
relocInfo* _scratch_locs_memory; // For temporary code buffers.
int _scratch_const_size; // For temporary code buffers.
bool _in_scratch_emit_size; // true when in scratch_emit_size.
void reshape_address(AddPNode* n);
public:
// Accessors
// The Compile instance currently active in this (compiler) thread.
static Compile* current() {
return (Compile*) ciEnv::current()->compiler_data();
}
// ID for this compilation. Useful for setting breakpoints in the debugger.
int compile_id() const { return _compile_id; }
DirectiveSet* directive() const { return _directive; }
// Does this compilation allow instructions to subsume loads? User
// instructions that subsume a load may result in an unschedulable
// instruction sequence.
bool subsume_loads() const { return _subsume_loads; }
/** Do escape analysis. */
bool do_escape_analysis() const { return _do_escape_analysis; }
/** Do boxing elimination. */
bool eliminate_boxing() const { return _eliminate_boxing; }
/** Do aggressive boxing elimination. */
bool aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; }
bool save_argument_registers() const { return _save_argument_registers; }
// Other fixed compilation parameters.
ciMethod* method() const { return _method; }
int entry_bci() const { return _entry_bci; }
bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; }
bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); }
const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; }
void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; }
InlineTree* ilt() const { return _ilt; }
address stub_function() const { return _stub_function; }
const char* stub_name() const { return _stub_name; }
address stub_entry_point() const { return _stub_entry_point; }
// Control of this compilation.
int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; }
void set_fixed_slots(int n) { _fixed_slots = n; }
int major_progress() const { return _major_progress; }
void set_inlining_progress(bool z) { _inlining_progress = z; }
int inlining_progress() const { return _inlining_progress; }
void set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
int inlining_incrementally() const { return _inlining_incrementally; }
void set_major_progress() { _major_progress++; }
void clear_major_progress() { _major_progress = 0; }
int num_loop_opts() const { return _num_loop_opts; }
void set_num_loop_opts(int n) { _num_loop_opts = n; }
int max_inline_size() const { return _max_inline_size; }
void set_freq_inline_size(int n) { _freq_inline_size = n; }
int freq_inline_size() const { return _freq_inline_size; }
void set_max_inline_size(int n) { _max_inline_size = n; }
bool has_loops() const { return _has_loops; }
void set_has_loops(bool z) { _has_loops = z; }
bool has_split_ifs() const { return _has_split_ifs; }
void set_has_split_ifs(bool z) { _has_split_ifs = z; }
bool has_unsafe_access() const { return _has_unsafe_access; }
void set_has_unsafe_access(bool z) { _has_unsafe_access = z; }
bool has_stringbuilder() const { return _has_stringbuilder; }
void set_has_stringbuilder(bool z) { _has_stringbuilder = z; }
bool has_boxed_value() const { return _has_boxed_value; }
void set_has_boxed_value(bool z) { _has_boxed_value = z; }
bool has_reserved_stack_access() const { return _has_reserved_stack_access; }
void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
int max_vector_size() const { return _max_vector_size; }
void set_max_vector_size(int s) { _max_vector_size = s; }
void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; }
uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
bool trap_can_recompile() const { return _trap_can_recompile; }
void set_trap_can_recompile(bool z) { _trap_can_recompile = z; }
uint decompile_count() const { return _decompile_count; }
void set_decompile_count(uint c) { _decompile_count = c; }
bool allow_range_check_smearing() const;
bool do_inlining() const { return _do_inlining; }
void set_do_inlining(bool z) { _do_inlining = z; }
bool do_scheduling() const { return _do_scheduling; }
void set_do_scheduling(bool z) { _do_scheduling = z; }
bool do_freq_based_layout() const{ return _do_freq_based_layout; }
void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
bool do_count_invocations() const{ return _do_count_invocations; }
void set_do_count_invocations(bool z){ _do_count_invocations = z; }
bool do_method_data_update() const { return _do_method_data_update; }
void set_do_method_data_update(bool z) { _do_method_data_update = z; }
bool do_vector_loop() const { return _do_vector_loop; }
void set_do_vector_loop(bool z) { _do_vector_loop = z; }
bool use_cmove() const { return _use_cmove; }
void set_use_cmove(bool z) { _use_cmove = z; }
bool age_code() const { return _age_code; }
void set_age_code(bool z) { _age_code = z; }
int AliasLevel() const { return _AliasLevel; }
bool print_assembly() const { return _print_assembly; }
void set_print_assembly(bool z) { _print_assembly = z; }
bool print_inlining() const { return _print_inlining; }
void set_print_inlining(bool z) { _print_inlining = z; }
bool print_intrinsics() const { return _print_intrinsics; }
void set_print_intrinsics(bool z) { _print_intrinsics = z; }
RTMState rtm_state() const { return _rtm_state; }
void set_rtm_state(RTMState s) { _rtm_state = s; }
bool use_rtm() const { return (_rtm_state & NoRTM) == 0; }
bool profile_rtm() const { return _rtm_state == ProfileRTM; }
uint max_node_limit() const { return (uint)_max_node_limit; }
void set_max_node_limit(uint n) { _max_node_limit = n; }
// check the CompilerOracle for special behaviours for this compile
bool method_has_option(const char * option) {
return method() != NULL && method()->has_option(option);
}
#ifndef PRODUCT
bool trace_opto_output() const { return _trace_opto_output; }
bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
int _in_dump_cnt; // Required for dumping ir nodes.
