jdk-24/test/hotspot/jtreg/vmTestbase/nsk/stress/numeric/numeric009.java
Igor Ignatyev 0264b050f6 8243429: use reproducible random in :vmTestbase_nsk_stress
Reviewed-by: epavlova, dholmes
2020-05-01 09:19:55 -07:00

573 lines
21 KiB
Java

/*
* Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @key stress randomness
*
* @summary converted from VM testbase nsk/stress/numeric/numeric009.
* VM testbase keywords: [stress, slow, nonconcurrent, quick]
* VM testbase readme:
* DESCRIPTION
* This test calculates the product A*A for a square matrix A, and checks
* if such product is calculated correctly. Elements of the matrix A are
* initiated with integer numbers, so that A*A must be the same if calculated
* with double, float, long, or int precision. The test just checks, if
* double, float, long, and int variants of the product calculation result
* in the same A*A matrix.
* Calculation of the product A*A is iterated two times, because HotSpot
* releases 1.0 and 1.3 seem to do not adjust JVM for better performance
* in 1st iteration, while 2nd iteration usually runs much faster. I guess,
* that the 1st iteration is probably executed by HotSpot interpreter, and
* HotSpot compiler is probably involved to execute the 2nd iteration. So,
* the test apparently checks accuracy of A*A calculation in both compilation
* and interpretation modes.
* By the way, the test checks JVM performance. The test is treated failed
* due to poor performance, if 1st iteration is essentially slower than the
* 2nd iteration. The calculations algorithm is encoded as rather compact
* 3-levels cycle like:
* for (int line=0; line<N; line++)
* for (int column=0; column<N; column++) {
* float sum = 0;
* for (int k=0; k<N; k++)
* sum += A[line][k] * A[k][column];
* AA[line][column] = sum;
* }
* In this test, N=200, so that A is 200x200 matrix; and multiplication
* A[line][k]*A[k][column] is executed 200**3=8 millions times in each
* iteration of execution of this cycle. I believe, that this is HotSpot
* bug to do not adjust JVM for best performance during such a huge series
* of executions of the rather compact portion of program code.
* COMMENTS
* See the bug-report:
* #4242172 (P3/S5) 2.0: poor performance in matrix calculations
*
* @library /test/lib
* @run main/othervm nsk.stress.numeric.numeric009.numeric009 200 2
*/
package nsk.stress.numeric.numeric009;
import java.io.PrintStream;
import java.util.Random;
import jdk.test.lib.Utils;
/**
* This test calculates the product <code>A<sup>.</sup>A</code> for a square
* matrix <code>A</code>, and checks if such product is calculated correctly.
* Elements of the matrix <code>A</code> are initiated with integer numbers,
* so that <code>A<sup>.</sup>A</code> must be the same if calculated with
* <code>double</code>, <code>float</code>, <code>long</code>, or
* <code>int</code> precision. The test just checks, if <code>double</code>,
* <code>float</code>, <code>long</code>, and <code>int</code> variants of
* the product calculation result in the same <code>A<sup>.</sup>A</code>
* matrix.
* <p>
* <p>Calculation of the product <code>A<sup>.</sup>A</code> is iterated two
* times, because HotSpot releases 1.0 and 1.3 seem to do not adjust JVM for
* better performance in 1<sup>st</sup> iteration, while 2<sup>nd</sup>
* iteration usually runs much faster. I guess, that the 1<sup>st</sup> iteration
* is probably executed by HotSpot interpreter, and HotSpot compiler is probably
* involved to execute the 2<sup>nd</sup> iteration. So, the test apparently
* checks accuracy of <code>A<sup>.</sup>A</code> calculation in both compilation
* and interpretation modes.
* <p>
* <p>By the way, the test checks JVM performance. The test is treated failed
* due to poor performance, if 1<sup>st</sup> iteration is essentially slower
* than the 2<sup>nd</sup> iteration. The calculations algorithm is encoded
* as compact ``canonical'' 3-levels cycle like:
* <pre>
* for (int line=0; line&lt;N; line++)
* for (int column=0; column&lt;N; column++) {
* float sum = 0;
* for (int k=0; k&lt;N; k++)
* sum += A[line][k] * A[k][column];
* AA[line][column] = sum;
* }
* </pre>
* <p>
* In this test, <code>N</code>=200, so that <code>A</code> is 200x200 matrix;
* and multiplication <code>A[line][k]*A[k][column]</code> is executed
* 200<sup>3</sup>=8 millions times in each iteration of execution of this
* cycle. I believe, that this is HotSpot bug to do not adjust JVM for best
* performance during such a huge series of executions of the rather compact
* portion of program code.
