6cb9f920e1
Add interpreter support for conditional card marks on x86 and aarch64 Reviewed-by: tschatzl, aph
1228 lines
46 KiB
C++
1228 lines
46 KiB
C++
/*
|
|
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
|
|
#define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
|
|
|
|
#include "asm/assembler.hpp"
|
|
|
|
// MacroAssembler extends Assembler by frequently used macros.
|
|
//
|
|
// Instructions for which a 'better' code sequence exists depending
|
|
// on arguments should also go in here.
|
|
|
|
class MacroAssembler: public Assembler {
|
|
friend class LIR_Assembler;
|
|
|
|
using Assembler::mov;
|
|
using Assembler::movi;
|
|
|
|
protected:
|
|
|
|
// Support for VM calls
|
|
//
|
|
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
|
|
// may customize this version by overriding it for its purposes (e.g., to save/restore
|
|
// additional registers when doing a VM call).
|
|
#ifdef CC_INTERP
|
|
// c++ interpreter never wants to use interp_masm version of call_VM
|
|
#define VIRTUAL
|
|
#else
|
|
#define VIRTUAL virtual
|
|
#endif
|
|
|
|
VIRTUAL void call_VM_leaf_base(
|
|
address entry_point, // the entry point
|
|
int number_of_arguments, // the number of arguments to pop after the call
|
|
Label *retaddr = NULL
|
|
);
|
|
|
|
VIRTUAL void call_VM_leaf_base(
|
|
address entry_point, // the entry point
|
|
int number_of_arguments, // the number of arguments to pop after the call
|
|
Label &retaddr) {
|
|
call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
|
|
}
|
|
|
|
// This is the base routine called by the different versions of call_VM. The interpreter
|
|
// may customize this version by overriding it for its purposes (e.g., to save/restore
|
|
// additional registers when doing a VM call).
|
|
//
|
|
// If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
|
|
// returns the register which contains the thread upon return. If a thread register has been
|
|
// specified, the return value will correspond to that register. If no last_java_sp is specified
|
|
// (noreg) than rsp will be used instead.
|
|
VIRTUAL void call_VM_base( // returns the register containing the thread upon return
|
|
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
|
|
Register java_thread, // the thread if computed before ; use noreg otherwise
|
|
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
|
|
address entry_point, // the entry point
|
|
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
|
|
bool check_exceptions // whether to check for pending exceptions after return
|
|
);
|
|
|
|
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
|
|
// The implementation is only non-empty for the InterpreterMacroAssembler,
|
|
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
|
|
virtual void check_and_handle_popframe(Register java_thread);
|
|
virtual void check_and_handle_earlyret(Register java_thread);
|
|
|
|
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
|
|
|
|
// Maximum size of class area in Metaspace when compressed
|
|
uint64_t use_XOR_for_compressed_class_base;
|
|
|
|
public:
|
|
MacroAssembler(CodeBuffer* code) : Assembler(code) {
|
|
use_XOR_for_compressed_class_base
|
|
= (operand_valid_for_logical_immediate(false /*is32*/,
|
|
(uint64_t)Universe::narrow_klass_base())
|
|
&& ((uint64_t)Universe::narrow_klass_base()
|
|
> (1u << log2_intptr(CompressedClassSpaceSize))));
|
|
}
|
|
|
|
// Biased locking support
|
|
// lock_reg and obj_reg must be loaded up with the appropriate values.
|
|
// swap_reg is killed.
|
|
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will
|
|
// be killed; if not supplied, push/pop will be used internally to
|
|
// allocate a temporary (inefficient, avoid if possible).
|
|
// Optional slow case is for implementations (interpreter and C1) which branch to
|
|
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
|
|
// Returns offset of first potentially-faulting instruction for null
|
|
// check info (currently consumed only by C1). If
|
|
// swap_reg_contains_mark is true then returns -1 as it is assumed
|
|
// the calling code has already passed any potential faults.
|
|
int biased_locking_enter(Register lock_reg, Register obj_reg,
|
|
Register swap_reg, Register tmp_reg,
|
|
bool swap_reg_contains_mark,
|
|
Label& done, Label* slow_case = NULL,
|
|
BiasedLockingCounters* counters = NULL);
|
|
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
|
|
|
|
|
|
// Helper functions for statistics gathering.
|
|
// Unconditional atomic increment.
|
|
void atomic_incw(Register counter_addr, Register tmp);
|
|
void atomic_incw(Address counter_addr, Register tmp1, Register tmp2) {
|
|
lea(tmp1, counter_addr);
|
|
atomic_incw(tmp1, tmp2);
|
|
}
|
|
// Load Effective Address
|
|
void lea(Register r, const Address &a) {
|
|
InstructionMark im(this);
|
|
code_section()->relocate(inst_mark(), a.rspec());
|
|
a.lea(this, r);
|
|
}
|
|
|
|
void addmw(Address a, Register incr, Register scratch) {
|
|
ldrw(scratch, a);
|
|
addw(scratch, scratch, incr);
|
|
strw(scratch, a);
|
|
}
|
|
|
|
// Add constant to memory word
|
|
void addmw(Address a, int imm, Register scratch) {
|
|
ldrw(scratch, a);
|
|
if (imm > 0)
|
|
addw(scratch, scratch, (unsigned)imm);
|
|
else
|
|
subw(scratch, scratch, (unsigned)-imm);
|
|
strw(scratch, a);
|
|
}
|
|
|
|
// Frame creation and destruction shared between JITs.