#endif
bool has_irreducible_loop() const { return _has_irreducible_loop; }
void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
// JSR 292
bool has_method_handle_invokes() const { return _has_method_handle_invokes; }
void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; }
Ticks _latest_stage_start_counter;
void begin_method() {
#ifndef PRODUCT
if (_printer && _printer->should_print(1)) {
_printer->begin_method();
}
#endif
C->_latest_stage_start_counter.stamp();
}
void print_method(CompilerPhaseType cpt, int level = 1) {
EventCompilerPhase event;
if (event.should_commit()) {
event.set_starttime(C->_latest_stage_start_counter);
event.set_phase((u1) cpt);
event.set_compileID(C->_compile_id);
event.set_phaseLevel(level);
event.commit();
}
#ifndef PRODUCT
if (_printer && _printer->should_print(level)) {
_printer->print_method(CompilerPhaseTypeHelper::to_string(cpt), level);
}
#endif
C->_latest_stage_start_counter.stamp();
}
void end_method(int level = 1) {
EventCompilerPhase event;
if (event.should_commit()) {
event.set_starttime(C->_latest_stage_start_counter);
event.set_phase((u1) PHASE_END);
event.set_compileID(C->_compile_id);
event.set_phaseLevel(level);
event.commit();
}
#ifndef PRODUCT
if (_printer && _printer->should_print(level)) {
_printer->end_method();
}
#endif
}
int macro_count() const { return _macro_nodes->length(); }
int predicate_count() const { return _predicate_opaqs->length();}
int expensive_count() const { return _expensive_nodes->length(); }
Node* macro_node(int idx) const { return _macro_nodes->at(idx); }
Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);}
Node* expensive_node(int idx) const { return _expensive_nodes->at(idx); }
ConnectionGraph* congraph() { return _congraph;}
void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;}
void add_macro_node(Node * n) {
//assert(n->is_macro(), "must be a macro node");
assert(!_macro_nodes->contains(n), "duplicate entry in expand list");
_macro_nodes->append(n);
}
void remove_macro_node(Node * n) {
// this function may be called twice for a node so check
// that the node is in the array before attempting to remove it
if (_macro_nodes->contains(n))
_macro_nodes->remove(n);
// remove from _predicate_opaqs list also if it is there
if (predicate_count() > 0 && _predicate_opaqs->contains(n)){
_predicate_opaqs->remove(n);
}
}
void add_expensive_node(Node * n);
void remove_expensive_node(Node * n) {
if (_expensive_nodes->contains(n)) {
_expensive_nodes->remove(n);
}
}
void add_predicate_opaq(Node * n) {
assert(!_predicate_opaqs->contains(n), "duplicate entry in predicate opaque1");
assert(_macro_nodes->contains(n), "should have already been in macro list");
_predicate_opaqs->append(n);
}
// Range check dependent CastII nodes that can be removed after loop optimizations
void add_range_check_cast(Node* n);
void remove_range_check_cast(Node* n) {
if (_range_check_casts->contains(n)) {
_range_check_casts->remove(n);
}
}
Node* range_check_cast_node(int idx) const { return _range_check_casts->at(idx); }
int range_check_cast_count() const { return _range_check_casts->length(); }
// Remove all range check dependent CastIINodes.
void remove_range_check_casts(PhaseIterGVN &igvn);
// remove the opaque nodes that protect the predicates so that the unused checks and
// uncommon traps will be eliminated from the graph.
void cleanup_loop_predicates(PhaseIterGVN &igvn);
bool is_predicate_opaq(Node * n) {
return _predicate_opaqs->contains(n);
}
// Are there candidate expensive nodes for optimization?
bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
// Check whether n1 and n2 are similar
static int cmp_expensive_nodes(Node* n1, Node* n2);
// Sort expensive nodes to locate similar expensive nodes
void sort_expensive_nodes();
// Compilation environment.
