892a2af03f
Move orderAccess.inline.hpp into orderAccess.hpp and remove os.hpp inclusion and conditional os::is_MP() for fence on x86 platforms Reviewed-by: dholmes, hseigel
282 lines
11 KiB
C++
282 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
|
|
#define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
|
|
|
|
#include "gc/shared/taskqueue.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/orderAccess.hpp"
|
|
#include "utilities/debug.hpp"
|
|
#include "utilities/stack.inline.hpp"
|
|
|
|
template <class T, MEMFLAGS F>
|
|
inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) {
|
|
typedef T* GenericTaskQueuePtr;
|
|
_queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
|
|
for (int i = 0; i < n; i++) {
|
|
_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
template <class T, MEMFLAGS F>
|
|
inline GenericTaskQueueSet<T, F>::~GenericTaskQueueSet() {
|
|
FREE_C_HEAP_ARRAY(T*, _queues);
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N>
|
|
inline void GenericTaskQueue<E, F, N>::initialize() {
|
|
_elems = ArrayAllocator<E>::allocate(N, F);
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N>
|
|
inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
|
|
ArrayAllocator<E>::free(const_cast<E*>(_elems), N);
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N>
|
|
bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
|
|
if (dirty_n_elems == N - 1) {
|
|
// Actually means 0, so do the push.
|
|
uint localBot = _bottom;
|
|
// g++ complains if the volatile result of the assignment is
|
|
// unused, so we cast the volatile away. We cannot cast directly
|
|
// to void, because gcc treats that as not using the result of the
|
|
// assignment. However, casting to E& means that we trigger an
|
|
// unused-value warning. So, we cast the E& to void.
|
|
(void)const_cast<E&>(_elems[localBot] = t);
|
|
OrderAccess::release_store(&_bottom, increment_index(localBot));
|
|
TASKQUEUE_STATS_ONLY(stats.record_push());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N> inline bool
|
|
GenericTaskQueue<E, F, N>::push(E t) {
|
|
uint localBot = _bottom;
|
|
assert(localBot < N, "_bottom out of range.");
|
|
idx_t top = _age.top();
|
|
uint dirty_n_elems = dirty_size(localBot, top);
|
|
assert(dirty_n_elems < N, "n_elems out of range.");
|
|
if (dirty_n_elems < max_elems()) {
|
|
// g++ complains if the volatile result of the assignment is
|
|
// unused, so we cast the volatile away. We cannot cast directly
|
|
// to void, because gcc treats that as not using the result of the
|
|
// assignment. However, casting to E& means that we trigger an
|
|
// unused-value warning. So, we cast the E& to void.
|
|
(void) const_cast<E&>(_elems[localBot] = t);
|
|
OrderAccess::release_store(&_bottom, increment_index(localBot));
|
|
TASKQUEUE_STATS_ONLY(stats.record_push());
|
|
return true;
|
|
} else {
|
|
return push_slow(t, dirty_n_elems);
|
|
}
|
|
}
|
|
|
|
template <class E, MEMFLAGS F, unsigned int N>
|
|
inline bool OverflowTaskQueue<E, F, N>::push(E t)
|
|
{
|
|
if (!taskqueue_t::push(t)) {
|
|
overflow_stack()->push(t);
|
|
TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class E, MEMFLAGS F, unsigned int N>
|
|
inline bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
|
|
return taskqueue_t::push(t);
|
|
}
|
|
|
|
// pop_local_slow() is done by the owning thread and is trying to
|
|
// get the last task in the queue. It will compete with pop_global()
|
|
// that will be used by other threads. The tag age is incremented
|
|
// whenever the queue goes empty which it will do here if this thread
|
|
// gets the last task or in pop_global() if the queue wraps (top == 0
|
|
// and pop_global() succeeds, see pop_global()).
|
|
template<class E, MEMFLAGS F, unsigned int N>
|
|
bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
|
|
// This queue was observed to contain exactly one element; either this
|
|
// thread will claim it, or a competing "pop_global". In either case,
|
|
// the queue will be logically empty afterwards. Create a new Age value
|
|
// that represents the empty queue for the given value of "_bottom". (We
|
|
// must also increment "tag" because of the case where "bottom == 1",
|
|
// "top == 0". A pop_global could read the queue element in that case,
|
|
// then have the owner thread do a pop followed by another push. Without
|
|
// the incrementing of "tag", the pop_global's CAS could succeed,
|
|
// allowing it to believe it has claimed the stale element.)
|
|
Age newAge((idx_t)localBot, oldAge.tag() + 1);
|
|
// Perhaps a competing pop_global has already incremented "top", in which
|
|
// case it wins the element.
|
|
if (localBot == oldAge.top()) {
|
|
// No competing pop_global has yet incremented "top"; we'll try to
|
|
// install new_age, thus claiming the element.
|
|
Age tempAge = _age.cmpxchg(newAge, oldAge);
|
|
if (tempAge == oldAge) {
|
|
// We win.
|
|
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
|
|
TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
|
|
return true;
|
|
}
|
|
}
|
|
// We lose; a completing pop_global gets the element. But the queue is empty
|
|
// and top is greater than bottom. Fix this representation of the empty queue
|
|
// to become the canonical one.