* <p>
* <p>See the bug-report:
* <br>&nbsp;&nbsp;
* #4242172 (P3/S5) 2.0: poor performance in matrix calculations
*/
public class numeric009 {
private static final Random RNG = Utils.getRandomInstance();
/**
* When testing performance, 1st iteration is allowed to be 10% slower
* than 2nd iteration (<code>tolerance</code> is assigned to 10 now).
*/
public static double tolerance = 100; // 10;
/**
* Re-assign this value to <code>true</code> for better
* diagnostics.
*
* @see #print(Object)
* @see #println(Object)
*/
private static boolean verbose = false;
/**
* Stream to print execution trace and/or error messages.
* This stream usually equals to <code>System.out</code>
*/
private static PrintStream out = null;
/**
* Print error-message.
*
* @see #out
*/
private static void complain(Object x) {
out.println("# " + x);
}
/**
* Print to execution trace, if mode is <code>verbose</code>.
*
* @see #verbose
* @see #out
*/
private static void print(Object x) {
if (verbose)
out.print(x);
}
/**
* Print line to execution trace, if mode is <code>verbose</code>.
*
* @see #verbose
* @see #out
*/
private static void println(Object x) {
print(x + "\n");
}
/**
* Re-invoke <code>run(args,out)</code> in order to simulate
* JCK-like test interface.
*/
public static void main(String args[]) {
int exitCode = run(args, System.out);
System.exit(exitCode + 95);
// JCK-like exit status
}
/**
* Parse command-line parameters stored in <code>args[]</code> and run
* the test.
* <p>
* <p>Command-line parameters are:
* <br>&nbsp;&nbsp;
* <code>java numeric009 [-verbose] [-performance]
* [-tolerance:<i>percents</i>]
* <i>matrixSize</i> <i>iterations</i></code>
* <p>
* <p>Here:
* <br>&nbsp;&nbsp;<code>-verbose</code> -
* keyword alowing to print execution trace
* <br>&nbsp;&nbsp;<code>-performance</code> -
* keyword turning on performance testing
* <br>&nbsp;&nbsp;<code>-tolerance</code> -
* setup tolerance of performance checking
* <br>&nbsp;&nbsp;<code><i>percents</i></code> -
* 1<sup>st</sup> iteration is allowed to be
* <code><i>percents</i></code>% slower
* <br>&nbsp;&nbsp;<code><i>matrixSize</i></code> -
* number of rows (and columns) in square matrix <code>A</code>
* <br>&nbsp;&nbsp;<code><i>iterations</i></code> -
* how many times to execute the test for stronger checking
*
* @param args strings array containing command-line parameters
* @param out the test log, usually <code>System.out</code>
*/
public static int run(String args[], PrintStream out) {
numeric009.out = out;
boolean testPerformance = false;
int numberOfCPU = 1;
// Parse parameters starting with "-" (like: "-verbose"):
int argsShift = 0;
for (; argsShift < args.length; argsShift++) {
String argument = args[argsShift];
if (!argument.startsWith("-"))
break;
if (argument.equals("-performance")) {
testPerformance = true;
continue;
}
if (argument.equals("-verbose")) {
verbose = true;
continue;
}
if (argument.startsWith("-tolerance:")) {
String percents =
argument.substring("-tolerance:".length(), argument.length());
tolerance = Integer.parseInt(percents);
if ((tolerance < 0) || (tolerance > 100)) {
complain("Tolerance should be 0 to 100%: " + argument);
return 2; // failure
}
continue;
}
complain("Cannot recognize argument: args[" + argsShift + "]: " + argument);
return 2; // failure
}
if (args.length != argsShift + 2) {
complain("Illegal arguments. Execute:");
complain(
" java numeric009 [-verbose] [-performance] " +
"[-tolerance:percents] matrixSize iterations");
return 2; // failure
}
int size = Integer.parseInt(args[argsShift]);
if ((size < 100) || (size > 10000)) {
complain("Matrix size should be 100 to 1000 lines & columns.");
return 2; // failure
}
int iterations = Integer.parseInt(args[argsShift + 1]);