Arena* comp_arena() { return &_comp_arena; }
ciEnv* env() const { return _env; }
CompileLog* log() const { return _log; }
bool failing() const { return _env->failing() || _failure_reason != NULL; }
const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; }
bool failure_reason_is(const char* r) const {
return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0);
}
void record_failure(const char* reason);
void record_method_not_compilable(const char* reason) {
// Bailouts cover "all_tiers" when TieredCompilation is off.
env()->record_method_not_compilable(reason, !TieredCompilation);
// Record failure reason.
record_failure(reason);
}
bool check_node_count(uint margin, const char* reason) {
if (live_nodes() + margin > max_node_limit()) {
record_method_not_compilable(reason);
return true;
} else {
return false;
}
}
// Node management
uint unique() const { return _unique; }
uint next_unique() { return _unique++; }
void set_unique(uint i) { _unique = i; }
static int debug_idx() { return debug_only(_debug_idx)+0; }
static void set_debug_idx(int i) { debug_only(_debug_idx = i); }
Arena* node_arena() { return &_node_arena; }
Arena* old_arena() { return &_old_arena; }
RootNode* root() const { return _root; }
void set_root(RootNode* r) { _root = r; }
StartNode* start() const; // (Derived from root.)
void init_start(StartNode* s);
Node* immutable_memory();
Node* recent_alloc_ctl() const { return _recent_alloc_ctl; }
Node* recent_alloc_obj() const { return _recent_alloc_obj; }
void set_recent_alloc(Node* ctl, Node* obj) {
_recent_alloc_ctl = ctl;
_recent_alloc_obj = obj;
}
void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return;
_dead_node_count++;
}
bool is_dead_node(uint idx) { return _dead_node_list.test(idx) != 0; }
uint dead_node_count() { return _dead_node_count; }
void reset_dead_node_list() { _dead_node_list.Reset();
_dead_node_count = 0;
}
uint live_nodes() const {
int val = _unique - _dead_node_count;
assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
return (uint) val;
}
#ifdef ASSERT
uint count_live_nodes_by_graph_walk();
void print_missing_nodes();
#endif
// Record modified nodes to check that they are put on IGVN worklist
void record_modified_node(Node* n) NOT_DEBUG_RETURN;
void remove_modified_node(Node* n) NOT_DEBUG_RETURN;
DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } )
// Constant table
ConstantTable& constant_table() { return _constant_table; }
MachConstantBaseNode* mach_constant_base_node();
bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; }
// Generated by adlc, true if CallNode requires MachConstantBase.
bool needs_clone_jvms();
// Handy undefined Node
Node* top() const { return _top; }
// these are used by guys who need to know about creation and transformation of top:
Node* cached_top_node() { return _top; }
void set_cached_top_node(Node* tn);
GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
Node_Notes* default_node_notes() const { return _default_node_notes; }
void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
Node_Notes* node_notes_at(int idx) {
return locate_node_notes(_node_note_array, idx, false);
}
inline bool set_node_notes_at(int idx, Node_Notes* value);
// Copy notes from source to dest, if they exist.
// Overwrite dest only if source provides something.
// Return true if information was moved.
bool copy_node_notes_to(Node* dest, Node* source);
// Workhorse function to sort out the blocked Node_Notes array:
inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
int idx, bool can_grow = false);
void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
// Type management
Arena* type_arena() { return _type_arena; }
Dict* type_dict() { return _type_dict; }
void* type_hwm() { return _type_hwm; }
size_t type_last_size() { return _type_last_size; }
int num_alias_types() { return _num_alias_types; }
void init_type_arena() { _type_arena = &_Compile_types; }
void set_type_arena(Arena* a) { _type_arena = a; }
void set_type_dict(Dict* d) { _type_dict = d; }
void set_type_hwm(void* p) { _type_hwm = p; }
void set_type_last_size(size_t sz) { _type_last_size = sz; }
const TypeFunc* last_tf(ciMethod* m) {
return (m == _last_tf_m) ? _last_tf : NULL;
}
void set_last_tf(ciMethod* m, const TypeFunc* tf) {
assert(m != NULL || tf == NULL, "");
_last_tf_m = m;
_last_tf = tf;
}
AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); }
bool have_alias_type(const TypePtr* adr_type);
AliasType* alias_type(ciField* field);
int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); }
const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); }
int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); }
// Building nodes
void rethrow_exceptions(JVMState* jvms);
void return_values(JVMState* jvms);
JVMState* build_start_state(StartNode* start, const TypeFunc* tf);
// Decide how to build a call.