|
|
void build_frame(int framesize);
|
|
void remove_frame(int framesize);
|
|
|
|
virtual void _call_Unimplemented(address call_site) {
|
|
mov(rscratch2, call_site);
|
|
haltsim();
|
|
}
|
|
|
|
#define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
|
|
|
|
virtual void notify(int type);
|
|
|
|
// aliases defined in AARCH64 spec
|
|
|
|
template<class T>
|
|
inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); }
|
|
inline void cmp(Register Rd, unsigned imm) { subs(zr, Rd, imm); }
|
|
|
|
inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
|
|
inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
|
|
|
|
void cset(Register Rd, Assembler::Condition cond) {
|
|
csinc(Rd, zr, zr, ~cond);
|
|
}
|
|
void csetw(Register Rd, Assembler::Condition cond) {
|
|
csincw(Rd, zr, zr, ~cond);
|
|
}
|
|
|
|
void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
|
|
csneg(Rd, Rn, Rn, ~cond);
|
|
}
|
|
void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
|
|
csnegw(Rd, Rn, Rn, ~cond);
|
|
}
|
|
|
|
inline void movw(Register Rd, Register Rn) {
|
|
if (Rd == sp || Rn == sp) {
|
|
addw(Rd, Rn, 0U);
|
|
} else {
|
|
orrw(Rd, zr, Rn);
|
|
}
|
|
}
|
|
inline void mov(Register Rd, Register Rn) {
|
|
assert(Rd != r31_sp && Rn != r31_sp, "should be");
|
|
if (Rd == Rn) {
|
|
} else if (Rd == sp || Rn == sp) {
|
|
add(Rd, Rn, 0U);
|
|
} else {
|
|
orr(Rd, zr, Rn);
|
|
}
|
|
}
|
|
|
|
inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
|
|
inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
|
|
|
|
inline void tstw(Register Rd, unsigned imm) { andsw(zr, Rd, imm); }
|
|
inline void tst(Register Rd, unsigned imm) { ands(zr, Rd, imm); }
|
|
|
|
inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
|
|
}
|
|
inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
|
|
}
|
|
|
|
inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
bfmw(Rd, Rn, lsb, (lsb + width - 1));
|
|
}
|
|
inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
bfm(Rd, Rn, lsb , (lsb + width - 1));
|
|
}
|
|
|
|
inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
|
|
}
|
|
inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
|
|
}
|
|
|
|
inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
sbfmw(Rd, Rn, lsb, (lsb + width - 1));
|
|
}
|
|
inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
sbfm(Rd, Rn, lsb , (lsb + width - 1));
|
|
}
|
|
|
|
inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
|
|
}
|
|
inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
|
|
}
|
|
|
|
inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
ubfmw(Rd, Rn, lsb, (lsb + width - 1));
|
|
}
|
|
inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
|
|
ubfm(Rd, Rn, lsb , (lsb + width - 1));
|
|
}
|
|
|
|
inline void asrw(Register Rd, Register Rn, unsigned imm) {
|
|
sbfmw(Rd, Rn, imm, 31);
|
|
}
|
|
|
|
inline void asr(Register Rd, Register Rn, unsigned imm) {
|
|
sbfm(Rd, Rn, imm, 63);
|
|
}
|
|
|
|
inline void lslw(Register Rd, Register Rn, unsigned imm) {
|
|
ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
|
|
}
|
|
|
|
inline void lsl(Register Rd, Register Rn, unsigned imm) {
|
|
ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
|
|
}
|
|
|
|
inline void lsrw(Register Rd, Register Rn, unsigned imm) {
|
|
ubfmw(Rd, Rn, imm, 31);
|
|
}
|
|
|
|
inline void lsr(Register Rd, Register Rn, unsigned imm) {
|
|
ubfm(Rd, Rn, imm, 63);
|
|
}
|
|
|
|
inline void rorw(Register Rd, Register Rn, unsigned imm) {
|
|
extrw(Rd, Rn, Rn, imm);
|
|
}
|
|
|
|
inline void ror(Register Rd, Register Rn, unsigned imm) {
|
|
extr(Rd, Rn, Rn, imm);
|
|
}
|
|
|
|
inline void sxtbw(Register Rd, Register Rn) {
|
|
sbfmw(Rd, Rn, 0, 7);
|
|
}
|
|
inline void sxthw(Register Rd, Register Rn) {
|
|
sbfmw(Rd, Rn, 0, 15);
|
|
}
|
|
inline void sxtb(Register Rd, Register Rn) {
|
|
sbfm(Rd, Rn, 0, 7);
|
|
}
|
|
inline void sxth(Register Rd, Register Rn) {
|
|
sbfm(Rd, Rn, 0, 15);
|
|
}
|
|
inline void sxtw(Register Rd, Register Rn) {
|
|
sbfm(Rd, Rn, 0, 31);
|
|
}
|
|
|
|
inline void uxtbw(Register Rd, Register Rn) {
|
|
ubfmw(Rd, Rn, 0, 7);
|
|
}
|
|
inline void uxthw(Register Rd, Register Rn) {
|
|
