jdk-24/src/hotspot/share/gc/shared/genCollectedHeap.hpp
Stefan Karlsson 5012044e63 8205607: Use oop_iterate instead of oop_iterate_no_header
Reviewed-by: pliden, kbarrett
2018-06-26 13:54:19 +02:00

509 lines
19 KiB
C++

/*
* Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
#define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/collectorPolicy.hpp"
#include "gc/shared/generation.hpp"
#include "gc/shared/oopStorageParState.hpp"
#include "gc/shared/softRefGenPolicy.hpp"
class AdaptiveSizePolicy;
class GCPolicyCounters;
class GenerationSpec;
class StrongRootsScope;
class SubTasksDone;
class WorkGang;
// A "GenCollectedHeap" is a CollectedHeap that uses generational
// collection. It has two generations, young and old.
class GenCollectedHeap : public CollectedHeap {
friend class GenCollectorPolicy;
friend class Generation;
friend class DefNewGeneration;
friend class TenuredGeneration;
friend class ConcurrentMarkSweepGeneration;
friend class CMSCollector;
friend class GenMarkSweep;
friend class VM_GenCollectForAllocation;
friend class VM_GenCollectFull;
friend class VM_GenCollectFullConcurrent;
friend class VM_GC_HeapInspection;
friend class VM_HeapDumper;
friend class HeapInspection;
friend class GCCauseSetter;
friend class VMStructs;
public:
friend class VM_PopulateDumpSharedSpace;
enum GenerationType {
YoungGen,
OldGen
};
protected:
Generation* _young_gen;
Generation* _old_gen;
private:
GenerationSpec* _young_gen_spec;
GenerationSpec* _old_gen_spec;
// The singleton CardTable Remembered Set.
CardTableRS* _rem_set;
// The generational collector policy.
GenCollectorPolicy* _gen_policy;
SoftRefGenPolicy _soft_ref_gen_policy;
// The sizing of the heap is controlled by a sizing policy.
AdaptiveSizePolicy* _size_policy;
GCPolicyCounters* _gc_policy_counters;
// Indicates that the most recent previous incremental collection failed.
// The flag is cleared when an action is taken that might clear the
// condition that caused that incremental collection to fail.
bool _incremental_collection_failed;
// In support of ExplicitGCInvokesConcurrent functionality
unsigned int _full_collections_completed;
// Collects the given generation.
void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
bool run_verification, bool clear_soft_refs,
bool restore_marks_for_biased_locking);
// Reserve aligned space for the heap as needed by the contained generations.
char* allocate(size_t alignment, ReservedSpace* heap_rs);
// Initialize ("weak") refs processing support
void ref_processing_init();
protected:
// The set of potentially parallel tasks in root scanning.
enum GCH_strong_roots_tasks {
GCH_PS_Universe_oops_do,
GCH_PS_JNIHandles_oops_do,
GCH_PS_ObjectSynchronizer_oops_do,
GCH_PS_FlatProfiler_oops_do,
GCH_PS_Management_oops_do,
GCH_PS_SystemDictionary_oops_do,
GCH_PS_ClassLoaderDataGraph_oops_do,
GCH_PS_jvmti_oops_do,
GCH_PS_CodeCache_oops_do,
GCH_PS_aot_oops_do,
GCH_PS_younger_gens,
// Leave this one last.
GCH_PS_NumElements
};
// Data structure for claiming the (potentially) parallel tasks in
// (gen-specific) roots processing.
SubTasksDone* _process_strong_tasks;
GCMemoryManager* _young_manager;
GCMemoryManager* _old_manager;
// Helper functions for allocation
HeapWord* attempt_allocation(size_t size,
bool is_tlab,
bool first_only);
// Helper function for two callbacks below.
// Considers collection of the first max_level+1 generations.
void do_collection(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab,
GenerationType max_generation);
// Callback from VM_GenCollectForAllocation operation.
// This function does everything necessary/possible to satisfy an
// allocation request that failed in the youngest generation that should
// have handled it (including collection, expansion, etc.)
HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
// Callback from VM_GenCollectFull operation.
// Perform a full collection of the first max_level+1 generations.
virtual void do_full_collection(bool clear_all_soft_refs);
void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
// Does the "cause" of GC indicate that
// we absolutely __must__ clear soft refs?
bool must_clear_all_soft_refs();
GenCollectedHeap(GenCollectorPolicy *policy,
Generation::Name young,
Generation::Name old,
const char* policy_counters_name);
public:
// Returns JNI_OK on success
virtual jint initialize();
virtual CardTableRS* create_rem_set(const MemRegion& reserved_region);
void initialize_size_policy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size);
// Does operations required after initialization has been done.
void post_initialize();
Generation* young_gen() const { return _young_gen; }
Generation* old_gen() const { return _old_gen; }
bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
GenerationSpec* young_gen_spec() const;
GenerationSpec* old_gen_spec() const;
// The generational collector policy.