// The profile factor is a discount to apply to this site's interp. profile.
CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL,
bool allow_intrinsics = true, bool delayed_forbidden = false);
bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
return should_delay_string_inlining(call_method, jvms) ||
should_delay_boxing_inlining(call_method, jvms);
}
bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
// Helper functions to identify inlining potential at call-site
ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
ciKlass* holder, ciMethod* callee,
const TypeOopPtr* receiver_type, bool is_virtual,
bool &call_does_dispatch, int &vtable_index,
bool check_access = true);
ciMethod* optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
ciMethod* callee, const TypeOopPtr* receiver_type,
bool check_access = true);
// Report if there were too many traps at a current method and bci.
// Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
// If there is no MDO at all, report no trap unless told to assume it.
bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
// This version, unspecific to a particular bci, asks if
// PerMethodTrapLimit was exceeded for all inlined methods seen so far.
bool too_many_traps(Deoptimization::DeoptReason reason,
// Privately used parameter for logging:
ciMethodData* logmd = NULL);
// Report if there were too many recompiles at a method and bci.
bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
// Return a bitset with the reasons where deoptimization is allowed,
// i.e., where there were not too many uncommon traps.
int _allowed_reasons;
int allowed_deopt_reasons() { return _allowed_reasons; }
void set_allowed_deopt_reasons();
// Parsing, optimization
PhaseGVN* initial_gvn() { return _initial_gvn; }
Unique_Node_List* for_igvn() { return _for_igvn; }
inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List.
void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; }
void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; }
// Replace n by nn using initial_gvn, calling hash_delete and
// record_for_igvn as needed.
void gvn_replace_by(Node* n, Node* nn);
void identify_useful_nodes(Unique_Node_List &useful);
void update_dead_node_list(Unique_Node_List &useful);
void remove_useless_nodes (Unique_Node_List &useful);
WarmCallInfo* warm_calls() const { return _warm_calls; }
void set_warm_calls(WarmCallInfo* l) { _warm_calls = l; }
WarmCallInfo* pop_warm_call();
// Record this CallGenerator for inlining at the end of parsing.
void add_late_inline(CallGenerator* cg) {
_late_inlines.insert_before(_late_inlines_pos, cg);
_late_inlines_pos++;
}
void prepend_late_inline(CallGenerator* cg) {
_late_inlines.insert_before(0, cg);
}
void add_string_late_inline(CallGenerator* cg) {
_string_late_inlines.push(cg);
}
void add_boxing_late_inline(CallGenerator* cg) {
_boxing_late_inlines.push(cg);
}
void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
void process_print_inlining();
void dump_print_inlining();
bool over_inlining_cutoff() const {
if (!inlining_incrementally()) {
return unique() > (uint)NodeCountInliningCutoff;
} else {
return live_nodes() > (uint)LiveNodeCountInliningCutoff;
}
}
void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; }
void inline_incrementally_one(PhaseIterGVN& igvn);
void inline_incrementally(PhaseIterGVN& igvn);
void inline_string_calls(bool parse_time);
void inline_boxing_calls(PhaseIterGVN& igvn);
// Matching, CFG layout, allocation, code generation
PhaseCFG* cfg() { return _cfg; }
bool select_24_bit_instr() const { return _select_24_bit_instr; }
bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; }
bool has_java_calls() const { return _java_calls > 0; }
int java_calls() const { return _java_calls; }
int inner_loops() const { return _inner_loops; }
Matcher* matcher() { return _matcher; }
PhaseRegAlloc* regalloc() { return _regalloc; }
int frame_slots() const { return _frame_slots; }
int frame_size_in_words() const; // frame_slots in units of the polymorphic 'words'
int frame_size_in_bytes() const { return _frame_slots << LogBytesPerInt; }
RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; }
Arena* indexSet_arena() { return _indexSet_arena; }
void* indexSet_free_block_list() { return _indexSet_free_block_list; }