if ((iterations < 1) || (iterations > 100)) {
complain("Iterations number should be 1 to 100.");
return 2; // failure
}
print("Preparing A[" + size + "," + size + "]:");
int[][] intA = newIntegerMatrix(size);
int[][] intAA = new int[size][size];
long[][] longA = newLongMatrix(intA);
long[][] longAA = new long[size][size];
double[][] doubleA = newDoubleMatrix(intA);
double[][] doubleAA = new double[size][size];
float[][] floatA = newFloatMatrix(intA);
float[][] floatAA = new float[size][size];
println(" done.");
println("Should try " + iterations + " iteration(s):");
println("==========================" +
((iterations > 99) ? "==" : (iterations > 9) ? "=" : ""));
println("");
double overallTime = 0;
double firstTime = 0;
double lastTime = 0;
for (int i = 1; i <= iterations; i++) {
double seconds = elapsedTime(i,
intA, intAA, longA, longAA, floatA, floatAA, doubleA, doubleAA);
if (i == 1)
firstTime = seconds;
else
lastTime = seconds;
overallTime += seconds;
print("Checking accuracy:");
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++) {
if (intAA[line][column] != longAA[line][column]) {
println("");
complain("Test failed:");
complain("Integer and Long results differ at:");
complain(" line=" + line + ", column=" + column);
return 2; // FAILED
}
if (intAA[line][column] != floatAA[line][column]) {
println("");
complain("Test failed:");
complain("Integer and Float results differ at:");
complain(" line=" + line + ", column=" + column);
return 2; // FAILED
}
if (intAA[line][column] != doubleAA[line][column]) {
println("");
complain("Test failed:");
complain("Integer and Double results differ at:");
complain(" line=" + line + ", column=" + column);
return 2; // FAILED
}
}
println(" done.");
}
double averageTime = overallTime / iterations / 4;
double averagePerformance = size * size * (size + size) / averageTime / 1e6;
println("");
println("=======================" +
((iterations > 99) ? "==" : (iterations > 9) ? "=" : ""));
println("Overall iteration(s): " + iterations);
println("Overall elapsed time: " + overallTime + " seconds.");
println("Average elapsed time: " + averageTime + " seconds.");
println("Average performance: " + averagePerformance + " MFLOPS");
if (testPerformance) {
print("Checking performance: ");
if (firstTime > lastTime * (1 + tolerance / 100)) {
println("");
complain("Test failed:");
complain("1st iterartion is essentially slower:");
complain("Calculation time elapsed (seconds):");
complain(" 1-st iteration: " + firstTime);
complain(" last iteration: " + lastTime);
complain(" tolerance: " + tolerance + "%");
return 2; // FAILED
}
println("done.");
}
println("Test passed.");
return 0; // PASSED
}
/**
* Return time (in seconds) elapsed for calculation of matrix
* product <code>A*A</code> with <code>int</code>, <code>long</code>,
* <code>float</code>, and <code>double</code> representations.
*/
private static double elapsedTime(int i,
int[][] intA, int[][] intAA,
long[][] longA, long[][] longAA,
float[][] floatA, float[][] floatAA,
double[][] doubleA, double[][] doubleAA) {
int size = intA.length;
if (i > 1)
println("");
println("Iteration #" + i + ":");
print("Computing int, long, float, and double A*A:");
long mark1 = System.currentTimeMillis();
setSquare(intA, intAA);
setSquare(longA, longAA);
setSquare(floatA, floatAA);
setSquare(doubleA, doubleAA);
long mark2 = System.currentTimeMillis();
println(" done.");
double sec = (mark2 - mark1) / 1000.0;
double perf = size * size * (size + size) / (sec / 4);
println("Elapsed time: " + sec + " seconds");
println("Performance: " + perf / 1e6 + " MOPS");
return sec;
}
/**
* Compute <code>A*A</code> for the given square matrix <code>A</code>.