GenCollectorPolicy* gen_policy() const { return _gen_policy; }
virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; }
// Adaptive size policy
virtual AdaptiveSizePolicy* size_policy() {
return _size_policy;
}
// Performance Counter support
GCPolicyCounters* counters() { return _gc_policy_counters; }
// Return the (conservative) maximum heap alignment
static size_t conservative_max_heap_alignment() {
return Generation::GenGrain;
}
size_t capacity() const;
size_t used() const;
// Save the "used_region" for both generations.
void save_used_regions();
size_t max_capacity() const;
HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
// We may support a shared contiguous allocation area, if the youngest
// generation does.
bool supports_inline_contig_alloc() const;
HeapWord* volatile* top_addr() const;
HeapWord** end_addr() const;
// Perform a full collection of the heap; intended for use in implementing
// "System.gc". This implies as full a collection as the CollectedHeap
// supports. Caller does not hold the Heap_lock on entry.
virtual void collect(GCCause::Cause cause);
// The same as above but assume that the caller holds the Heap_lock.
void collect_locked(GCCause::Cause cause);
// Perform a full collection of generations up to and including max_generation.
// Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
void collect(GCCause::Cause cause, GenerationType max_generation);
// Returns "TRUE" iff "p" points into the committed areas of the heap.
// The methods is_in(), is_in_closed_subset() and is_in_youngest() may
// be expensive to compute in general, so, to prevent
// their inadvertent use in product jvm's, we restrict their use to
// assertion checking or verification only.
bool is_in(const void* p) const;
// Returns true if the reference is to an object in the reserved space
// for the young generation.
// Assumes the the young gen address range is less than that of the old gen.
bool is_in_young(oop p);
#ifdef ASSERT
bool is_in_partial_collection(const void* p);
#endif
virtual bool is_scavengable(oop obj) {
return is_in_young(obj);
}
// Optimized nmethod scanning support routines
virtual void register_nmethod(nmethod* nm);
virtual void verify_nmethod(nmethod* nmethod);
// Iteration functions.
void oop_iterate(OopIterateClosure* cl);
void object_iterate(ObjectClosure* cl);
void safe_object_iterate(ObjectClosure* cl);
Space* space_containing(const void* addr) const;
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
// each address in the (reserved) heap is a member of exactly
// one block. The defining characteristic of a block is that it is
// possible to find its size, and thus to progress forward to the next
// block. (Blocks may be of different sizes.) Thus, blocks may
// represent Java objects, or they might be free blocks in a
// free-list-based heap (or subheap), as long as the two kinds are
// distinguishable and the size of each is determinable.
// Returns the address of the start of the "block" that contains the
// address "addr". We say "blocks" instead of "object" since some heaps
// may not pack objects densely; a chunk may either be an object or a
// non-object.
virtual HeapWord* block_start(const void* addr) const;
// Requires "addr" to be the start of a chunk, and returns its size.
// "addr + size" is required to be the start of a new chunk, or the end
// of the active area of the heap. Assumes (and verifies in non-product
// builds) that addr is in the allocated part of the heap and is
// the start of a chunk.
virtual size_t block_size(const HeapWord* addr) const;
// Requires "addr" to be the start of a block, and returns "TRUE" iff
// the block is an object. Assumes (and verifies in non-product
// builds) that addr is in the allocated part of the heap and is
// the start of a chunk.
virtual bool block_is_obj(const HeapWord* addr) const;
// Section on TLAB's.
virtual bool supports_tlab_allocation() const;
virtual size_t tlab_capacity(Thread* thr) const;
virtual size_t tlab_used(Thread* thr) const;
virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
virtual HeapWord* allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size);
// The "requestor" generation is performing some garbage collection
// action for which it would be useful to have scratch space. The
// requestor promises to allocate no more than "max_alloc_words" in any
// older generation (via promotion say.) Any blocks of space that can
// be provided are returned as a list of ScratchBlocks, sorted by
// decreasing size.
ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
// Allow each generation to reset any scratch space that it has
// contributed as it needs.
void release_scratch();
// Ensure parsability: override
virtual void ensure_parsability(bool retire_tlabs);
// Time in ms since the longest time a collector ran in
// in any generation.
virtual jlong millis_since_last_gc();
// Total number of full collections completed.
unsigned int total_full_collections_completed() {
assert(_full_collections_completed <= _total_full_collections,
"Can't complete more collections than were started");
return _full_collections_completed;
}
// Update above counter, as appropriate, at the end of a stop-world GC cycle
unsigned int update_full_collections_completed();
// Update above counter, as appropriate, at the end of a concurrent GC cycle
unsigned int update_full_collections_completed(unsigned int count);
// Update "time of last gc" for all generations to "now".
void update_time_of_last_gc(jlong now) {
_young_gen->update_time_of_last_gc(now);
_old_gen->update_time_of_last_gc(now);
}
// Update the gc statistics for each generation.