uint node_bundling_limit() { return _node_bundling_limit; }
Bundle* node_bundling_base() { return _node_bundling_base; }
void set_node_bundling_limit(uint n) { _node_bundling_limit = n; }
void set_node_bundling_base(Bundle* b) { _node_bundling_base = b; }
bool starts_bundle(const Node *n) const;
bool need_stack_bang(int frame_size_in_bytes) const;
bool need_register_stack_bang() const;
void update_interpreter_frame_size(int size) {
if (_interpreter_frame_size < size) {
_interpreter_frame_size = size;
}
}
int bang_size_in_bytes() const;
void set_matcher(Matcher* m) { _matcher = m; }
//void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; }
void set_indexSet_arena(Arena* a) { _indexSet_arena = a; }
void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; }
// Remember if this compilation changes hardware mode to 24-bit precision
void set_24_bit_selection_and_mode(bool selection, bool mode) {
_select_24_bit_instr = selection;
_in_24_bit_fp_mode = mode;
}
void set_java_calls(int z) { _java_calls = z; }
void set_inner_loops(int z) { _inner_loops = z; }
// Instruction bits passed off to the VM
int code_size() { return _method_size; }
CodeBuffer* code_buffer() { return &_code_buffer; }
int first_block_size() { return _first_block_size; }
void set_frame_complete(int off) { if (!in_scratch_emit_size()) { _code_offsets.set_value(CodeOffsets::Frame_Complete, off); } }
ExceptionHandlerTable* handler_table() { return &_handler_table; }
ImplicitExceptionTable* inc_table() { return &_inc_table; }
OopMapSet* oop_map_set() { return _oop_map_set; }
DebugInformationRecorder* debug_info() { return env()->debug_info(); }
Dependencies* dependencies() { return env()->dependencies(); }
static int CompiledZap_count() { return _CompiledZap_count; }
BufferBlob* scratch_buffer_blob() { return _scratch_buffer_blob; }
void init_scratch_buffer_blob(int const_size);
void clear_scratch_buffer_blob();
void set_scratch_buffer_blob(BufferBlob* b) { _scratch_buffer_blob = b; }
relocInfo* scratch_locs_memory() { return _scratch_locs_memory; }
void set_scratch_locs_memory(relocInfo* b) { _scratch_locs_memory = b; }
// emit to scratch blob, report resulting size
uint scratch_emit_size(const Node* n);
void set_in_scratch_emit_size(bool x) { _in_scratch_emit_size = x; }
bool in_scratch_emit_size() const { return _in_scratch_emit_size; }
enum ScratchBufferBlob {
#if defined(PPC64)
MAX_inst_size = 2048,
#else
MAX_inst_size = 1024,
#endif
MAX_locs_size = 128, // number of relocInfo elements
MAX_const_size = 128,
MAX_stubs_size = 128
};
// Major entry point. Given a Scope, compile the associated method.
// For normal compilations, entry_bci is InvocationEntryBci. For on stack
// replacement, entry_bci indicates the bytecode for which to compile a
// continuation.
Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target,
int entry_bci, bool subsume_loads, bool do_escape_analysis,
bool eliminate_boxing, DirectiveSet* directive);
// Second major entry point. From the TypeFunc signature, generate code
// to pass arguments from the Java calling convention to the C calling
// convention.
Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
address stub_function, const char *stub_name,
int is_fancy_jump, bool pass_tls,
bool save_arg_registers, bool return_pc, DirectiveSet* directive);
// From the TypeFunc signature, generate code to pass arguments
// from Compiled calling convention to Interpreter's calling convention
void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry);
// From the TypeFunc signature, generate code to pass arguments
// from Interpreter's calling convention to Compiler's calling convention
void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf);
// Are we compiling a method?
bool has_method() { return method() != NULL; }
// Maybe print some information about this compile.
void print_compile_messages();
// Final graph reshaping, a post-pass after the regular optimizer is done.
bool final_graph_reshaping();
// returns true if adr is completely contained in the given alias category
bool must_alias(const TypePtr* adr, int alias_idx);
// returns true if adr overlaps with the given alias category
bool can_alias(const TypePtr* adr, int alias_idx);
// Driver for converting compiler's IR into machine code bits
void Output();
// Accessors for node bundling info.