ubfmw(Rd, Rn, 0, 15);
|
|
}
|
|
inline void uxtb(Register Rd, Register Rn) {
|
|
ubfm(Rd, Rn, 0, 7);
|
|
}
|
|
inline void uxth(Register Rd, Register Rn) {
|
|
ubfm(Rd, Rn, 0, 15);
|
|
}
|
|
inline void uxtw(Register Rd, Register Rn) {
|
|
ubfm(Rd, Rn, 0, 31);
|
|
}
|
|
|
|
inline void cmnw(Register Rn, Register Rm) {
|
|
addsw(zr, Rn, Rm);
|
|
}
|
|
inline void cmn(Register Rn, Register Rm) {
|
|
adds(zr, Rn, Rm);
|
|
}
|
|
|
|
inline void cmpw(Register Rn, Register Rm) {
|
|
subsw(zr, Rn, Rm);
|
|
}
|
|
inline void cmp(Register Rn, Register Rm) {
|
|
subs(zr, Rn, Rm);
|
|
}
|
|
|
|
inline void negw(Register Rd, Register Rn) {
|
|
subw(Rd, zr, Rn);
|
|
}
|
|
|
|
inline void neg(Register Rd, Register Rn) {
|
|
sub(Rd, zr, Rn);
|
|
}
|
|
|
|
inline void negsw(Register Rd, Register Rn) {
|
|
subsw(Rd, zr, Rn);
|
|
}
|
|
|
|
inline void negs(Register Rd, Register Rn) {
|
|
subs(Rd, zr, Rn);
|
|
}
|
|
|
|
inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
|
|
addsw(zr, Rn, Rm, kind, shift);
|
|
}
|
|
inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
|
|
adds(zr, Rn, Rm, kind, shift);
|
|
}
|
|
|
|
inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
|
|
subsw(zr, Rn, Rm, kind, shift);
|
|
}
|
|
inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
|
|
subs(zr, Rn, Rm, kind, shift);
|
|
}
|
|
|
|
inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
|
|
subw(Rd, zr, Rn, kind, shift);
|
|
}
|
|
|
|
inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
|
|
sub(Rd, zr, Rn, kind, shift);
|
|
}
|
|
|
|
inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
|
|
subsw(Rd, zr, Rn, kind, shift);
|
|
}
|
|
|
|
inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
|
|
subs(Rd, zr, Rn, kind, shift);
|
|
}
|
|
|
|
inline void mnegw(Register Rd, Register Rn, Register Rm) {
|
|
msubw(Rd, Rn, Rm, zr);
|
|
}
|
|
inline void mneg(Register Rd, Register Rn, Register Rm) {
|
|
msub(Rd, Rn, Rm, zr);
|
|
}
|
|
|
|
inline void mulw(Register Rd, Register Rn, Register Rm) {
|
|
maddw(Rd, Rn, Rm, zr);
|
|
}
|
|
inline void mul(Register Rd, Register Rn, Register Rm) {
|
|
madd(Rd, Rn, Rm, zr);
|
|
}
|
|
|
|
inline void smnegl(Register Rd, Register Rn, Register Rm) {
|
|
smsubl(Rd, Rn, Rm, zr);
|
|
}
|
|
inline void smull(Register Rd, Register Rn, Register Rm) {
|
|
smaddl(Rd, Rn, Rm, zr);
|
|
}
|
|
|
|
inline void umnegl(Register Rd, Register Rn, Register Rm) {
|
|
umsubl(Rd, Rn, Rm, zr);
|
|
}
|
|
inline void umull(Register Rd, Register Rn, Register Rm) {
|
|
umaddl(Rd, Rn, Rm, zr);
|
|
}
|
|
|
|
#define WRAP(INSN) \
|
|
void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \
|
|
if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_A53MAC) && Ra != zr) \
|
|
nop(); \
|
|
Assembler::INSN(Rd, Rn, Rm, Ra); \
|
|
}
|
|
|
|
WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
|
|
WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
|
|
#undef WRAP
|
|
|
|
|
|
// macro assembly operations needed for aarch64
|
|
|
|
// first two private routines for loading 32 bit or 64 bit constants
|
|
private:
|
|
|
|
void mov_immediate64(Register dst, u_int64_t imm64);
|
|
void mov_immediate32(Register dst, u_int32_t imm32);
|
|
|
|
int push(unsigned int bitset, Register stack);
|
|
int pop(unsigned int bitset, Register stack);
|
|
|
|
void mov(Register dst, Address a);
|
|
|
|
public:
|
|
void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
|
|
void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
|
|
|
|
// now mov instructions for loading absolute addresses and 32 or
|
|
// 64 bit integers
|
|
|
|
inline void mov(Register dst, address addr)
|
|
{
|
|
mov_immediate64(dst, (u_int64_t)addr);
|
|
}
|
|
|
|
inline void mov(Register dst, u_int64_t imm64)
|
|
{
|
|
mov_immediate64(dst, imm64);
|
|
}
|
|
|
|
inline void movw(Register dst, u_int32_t imm32)
|
|
{
|
|
mov_immediate32(dst, imm32);
|
|
}
|
|
|
|
inline void mov(Register dst, long l)
|
|
{
|
|
mov(dst, (u_int64_t)l);
|
|
}
|
|
|
|
inline void mov(Register dst, int i)
|
|
{
|
|
mov(dst, (long)i);
|
|
}
|
|
|
|
void movptr(Register r, uintptr_t imm64);
|
|
|
|
// Macro to mov replicated immediate to vector register.