void update_gc_stats(Generation* current_generation, bool full) {
_old_gen->update_gc_stats(current_generation, full);
}
bool no_gc_in_progress() { return !is_gc_active(); }
// Override.
void prepare_for_verify();
// Override.
void verify(VerifyOption option);
// Override.
virtual void print_on(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
virtual void print_tracing_info() const;
void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
// The functions below are helper functions that a subclass of
// "CollectedHeap" can use in the implementation of its virtual
// functions.
class GenClosure : public StackObj {
public:
virtual void do_generation(Generation* gen) = 0;
};
// Apply "cl.do_generation" to all generations in the heap
// If "old_to_young" determines the order.
void generation_iterate(GenClosure* cl, bool old_to_young);
// Return "true" if all generations have reached the
// maximal committed limit that they can reach, without a garbage
// collection.
virtual bool is_maximal_no_gc() const;
// This function returns the CardTableRS object that allows us to scan
// generations in a fully generational heap.
CardTableRS* rem_set() { return _rem_set; }
// Convenience function to be used in situations where the heap type can be
// asserted to be this type.
static GenCollectedHeap* heap();
// The ScanningOption determines which of the roots
// the closure is applied to:
// "SO_None" does none;
enum ScanningOption {
SO_None = 0x0,
SO_AllCodeCache = 0x8,
SO_ScavengeCodeCache = 0x10
};
protected:
void process_roots(StrongRootsScope* scope,
ScanningOption so,
OopClosure* strong_roots,
CLDClosure* strong_cld_closure,
CLDClosure* weak_cld_closure,
CodeBlobToOopClosure* code_roots);
void process_string_table_roots(StrongRootsScope* scope,
OopClosure* root_closure,
OopStorage::ParState<false, false>* par_state_string);
// Accessor for memory state verification support
NOT_PRODUCT(
virtual size_t skip_header_HeapWords() { return 0; }
)
virtual void gc_prologue(bool full);
virtual void gc_epilogue(bool full);
public:
void young_process_roots(StrongRootsScope* scope,
OopsInGenClosure* root_closure,
OopsInGenClosure* old_gen_closure,
CLDClosure* cld_closure,
OopStorage::ParState<false, false>* par_state_string = NULL);
void full_process_roots(StrongRootsScope* scope,
bool is_adjust_phase,
ScanningOption so,
bool only_strong_roots,
OopsInGenClosure* root_closure,
CLDClosure* cld_closure,
OopStorage::ParState<false, false>* par_state_string = NULL);
// Apply "root_closure" to all the weak roots of the system.
// These include JNI weak roots, string table,
// and referents of reachable weak refs.
void gen_process_weak_roots(OopClosure* root_closure);
// Set the saved marks of generations, if that makes sense.
// In particular, if any generation might iterate over the oops
// in other generations, it should call this method.
void save_marks();
// Returns "true" iff no allocations have occurred since the last
// call to "save_marks".
bool no_allocs_since_save_marks();
// Returns true if an incremental collection is likely to fail.
// We optionally consult the young gen, if asked to do so;
// otherwise we base our answer on whether the previous incremental
// collection attempt failed with no corrective action as of yet.
bool incremental_collection_will_fail(bool consult_young) {
// The first disjunct remembers if an incremental collection failed, even
// when we thought (second disjunct) that it would not.
return incremental_collection_failed() ||
(consult_young && !_young_gen->collection_attempt_is_safe());
}
// If a generation bails out of an incremental collection,
// it sets this flag.
bool incremental_collection_failed() const {
return _incremental_collection_failed;
}
void set_incremental_collection_failed() {
_incremental_collection_failed = true;
}
void clear_incremental_collection_failed() {
_incremental_collection_failed = false;
}
// Promotion of obj into gen failed. Try to promote obj to higher
// gens in ascending order; return the new location of obj if successful.
// Otherwise, try expand-and-allocate for obj in both the young and old
// generation; return the new location of obj if successful. Otherwise, return NULL.
oop handle_failed_promotion(Generation* old_gen,
oop obj,
size_t obj_size);
private:
// Return true if an allocation should be attempted in the older generation
// if it fails in the younger generation. Return false, otherwise.
bool should_try_older_generation_allocation(size_t word_size) const;
// Try to allocate space by expanding the heap.
HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
HeapWord* mem_allocate_work(size_t size,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded);
// Override
void check_for_non_bad_heap_word_value(HeapWord* addr,
size_t size) PRODUCT_RETURN;
#if INCLUDE_SERIALGC
// For use by mark-sweep. As implemented, mark-sweep-compact is global
// in an essential way: compaction is performed across generations, by
// iterating over spaces.
void prepare_for_compaction();
#endif
// Perform a full collection of the generations up to and including max_generation.
// This is the low level interface used by the public versions of
// collect() and collect_locked(). Caller holds the Heap_lock on entry.
void collect_locked(GCCause::Cause cause, GenerationType max_generation);
// Save the tops of the spaces in all generations
void record_gen_tops_before_GC() PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP