195 lines
7.2 KiB
C++
195 lines
7.2 KiB
C++
/*
|
|
* Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
//------------------------------OptoReg----------------------------------------
|
|
// We eventually need Registers for the Real World. Registers are essentially
|
|
// non-SSA names. A Register is represented as a number. Non-regular values
|
|
// (e.g., Control, Memory, I/O) use the Special register. The actual machine
|
|
// registers (as described in the ADL file for a machine) start at zero.
|
|
// Stack-slots (spill locations) start at the nest Chunk past the last machine
|
|
// register.
|
|
//
|
|
// Note that stack spill-slots are treated as a very large register set.
|
|
// They have all the correct properties for a Register: not aliased (unique
|
|
// named). There is some simple mapping from a stack-slot register number
|
|
// to the actual location on the stack; this mapping depends on the calling
|
|
// conventions and is described in the ADL.
|
|
//
|
|
// Note that Name is not enum. C++ standard defines that the range of enum
|
|
// is the range of smallest bit-field that can represent all enumerators
|
|
// declared in the enum. The result of assigning a value to enum is undefined
|
|
// if the value is outside the enumeration's valid range. OptoReg::Name is
|
|
// typedef'ed as int, because it needs to be able to represent spill-slots.
|
|
//
|
|
class OptoReg VALUE_OBJ_CLASS_SPEC {
|
|
|
|
friend class C2Compiler;
|
|
public:
|
|
typedef int Name;
|
|
enum {
|
|
// Chunk 0
|
|
Physical = AdlcVMDeps::Physical, // Start of physical regs
|
|
// A few oddballs at the edge of the world
|
|
Special = -2, // All special (not allocated) values
|
|
Bad = -1 // Not a register
|
|
};
|
|
|
|
private:
|
|
|
|
static const VMReg opto2vm[REG_COUNT];
|
|
static Name vm2opto[ConcreteRegisterImpl::number_of_registers];
|
|
|
|
public:
|
|
|
|
// Stack pointer register
|
|
static OptoReg::Name c_frame_pointer;
|
|
|
|
|
|
|
|
// Increment a register number. As in:
|
|
// "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..."
|
|
static Name add( Name x, int y ) { return Name(x+y); }
|
|
|
|
// (We would like to have an operator+ for RegName, but it is not
|
|
// a class, so this would be illegal in C++.)
|
|
|
|
static void dump( int );
|
|
|
|
// Get the stack slot number of an OptoReg::Name
|
|
static unsigned int reg2stack( OptoReg::Name r) {
|
|
assert( r >= stack0(), " must be");
|
|
return r - stack0();
|
|
}
|
|
|
|
// convert a stack slot number into an OptoReg::Name
|
|
static OptoReg::Name stack2reg( int idx) {
|
|
return Name(stack0() + idx);
|
|
}
|
|
|
|
static bool is_stack(Name n) {
|
|
return n >= stack0();
|
|
}
|
|
|
|
static bool is_valid(Name n) {
|
|
return (n != Bad);
|
|
}
|
|
|
|
static bool is_reg(Name n) {
|
|
return is_valid(n) && !is_stack(n);
|
|
}
|
|
|
|
static VMReg as_VMReg(OptoReg::Name n) {
|
|
if (is_reg(n)) {
|
|
// Must use table, it'd be nice if Bad was indexable...
|
|
return opto2vm[n];
|
|
} else {
|
|
assert(!is_stack(n), "must un warp");
|
|
return VMRegImpl::Bad();
|
|
}
|
|
}
|
|
|
|
// Can un-warp a stack slot or convert a register or Bad
|
|
static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) {
|
|
if (is_reg(n)) {
|
|
// Must use table, it'd be nice if Bad was indexable...
|
|
return opto2vm[n];
|
|
} else if (is_stack(n)) {
|
|
int stack_slot = reg2stack(n);
|
|
if (stack_slot < arg_count) {
|
|
return VMRegImpl::stack2reg(stack_slot + frame_size);
|
|
}
|
|
return VMRegImpl::stack2reg(stack_slot - arg_count);
|
|
// return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count)));
|
|
} else {
|
|
return VMRegImpl::Bad();
|
|
}
|
|
}
|
|
|
|
static OptoReg::Name as_OptoReg(VMReg r) {
|
|
if (r->is_stack()) {
|
|
assert(false, "must warp");
|
|
return stack2reg(r->reg2stack());
|
|
} else if (r->is_valid()) {
|
|
// Must use table, it'd be nice if Bad was indexable...
|
|
return vm2opto[r->value()];
|
|
} else {
|
|
return Bad;
|
|
}
|
|
}
|
|
|
|
static OptoReg::Name stack0() {
|
|
return VMRegImpl::stack0->value();
|
|
}
|
|
|
|
static const char* regname(OptoReg::Name n) {
|
|
return as_VMReg(n)->name();
|
|
}
|
|
|
|
};
|
|
|
|
//---------------------------OptoRegPair-------------------------------------------
|
|
// Pairs of 32-bit registers for the allocator.
|
|
// This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair
|
|
// via the calling convention code which is shared between the compilers.
|
|
// Since C2 uses OptoRegs for register allocation it is more efficient to use
|
|
// VMRegPair internally for nodes that can contain a pair of OptoRegs rather
|
|
// than use VMRegPair and continually be converting back and forth. So normally
|
|
// C2 will take in a VMRegPair from the calling convention code and immediately
|
|
// convert them to an OptoRegPair and stay in the OptoReg world. The only over
|
|
// conversion between OptoRegs and VMRegs is for debug info and oopMaps. This
|
|
// is not a high bandwidth spot and so it is not an issue.
|
|
// Note that onde other consequence of staying in the OptoReg world with OptoRegPairs
|
|
// is that there are "physical" OptoRegs that are not representable in the VMReg
|
|
// world, notably flags. [ But by design there is "space" in the VMReg world
|
|
// for such registers they just may not be concrete ]. So if we were to use VMRegPair
|
|
// then the VMReg world would have to have a representation for these registers
|
|
// so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it
|
|
// stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad
|
|
// and converting that will return OptoReg::Bad losing the identity of the OptoReg.
|
|
|
|
class OptoRegPair {
|
|
private:
|
|
short _second;
|
|
short _first;
|
|
public:
|
|
void set_bad ( ) { _second = OptoReg::Bad; _first = OptoReg::Bad; }
|
|
void set1 ( OptoReg::Name n ) { _second = OptoReg::Bad; _first = n; }
|
|
void set2 ( OptoReg::Name n ) { _second = n + 1; _first = n; }
|
|
void set_pair( OptoReg::Name second, OptoReg::Name first ) { _second= second; _first= first; }
|
|
void set_ptr ( OptoReg::Name ptr ) {
|
|
#ifdef _LP64
|
|
_second = ptr+1;
|
|
#else
|
|
_second = OptoReg::Bad;
|
|
#endif
|
|
_first = ptr;
|
|
}
|
|
|
|
OptoReg::Name second() const { return _second; }
|
|
OptoReg::Name first() const { return _first; }
|
|
OptoRegPair(OptoReg::Name second, OptoReg::Name first) { _second = second; _first = first; }
|
|
OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; }
|
|
OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; }
|
|
};
|