|
|
// Where imm32 == hex abcdefgh, Vd will get the following values
|
|
// for different arrangements in T
|
|
// T8B: Vd = ghghghghghghghgh
|
|
// T16B: Vd = ghghghghghghghghghghghghghghghgh
|
|
// T4H: Vd = efghefghefghefgh
|
|
// T8H: Vd = efghefghefghefghefghefghefghefgh
|
|
// T2S: Vd = abcdefghabcdefgh
|
|
// T4S: Vd = abcdefghabcdefghabcdefghabcdefgh
|
|
// T1D/T2D: invalid
|
|
void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
|
|
assert(T != T1D && T != T2D, "invalid arrangement");
|
|
u_int32_t nimm32 = ~imm32;
|
|
if (T == T8B || T == T16B) { imm32 &= 0xff; nimm32 &= 0xff; }
|
|
if (T == T4H || T == T8H) { imm32 &= 0xffff; nimm32 &= 0xffff; }
|
|
u_int32_t x = imm32;
|
|
int movi_cnt = 0;
|
|
int movn_cnt = 0;
|
|
while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
|
|
x = nimm32;
|
|
while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
|
|
if (movn_cnt < movi_cnt) imm32 = nimm32;
|
|
unsigned lsl = 0;
|
|
while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
|
|
if (movn_cnt < movi_cnt)
|
|
mvni(Vd, T, imm32 & 0xff, lsl);
|
|
else
|
|
movi(Vd, T, imm32 & 0xff, lsl);
|
|
imm32 >>= 8; lsl += 8;
|
|
while (imm32) {
|
|
while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
|
|
if (movn_cnt < movi_cnt)
|
|
bici(Vd, T, imm32 & 0xff, lsl);
|
|
else
|
|
orri(Vd, T, imm32 & 0xff, lsl);
|
|
lsl += 8; imm32 >>= 8;
|
|
}
|
|
}
|
|
|
|
// macro instructions for accessing and updating floating point
|
|
// status register
|
|
//
|
|
// FPSR : op1 == 011
|
|
// CRn == 0100
|
|
// CRm == 0100
|
|
// op2 == 001
|
|
|
|
inline void get_fpsr(Register reg)
|
|
{
|
|
mrs(0b11, 0b0100, 0b0100, 0b001, reg);
|
|
}
|
|
|
|
inline void set_fpsr(Register reg)
|
|
{
|
|
msr(0b011, 0b0100, 0b0100, 0b001, reg);
|
|
}
|
|
|
|
inline void clear_fpsr()
|
|
{
|
|
msr(0b011, 0b0100, 0b0100, 0b001, zr);
|
|
}
|
|
|
|
// idiv variant which deals with MINLONG as dividend and -1 as divisor
|
|
int corrected_idivl(Register result, Register ra, Register rb,
|
|
bool want_remainder, Register tmp = rscratch1);
|
|
int corrected_idivq(Register result, Register ra, Register rb,
|
|
bool want_remainder, Register tmp = rscratch1);
|
|
|
|
// Support for NULL-checks
|
|
//
|
|
// Generates code that causes a NULL OS exception if the content of reg is NULL.
|
|
// If the accessed location is M[reg + offset] and the offset is known, provide the
|
|
// offset. No explicit code generation is needed if the offset is within a certain
|
|
// range (0 <= offset <= page_size).
|
|
|
|
virtual void null_check(Register reg, int offset = -1);
|
|
static bool needs_explicit_null_check(intptr_t offset);
|
|
|
|
static address target_addr_for_insn(address insn_addr, unsigned insn);
|
|
static address target_addr_for_insn(address insn_addr) {
|
|
unsigned insn = *(unsigned*)insn_addr;
|
|
return target_addr_for_insn(insn_addr, insn);
|
|
}
|
|
|
|
// Required platform-specific helpers for Label::patch_instructions.