*/
private static void setSquare(int[][] A, int[][] AA) {
if (A.length != A[0].length)
throw new IllegalArgumentException(
"the argument matrix A should be square matrix");
if (AA.length != AA[0].length)
throw new IllegalArgumentException(
"the resulting matrix AA should be square matrix");
if (A.length != AA.length)
throw new IllegalArgumentException(
"the matrices A and AA should have equal size");
int size = A.length;
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++) {
int sum = 0;
for (int k = 0; k < size; k++)
sum += A[line][k] * A[k][line];
AA[line][column] = sum;
}
}
/**
* Compute <code>A*A</code> for the given square matrix <code>A</code>.
*/
private static void setSquare(long[][] A, long[][] AA) {
if (A.length != A[0].length)
throw new IllegalArgumentException(
"the argument matrix A should be square matrix");
if (AA.length != AA[0].length)
throw new IllegalArgumentException(
"the resulting matrix AA should be square matrix");
if (A.length != AA.length)
throw new IllegalArgumentException(
"the matrices A and AA should have equal size");
int size = A.length;
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++) {
long sum = 0;
for (int k = 0; k < size; k++)
sum += A[line][k] * A[k][line];
AA[line][column] = sum;
}
}
/**
* Compute <code>A*A</code> for the given square matrix <code>A</code>.
*/
private static void setSquare(float[][] A, float[][] AA) {
if (A.length != A[0].length)
throw new IllegalArgumentException(
"the argument matrix A should be square matrix");
if (AA.length != AA[0].length)
throw new IllegalArgumentException(
"the resulting matrix AA should be square matrix");
if (A.length != AA.length)
throw new IllegalArgumentException(
"the matrices A and AA should have equal size");
int size = A.length;
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++) {
float sum = 0;
for (int k = 0; k < size; k++)
sum += A[line][k] * A[k][line];
AA[line][column] = sum;
}
}
/**
* Compute <code>A*A</code> for the given square matrix <code>A</code>.
*/
private static void setSquare(double[][] A, double[][] AA) {
if (A.length != A[0].length)
throw new IllegalArgumentException(
"the argument matrix A should be square matrix");
if (AA.length != AA[0].length)
throw new IllegalArgumentException(
"the resulting matrix AA should be square matrix");
if (A.length != AA.length)
throw new IllegalArgumentException(
"the matrices A and AA should have equal size");
int size = A.length;
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++) {
double sum = 0;
for (int k = 0; k < size; k++)
sum += A[line][k] * A[k][line];
AA[line][column] = sum;
}
}
/**
* Generate new square matrix of the given <code>size</code>
* and with elements initiated with random numbers.
*/
private static int[][] newIntegerMatrix(int size) {
if ((size < 1) || (size > 1000))
throw new IllegalArgumentException(
"matrix size should be 1 to 1000");
int[][] A = new int[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
A[line][column] =
Math.round((float) ((1 - 2 * RNG.nextDouble()) * size));
return A;
}
/**
* Generate new square matrix with <code>long</code> elements,
* and initiate them with the same values as in the given matrix
* <code>intA</code>.
*/
private static long[][] newLongMatrix(int[][] intA) {
if (intA.length != intA[0].length)
throw new IllegalArgumentException(
"need square argument matrix");
int size = intA.length;
long[][] longA = new long[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
longA[line][column] = intA[line][column];
return longA;
}
/**
* Generate new square matrix with <code>double</code> elements,
* and initiate them with the same values as in the given matrix
* <code>intA</code>.
*/
private static double[][] newDoubleMatrix(int[][] intA) {
if (intA.length != intA[0].length)
throw new IllegalArgumentException(
"need square argument matrix");
int size = intA.length;
double[][] doubleA = new double[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
doubleA[line][column] = intA[line][column];
return doubleA;
}
/**
* Generate new square matrix with <code>float</code> elements,
* and initiate them with the same values as in the given matrix
* <code>intA</code>.
*/
private static float[][] newFloatMatrix(int[][] intA) {
if (intA.length != intA[0].length)
throw new IllegalArgumentException(
"need square argument matrix");
int size = intA.length;
float[][] floatA = new float[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
floatA[line][column] = intA[line][column];
return floatA;
}
}