Bundle* node_bundling(const Node *n);
bool valid_bundle_info(const Node *n);
// Schedule and Bundle the instructions
void ScheduleAndBundle();
// Build OopMaps for each GC point
void BuildOopMaps();
// Append debug info for the node "local" at safepoint node "sfpt" to the
// "array", May also consult and add to "objs", which describes the
// scalar-replaced objects.
void FillLocArray( int idx, MachSafePointNode* sfpt,
Node *local, GrowableArray<ScopeValue*> *array,
GrowableArray<ScopeValue*> *objs );
// If "objs" contains an ObjectValue whose id is "id", returns it, else NULL.
static ObjectValue* sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id);
// Requres that "objs" does not contains an ObjectValue whose id matches
// that of "sv. Appends "sv".
static void set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
ObjectValue* sv );
// Process an OopMap Element while emitting nodes
void Process_OopMap_Node(MachNode *mach, int code_offset);
// Initialize code buffer
CodeBuffer* init_buffer(uint* blk_starts);
// Write out basic block data to code buffer
void fill_buffer(CodeBuffer* cb, uint* blk_starts);
// Determine which variable sized branches can be shortened
void shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size);
// Compute the size of first NumberOfLoopInstrToAlign instructions
// at the head of a loop.
void compute_loop_first_inst_sizes();
// Compute the information for the exception tables
void FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels);
// Stack slots that may be unused by the calling convention but must
// otherwise be preserved. On Intel this includes the return address.
// On PowerPC it includes the 4 words holding the old TOC & LR glue.
uint in_preserve_stack_slots();
// "Top of Stack" slots that may be unused by the calling convention but must
// otherwise be preserved.
// On Intel these are not necessary and the value can be zero.
// On Sparc this describes the words reserved for storing a register window
// when an interrupt occurs.
static uint out_preserve_stack_slots();
// Number of outgoing stack slots killed above the out_preserve_stack_slots
// for calls to C. Supports the var-args backing area for register parms.
uint varargs_C_out_slots_killed() const;
// Number of Stack Slots consumed by a synchronization entry
int sync_stack_slots() const;
// Compute the name of old_SP. See <arch>.ad for frame layout.
OptoReg::Name compute_old_SP();
private:
// Phase control:
void Init(int aliaslevel); // Prepare for a single compilation
int Inline_Warm(); // Find more inlining work.
void Finish_Warm(); // Give up on further inlines.
void Optimize(); // Given a graph, optimize it
void Code_Gen(); // Generate code from a graph
// Management of the AliasType table.
void grow_alias_types();
AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
void verify_top(Node*) const PRODUCT_RETURN;
// Intrinsic setup.
void register_library_intrinsics(); // initializer
CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor
int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper
CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn
void register_intrinsic(CallGenerator* cg); // update fn
#ifndef PRODUCT
static juint _intrinsic_hist_count[vmIntrinsics::ID_LIMIT];
static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT];
#endif
// Function calls made by the public function final_graph_reshaping.
// No need to be made public as they are not called elsewhere.
void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc);
void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc );
void eliminate_redundant_card_marks(Node* n);
public:
// Note: Histogram array size is about 1 Kb.
enum { // flag bits:
_intrinsic_worked = 1, // succeeded at least once
_intrinsic_failed = 2, // tried it but it failed
_intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
_intrinsic_virtual = 8, // was seen in the virtual form (rare)
_intrinsic_both = 16 // was seen in the non-virtual form (usual)
};
// Update histogram. Return boolean if this is a first-time occurrence.
static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
bool is_virtual, int flags) PRODUCT_RETURN0;
static void print_intrinsic_statistics() PRODUCT_RETURN;
// Graph verification code
// Walk the node list, verifying that there is a one-to-one
// correspondence between Use-Def edges and Def-Use edges
// The option no_dead_code enables stronger checks that the
// graph is strongly connected from root in both directions.
void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN;
// Verify GC barrier patterns
void verify_barriers() PRODUCT_RETURN;
// End-of-run dumps.
static void print_statistics() PRODUCT_RETURN;
// Dump formatted assembly
void dump_asm(int *pcs = NULL, uint pc_limit = 0) PRODUCT_RETURN;
void dump_pc(int *pcs, int pc_limit, Node *n);
// Verify ADLC assumptions during startup
static void adlc_verification() PRODUCT_RETURN;
// Definitions of pd methods
static void pd_compiler2_init();
// Static parse-time type checking logic for gen_subtype_check:
enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
int static_subtype_check(ciKlass* superk, ciKlass* subk);
static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
// Optional control dependency (for example, on range check)
Node* ctrl = NULL);
// Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl);
// Auxiliary method for randomized fuzzing/stressing
static bool randomized_select(int count);
// supporting clone_map
CloneMap& clone_map();
void set_clone_map(Dict* d);
};
#endif // SHARE_VM_OPTO_COMPILE_HPP