|
|
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
|
|
static int pd_patch_instruction_size(address branch, address target);
|
|
static void pd_patch_instruction(address branch, address target) {
|
|
pd_patch_instruction_size(branch, target);
|
|
}
|
|
static address pd_call_destination(address branch) {
|
|
return target_addr_for_insn(branch);
|
|
}
|
|
#ifndef PRODUCT
|
|
static void pd_print_patched_instruction(address branch);
|
|
#endif
|
|
|
|
static int patch_oop(address insn_addr, address o);
|
|
|
|
void emit_trampoline_stub(int insts_call_instruction_offset, address target);
|
|
|
|
// The following 4 methods return the offset of the appropriate move instruction
|
|
|
|
// Support for fast byte/short loading with zero extension (depending on particular CPU)
|
|
int load_unsigned_byte(Register dst, Address src);
|
|
int load_unsigned_short(Register dst, Address src);
|
|
|
|
// Support for fast byte/short loading with sign extension (depending on particular CPU)
|
|
int load_signed_byte(Register dst, Address src);
|
|
int load_signed_short(Register dst, Address src);
|
|
|
|
int load_signed_byte32(Register dst, Address src);
|
|
int load_signed_short32(Register dst, Address src);
|
|
|
|
// Support for sign-extension (hi:lo = extend_sign(lo))
|
|
void extend_sign(Register hi, Register lo);
|
|
|
|
// Load and store values by size and signed-ness
|
|
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
|
|
void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
|
|
|
|
// Support for inc/dec with optimal instruction selection depending on value
|
|
|
|
// x86_64 aliases an unqualified register/address increment and
|
|
// decrement to call incrementq and decrementq but also supports
|
|
// explicitly sized calls to incrementq/decrementq or
|
|
// incrementl/decrementl
|
|
|
|
// for aarch64 the proper convention would be to use
|
|
// increment/decrement for 64 bit operatons and
|
|
// incrementw/decrementw for 32 bit operations. so when porting
|
|
// x86_64 code we can leave calls to increment/decrement as is,
|
|
// replace incrementq/decrementq with increment/decrement and
|
|
// replace incrementl/decrementl with incrementw/decrementw.
|
|
|
|
// n.b. increment/decrement calls with an Address destination will
|
|
// need to use a scratch register to load the value to be
|
|
// incremented. increment/decrement calls which add or subtract a
|
|
// constant value greater than 2^12 will need to use a 2nd scratch
|
|
// register to hold the constant. so, a register increment/decrement
|
|
// may trash rscratch2 and an address increment/decrement trash
|
|
// rscratch and rscratch2
|
|
|
|
void decrementw(Address dst, int value = 1);
|
|
void decrementw(Register reg, int value = 1);
|
|
|
|
void decrement(Register reg, int value = 1);
|
|
void decrement(Address dst, int value = 1);
|
|
|
|
void incrementw(Address dst, int value = 1);
|
|
void incrementw(Register reg, int value = 1);
|
|
|
|
void increment(Register reg, int value = 1);
|
|
void increment(Address dst, int value = 1);
|
|
|
|
|
|
// Alignment
|
|
void align(int modulus);
|
|
|
|
// Stack frame creation/removal
|
|
void enter()
|
|
{
|
|
stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
|
|
mov(rfp, sp);
|
|
}
|
|
void leave()
|
|
{
|
|
mov(sp, rfp);
|
|
ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
|
|
}
|
|
|
|
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
|
|
// The pointer will be loaded into the thread register.
|
|
void get_thread(Register thread);
|
|
|
|
|
|
// Support for VM calls
|
|
//
|
|
// It is imperative that all calls into the VM are handled via the call_VM macros.
|
|
// They make sure that the stack linkage is setup correctly. call_VM's correspond
|
|
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
|
|
|
|
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions = true);
|
|
|
|
// Overloadings with last_Java_sp
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
int number_of_arguments = 0,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, bool
|
|
check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions = true);
|
|
|
|
void get_vm_result (Register oop_result, Register thread);
|
|
void get_vm_result_2(Register metadata_result, Register thread);
|
|
|
|
// These always tightly bind to MacroAssembler::call_VM_base
|
|
// bypassing the virtual implementation
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
|
|
|
|
void call_VM_leaf(address entry_point,
|
|
int number_of_arguments = 0);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1, Register arg_2);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3);
|
|
|
|
// These always tightly bind to MacroAssembler::call_VM_leaf_base
|
|
// bypassing the virtual implementation
|
|
void super_call_VM_leaf(address entry_point);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
|
|
|
|
// last Java Frame (fills frame anchor)
|
|
void set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
address last_java_pc,
|
|
Register scratch);
|
|
|
|
void set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
Label &last_java_pc,
|
|
Register scratch);
|
|
|
|
void set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
Register last_java_pc,
|
|
Register scratch);
|
|
|
|
void reset_last_Java_frame(Register thread, bool clearfp, bool clear_pc);
|
|
|
|
// thread in the default location (r15_thread on 64bit)
|
|
void reset_last_Java_frame(bool clear_fp, bool clear_pc);
|
|
|
|
// Stores
|
|
void store_check(Register obj); // store check for obj - register is destroyed afterwards
|
|
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
|
|
void g1_write_barrier_pre(Register obj,
|
|
Register pre_val,
|
|
Register thread,
|
|
Register tmp,
|
|
bool tosca_live,
|
|
bool expand_call);
|
|
|
|
void g1_write_barrier_post(Register store_addr,
|
|
Register new_val,
|
|
Register thread,
|
|
Register tmp,
|
|
Register tmp2);
|
|
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
// oop manipulations
|
|
void load_klass(Register dst, Register src);
|
|
void store_klass(Register dst, Register src);
|
|
void cmp_klass(Register oop, Register trial_klass, Register tmp);
|
|
|
|
void load_heap_oop(Register dst, Address src);
|
|
|
|
void load_heap_oop_not_null(Register dst, Address src);
|
|
void store_heap_oop(Address dst, Register src);
|
|
|
|
// currently unimplemented
|
|
// Used for storing NULL. All other oop constants should be
|
|
// stored using routines that take a jobject.