|
|
_age.set(newAge);
|
|
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
|
|
return false;
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N> inline bool
|
|
GenericTaskQueue<E, F, N>::pop_local(volatile E& t, uint threshold) {
|
|
uint localBot = _bottom;
|
|
// This value cannot be N-1. That can only occur as a result of
|
|
// the assignment to bottom in this method. If it does, this method
|
|
// resets the size to 0 before the next call (which is sequential,
|
|
// since this is pop_local.)
|
|
uint dirty_n_elems = dirty_size(localBot, _age.top());
|
|
assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
|
|
if (dirty_n_elems <= threshold) return false;
|
|
localBot = decrement_index(localBot);
|
|
_bottom = localBot;
|
|
// This is necessary to prevent any read below from being reordered
|
|
// before the store just above.
|
|
OrderAccess::fence();
|
|
// g++ complains if the volatile result of the assignment is
|
|
// unused, so we cast the volatile away. We cannot cast directly
|
|
// to void, because gcc treats that as not using the result of the
|
|
// assignment. However, casting to E& means that we trigger an
|
|
// unused-value warning. So, we cast the E& to void.
|
|
(void) const_cast<E&>(t = _elems[localBot]);
|
|
// This is a second read of "age"; the "size()" above is the first.
|
|
// If there's still at least one element in the queue, based on the
|
|
// "_bottom" and "age" we've read, then there can be no interference with
|
|
// a "pop_global" operation, and we're done.
|
|
idx_t tp = _age.top(); // XXX
|
|
if (size(localBot, tp) > 0) {
|
|
assert(dirty_size(localBot, tp) != N - 1, "sanity");
|
|
TASKQUEUE_STATS_ONLY(stats.record_pop());
|
|
return true;
|
|
} else {
|
|
// Otherwise, the queue contained exactly one element; we take the slow
|
|
// path.
|
|
return pop_local_slow(localBot, _age.get());
|
|
}
|
|
}
|
|
|
|
template <class E, MEMFLAGS F, unsigned int N>
|
|
bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
|
|
{
|
|
if (overflow_empty()) return false;
|
|
t = overflow_stack()->pop();
|
|
return true;
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N>
|
|
bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
|
|
Age oldAge = _age.get();
|
|
// Architectures with weak memory model require a barrier here
|
|
// to guarantee that bottom is not older than age,
|
|
// which is crucial for the correctness of the algorithm.
|
|
#if !(defined SPARC || defined IA32 || defined AMD64)
|
|
OrderAccess::fence();
|
|
#endif
|
|
uint localBot = OrderAccess::load_acquire(&_bottom);
|
|
uint n_elems = size(localBot, oldAge.top());
|
|
if (n_elems == 0) {
|
|
return false;
|
|
}
|
|
|
|
// g++ complains if the volatile result of the assignment is
|
|
// unused, so we cast the volatile away. We cannot cast directly
|
|
// to void, because gcc treats that as not using the result of the
|
|
// assignment. However, casting to E& means that we trigger an
|
|
// unused-value warning. So, we cast the E& to void.
|
|
(void) const_cast<E&>(t = _elems[oldAge.top()]);
|
|
Age newAge(oldAge);
|
|
newAge.increment();
|
|
Age resAge = _age.cmpxchg(newAge, oldAge);
|
|
|
|
// Note that using "_bottom" here might fail, since a pop_local might
|
|
// have decremented it.
|
|
assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
|
|
return resAge == oldAge;
|
|
}
|
|
|
|
template<class T, MEMFLAGS F> bool
|
|
GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
|
|
if (_n > 2) {
|
|
uint k1 = queue_num;
|
|
while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
|
|
uint k2 = queue_num;
|
|
while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
|
|
// Sample both and try the larger.
|
|
uint sz1 = _queues[k1]->size();
|
|
uint sz2 = _queues[k2]->size();
|
|
if (sz2 > sz1) return _queues[k2]->pop_global(t);
|
|
else return _queues[k1]->pop_global(t);
|
|
} else if (_n == 2) {
|
|
// Just try the other one.
|
|
uint k = (queue_num + 1) % 2;
|
|
return _queues[k]->pop_global(t);
|
|
} else {
|
|
assert(_n == 1, "can't be zero.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<class T, MEMFLAGS F> bool
|
|
GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
|
|
for (uint i = 0; i < 2 * _n; i++) {
|
|
if (steal_best_of_2(queue_num, seed, t)) {
|
|
TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
|
|
return true;
|
|
}
|
|
}
|
|
TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
|
|
return false;
|
|
}
|
|
|
|
template <unsigned int N, MEMFLAGS F>
|
|
inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile {
|
|
return Atomic::cmpxchg(new_age._data, &_data, old_age._data);
|
|
}
|
|
|
|
template<class E, MEMFLAGS F, unsigned int N>
|
|
template<class Fn>
|
|
inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
|
|
uint iters = size();
|
|
uint index = _bottom;
|
|
for (uint i = 0; i < iters; ++i) {
|
|
index = decrement_index(index);
|
|
fn(const_cast<E&>(_elems[index])); // cast away volatility
|
|
}
|
|
}
|
|
|
|
|
|
#endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
|