|
|
void store_heap_oop_null(Address dst);
|
|
|
|
void load_prototype_header(Register dst, Register src);
|
|
|
|
void store_klass_gap(Register dst, Register src);
|
|
|
|
// This dummy is to prevent a call to store_heap_oop from
|
|
// converting a zero (like NULL) into a Register by giving
|
|
// the compiler two choices it can't resolve
|
|
|
|
void store_heap_oop(Address dst, void* dummy);
|
|
|
|
void encode_heap_oop(Register d, Register s);
|
|
void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
|
|
void decode_heap_oop(Register d, Register s);
|
|
void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
|
|
void encode_heap_oop_not_null(Register r);
|
|
void decode_heap_oop_not_null(Register r);
|
|
void encode_heap_oop_not_null(Register dst, Register src);
|
|
void decode_heap_oop_not_null(Register dst, Register src);
|
|
|
|
void set_narrow_oop(Register dst, jobject obj);
|
|
|
|
void encode_klass_not_null(Register r);
|
|
void decode_klass_not_null(Register r);
|
|
void encode_klass_not_null(Register dst, Register src);
|
|
void decode_klass_not_null(Register dst, Register src);
|
|
|
|
void set_narrow_klass(Register dst, Klass* k);
|
|
|
|
// if heap base register is used - reinit it with the correct value
|
|
void reinit_heapbase();
|
|
|
|
DEBUG_ONLY(void verify_heapbase(const char* msg);)
|
|
|
|
void push_CPU_state();
|
|
void pop_CPU_state() ;
|
|
|
|
// Round up to a power of two
|
|
void round_to(Register reg, int modulus);
|
|
|
|
// allocation
|
|
void eden_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
);
|
|
void tlab_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Register t2, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
);
|
|
Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
|
|
void verify_tlab();
|
|
|
|
void incr_allocated_bytes(Register thread,
|
|
Register var_size_in_bytes, int con_size_in_bytes,
|
|
Register t1 = noreg);
|
|
|
|
// interface method calling
|
|
void lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register scan_temp,
|
|
Label& no_such_interface);
|
|
|
|
// virtual method calling
|
|
// n.b. x86 allows RegisterOrConstant for vtable_index
|
|
void lookup_virtual_method(Register recv_klass,
|
|
RegisterOrConstant vtable_index,
|
|
Register method_result);
|
|
|
|
// Test sub_klass against super_klass, with fast and slow paths.
|
|
|
|
// The fast path produces a tri-state answer: yes / no / maybe-slow.
|
|
// One of the three labels can be NULL, meaning take the fall-through.
|
|
// If super_check_offset is -1, the value is loaded up from super_klass.
|
|
// No registers are killed, except temp_reg.
|
|
void check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
|
|
|
|
// The rest of the type check; must be wired to a corresponding fast path.
|
|
// It does not repeat the fast path logic, so don't use it standalone.
|
|
// The temp_reg and temp2_reg can be noreg, if no temps are available.
|
|
// Updates the sub's secondary super cache as necessary.
|
|
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
|
|
void check_klass_subtype_slow_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
bool set_cond_codes = false);
|
|
|
|
// Simplified, combined version, good for typical uses.
|
|
// Falls through on failure.
|
|
void check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label& L_success);
|
|
|
|
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
|
|
|
|
|
|
// Debugging
|
|
|
|
// only if +VerifyOops
|
|
void verify_oop(Register reg, const char* s = "broken oop");
|
|
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
|
|
|
|
// TODO: verify method and klass metadata (compare against vptr?)
|
|
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
|
|
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
|
|
|
|
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
|
|
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
|
|
|
|
// only if +VerifyFPU
|
|
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
|
|
|
|
// prints msg, dumps registers and stops execution
|
|
void stop(const char* msg);
|
|
|
|
// prints msg and continues
|
|
void warn(const char* msg);
|
|
|
|
static void debug64(char* msg, int64_t pc, int64_t regs[]);
|
|
|
|
void untested() { stop("untested"); }
|
|
|
|
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
|
|
|
|
void should_not_reach_here() { stop("should not reach here"); }
|
|
|
|
// Stack overflow checking
|
|
void bang_stack_with_offset(int offset) {
|
|
// stack grows down, caller passes positive offset
|
|
assert(offset > 0, "must bang with negative offset");
|
|
mov(rscratch2, -offset);
|
|
str(zr, Address(sp, rscratch2));
|
|
}
|
|
|
|
// Writes to stack successive pages until offset reached to check for
|
|
// stack overflow + shadow pages. Also, clobbers tmp
|
|
void bang_stack_size(Register size, Register tmp);
|
|
|
|
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
|
|
Register tmp,
|
|
int offset);
|
|
|
|
// Support for serializing memory accesses between threads
|
|
void serialize_memory(Register thread, Register tmp);
|
|
|
|
// Arithmetics
|
|
|
|
void addptr(Address dst, int32_t src) {
|
|
lea(rscratch2, dst);
|
|
ldr(rscratch1, Address(rscratch2));
|
|
add(rscratch1, rscratch1, src);
|
|
str(rscratch1, Address(rscratch2));
|
|
}
|
|
|
|
void cmpptr(Register src1, Address src2);
|
|
|
|
void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
|
|
Label &suceed, Label *fail);
|
|
|
|
void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
|
|
Label &suceed, Label *fail);
|
|
|
|
void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
|
|
void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
|
|
|
|
void atomic_xchg(Register prev, Register newv, Register addr);
|
|
void atomic_xchgw(Register prev, Register newv, Register addr);
|
|
|
|
void orptr(Address adr, RegisterOrConstant src) {
|
|
ldr(rscratch2, adr);
|
|
if (src.is_register())
|
|
orr(rscratch2, rscratch2, src.as_register());
|
|
else
|
|
orr(rscratch2, rscratch2, src.as_constant());
|
|
str(rscratch2, adr);
|
|
}
|
|
|
|
// Calls
|
|
|
|
void trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
|
|
|
|
static bool far_branches() {
|
|
return ReservedCodeCacheSize > branch_range;
|
|
}
|
|
|
|
// Jumps that can reach anywhere in the code cache.
|
|
// Trashes tmp.
|
|
void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
|
|
void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
|
|
|
|
static int far_branch_size() {
|
|
if (far_branches()) {
|
|
return 3 * 4; // adrp, add, br
|
|
} else {
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
// Emit the CompiledIC call idiom
|
|
void ic_call(address entry);
|
|
|
|
public:
|
|
|
|
// Data
|
|
|
|
void mov_metadata(Register dst, Metadata* obj);
|
|
Address allocate_metadata_address(Metadata* obj);
|
|
Address constant_oop_address(jobject obj);
|
|
|
|
void movoop(Register dst, jobject obj, bool immediate = false);
|
|
|
|
// CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
|
|
void kernel_crc32(Register crc, Register buf, Register len,
|
|
Register table0, Register table1, Register table2, Register table3,
|
|
Register tmp, Register tmp2, Register tmp3);
|
|
|
|
#undef VIRTUAL
|
|
|
|
// Stack push and pop individual 64 bit registers
|
|
void push(Register src);
|
|
void pop(Register dst);
|
|
|
|
// push all registers onto the stack
|
|
void pusha();
|
|
void popa();
|
|
|
|
void repne_scan(Register addr, Register value, Register count,
|
|
Register scratch);
|
|
void repne_scanw(Register addr, Register value, Register count,
|
|
Register scratch);
|
|
|
|
typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
|
|
typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
|
|
|
|
// If a constant does not fit in an immediate field, generate some
|
|
// number of MOV instructions and then perform the operation
|
|
void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
|
|
add_sub_imm_insn insn1,
|
|
add_sub_reg_insn insn2);
|
|
// Seperate vsn which sets the flags
|
|
void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
|
|
add_sub_imm_insn insn1,
|
|
add_sub_reg_insn insn2);
|
|
|
|
#define WRAP(INSN) \
|
|
void INSN(Register Rd, Register Rn, unsigned imm) { \
|
|
wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
|
|
} \
|
|
\
|
|
void INSN(Register Rd, Register Rn, Register Rm, \
|
|
enum shift_kind kind, unsigned shift = 0) { \
|
|
Assembler::INSN(Rd, Rn, Rm, kind, shift); \
|
|
} \
|
|
\
|
|
void INSN(Register Rd, Register Rn, Register Rm) { \
|
|
Assembler::INSN(Rd, Rn, Rm); \
|
|
} \
|
|
\
|
|
void INSN(Register Rd, Register Rn, Register Rm, \
|
|
ext::operation option, int amount = 0) { \
|
|
Assembler::INSN(Rd, Rn, Rm, option, amount); \
|
|
}
|
|
|
|
WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
|
|
|
|
#undef WRAP
|
|
#define WRAP(INSN) \
|
|
void INSN(Register Rd, Register Rn, unsigned imm) { \
|
|
wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
|
|
} \
|
|
\
|
|
void INSN(Register Rd, Register Rn, Register Rm, \
|
|
enum shift_kind kind, unsigned shift = 0) { \
|
|
Assembler::INSN(Rd, Rn, Rm, kind, shift); \
|
|
} \
|
|
\
|
|
void INSN(Register Rd, Register Rn, Register Rm) { \
|
|
Assembler::INSN(Rd, Rn, Rm); \
|
|
} \
|
|
\
|
|
void INSN(Register Rd, Register Rn, Register Rm, \
|
|
ext::operation option, int amount = 0) { \
|
|
Assembler::INSN(Rd, Rn, Rm, option, amount); \
|
|
}
|
|
|
|
WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
|
|
|
|
void add(Register Rd, Register Rn, RegisterOrConstant increment);
|
|
void addw(Register Rd, Register Rn, RegisterOrConstant increment);
|
|
|
|
void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
|
|
|
|
void tableswitch(Register index, jint lowbound, jint highbound,
|
|
Label &jumptable, Label &jumptable_end, int stride = 1) {
|
|
adr(rscratch1, jumptable);
|
|
subsw(rscratch2, index, lowbound);
|
|
subsw(zr, rscratch2, highbound - lowbound);
|
|
br(Assembler::HS, jumptable_end);
|
|
add(rscratch1, rscratch1, rscratch2,
|
|
ext::sxtw, exact_log2(stride * Assembler::instruction_size));
|
|
br(rscratch1);
|
|
}
|
|
|
|
// Form an address from base + offset in Rd. Rd may or may not
|
|
// actually be used: you must use the Address that is returned. It
|
|
// is up to you to ensure that the shift provided matches the size
|
|
// of your data.
|
|
Address form_address(Register Rd, Register base, long byte_offset, int shift);
|
|
|
|
// Prolog generator routines to support switch between x86 code and
|
|
// generated ARM code
|
|
|
|
// routine to generate an x86 prolog for a stub function which
|
|
// bootstraps into the generated ARM code which directly follows the
|
|
// stub
|
|
//
|
|
|
|
public:
|
|
// enum used for aarch64--x86 linkage to define return type of x86 function
|
|
enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
|
|
|
|
#ifdef BUILTIN_SIM
|
|
void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
|
|
#else
|
|
void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
|
|
#endif
|
|
|
|
// special version of call_VM_leaf_base needed for aarch64 simulator
|
|
// where we need to specify both the gp and fp arg counts and the
|
|
// return type so that the linkage routine from aarch64 to x86 and
|
|
// back knows which aarch64 registers to copy to x86 registers and
|
|
// which x86 result register to copy back to an aarch64 register
|
|
|
|
void call_VM_leaf_base1(
|
|
address entry_point, // the entry point
|
|
int number_of_gp_arguments, // the number of gp reg arguments to pass
|
|
int number_of_fp_arguments, // the number of fp reg arguments to pass
|
|
ret_type type, // the return type for the call
|
|
Label* retaddr = NULL
|
|
);
|
|
|
|
void ldr_constant(Register dest, const Address &const_addr) {
|
|
if (NearCpool) {
|
|
ldr(dest, const_addr);
|
|
} else {
|
|
unsigned long offset;
|
|
adrp(dest, InternalAddress(const_addr.target()), offset);
|
|
ldr(dest, Address(dest, offset));
|
|
}
|
|
}
|
|
|
|
address read_polling_page(Register r, address page, relocInfo::relocType rtype);
|
|
address read_polling_page(Register r, relocInfo::relocType rtype);
|
|
|
|
// CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
|
|
void update_byte_crc32(Register crc, Register val, Register table);
|
|
void update_word_crc32(Register crc, Register v, Register tmp,
|
|
Register table0, Register table1, Register table2, Register table3,
|
|
bool upper = false);
|
|
|
|
void string_compare(Register str1, Register str2,
|
|
Register cnt1, Register cnt2, Register result,
|
|
Register tmp1);
|
|
void string_equals(Register str1, Register str2,
|
|
Register cnt, Register result,
|
|
Register tmp1);
|
|
void char_arrays_equals(Register ary1, Register ary2,
|
|
Register result, Register tmp1);
|
|
void encode_iso_array(Register src, Register dst,
|
|
Register len, Register result,
|
|
FloatRegister Vtmp1, FloatRegister Vtmp2,
|
|
FloatRegister Vtmp3, FloatRegister Vtmp4);
|
|
void string_indexof(Register str1, Register str2,
|
|
Register cnt1, Register cnt2,
|
|
Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4,
|
|
int int_cnt1, Register result);
|
|
private:
|
|
void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
|
|
Register src1, Register src2);
|
|
void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
|
|
add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
|
|
}
|
|
void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
|
|
Register y, Register y_idx, Register z,
|
|
Register carry, Register product,
|
|
Register idx, Register kdx);
|
|
void multiply_128_x_128_loop(Register y, Register z,
|
|
Register carry, Register carry2,
|
|
Register idx, Register jdx,
|
|
Register yz_idx1, Register yz_idx2,
|
|
Register tmp, Register tmp3, Register tmp4,
|
|
Register tmp7, Register product_hi);
|
|
public:
|
|
void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
|
|
Register zlen, Register tmp1, Register tmp2, Register tmp3,
|
|
Register tmp4, Register tmp5, Register tmp6, Register tmp7);
|
|
// ISB may be needed because of a safepoint
|
|
void maybe_isb() { isb(); }
|
|
|
|
private:
|
|
// Return the effective address r + (r1 << ext) + offset.
|
|
// Uses rscratch2.
|
|
Address offsetted_address(Register r, Register r1, Address::extend ext,
|
|
int offset, int size);
|
|
};
|
|
|
|
#ifdef ASSERT
|
|
inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
|
|
#endif
|
|
|
|
/**
|
|
* class SkipIfEqual:
|
|
*
|
|
* Instantiating this class will result in assembly code being output that will
|
|
* jump around any code emitted between the creation of the instance and it's
|
|
* automatic destruction at the end of a scope block, depending on the value of
|
|
* the flag passed to the constructor, which will be checked at run-time.
|
|
*/
|
|
class SkipIfEqual {
|
|
private:
|
|
MacroAssembler* _masm;
|
|
Label _label;
|
|
|
|
public:
|
|
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
|
|
~SkipIfEqual();
|
|
};
|
|
|
|
struct tableswitch {
|
|
Register _reg;
|
|
int _insn_index; jint _first_key; jint _last_key;
|
|
Label _after;
|
|
Label _branches;
|
|
};
|
|
|
|
#endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
|