jdk-24/src/hotspot/share/adlc/formsopt.cpp
2017-09-12 19:03:39 +02:00

824 lines
25 KiB
C++

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// FORMS.CPP - Definitions for ADL Parser Forms Classes
#include "adlc.hpp"
//==============================Register Allocation============================
int RegisterForm::_reg_ctr = 0;
//------------------------------RegisterForm-----------------------------------
// Constructor
RegisterForm::RegisterForm()
: _regDef(cmpstr,hashstr, Form::arena),
_regClass(cmpstr,hashstr, Form::arena),
_allocClass(cmpstr,hashstr, Form::arena) {
}
RegisterForm::~RegisterForm() {
}
// record a new register definition
void RegisterForm::addRegDef(char *name, char *callingConv, char *c_conv,
char *idealtype, char *encoding, char* concrete) {
RegDef *regDef = new RegDef(name, callingConv, c_conv, idealtype, encoding, concrete);
_rdefs.addName(name);
_regDef.Insert(name,regDef);
}
// record a new register class
template <typename T>
T* RegisterForm::addRegClass(const char* className) {
T* regClass = new T(className);
_rclasses.addName(className);
_regClass.Insert(className, regClass);
return regClass;
}
// Explicit instantiation for all supported register classes.
template RegClass* RegisterForm::addRegClass<RegClass>(const char* className);
template CodeSnippetRegClass* RegisterForm::addRegClass<CodeSnippetRegClass>(const char* className);
template ConditionalRegClass* RegisterForm::addRegClass<ConditionalRegClass>(const char* className);
// record a new register class
AllocClass *RegisterForm::addAllocClass(char *className) {
AllocClass *allocClass = new AllocClass(className);
_aclasses.addName(className);
_allocClass.Insert(className,allocClass);
return allocClass;
}
// Called after parsing the Register block. Record the register class
// for spill-slots/regs.
void RegisterForm::addSpillRegClass() {
// Stack slots start at the next available even register number.
_reg_ctr = (_reg_ctr+7) & ~7;
const char *rc_name = "stack_slots";
RegClass* reg_class = new RegClass(rc_name);
reg_class->set_stack_version(true);
_rclasses.addName(rc_name);
_regClass.Insert(rc_name,reg_class);
}
// Provide iteration over all register definitions
// in the order used by the register allocator
void RegisterForm::reset_RegDefs() {
_current_ac = NULL;
_aclasses.reset();
}
RegDef *RegisterForm::iter_RegDefs() {
// Check if we need to get the next AllocClass
if ( _current_ac == NULL ) {
const char *ac_name = _aclasses.iter();
if( ac_name == NULL ) return NULL; // No more allocation classes
_current_ac = (AllocClass*)_allocClass[ac_name];
_current_ac->_regDefs.reset();
assert( _current_ac != NULL, "Name must match an allocation class");
}
const char *rd_name = _current_ac->_regDefs.iter();
if( rd_name == NULL ) {
// At end of this allocation class, check the next
_current_ac = NULL;
return iter_RegDefs();
}
RegDef *reg_def = (RegDef*)_current_ac->_regDef[rd_name];
assert( reg_def != NULL, "Name must match a register definition");
return reg_def;
}
// return the register definition with name 'regName'
RegDef *RegisterForm::getRegDef(const char *regName) {
RegDef *regDef = (RegDef*)_regDef[regName];
return regDef;
}
// return the register class with name 'className'
RegClass *RegisterForm::getRegClass(const char *className) {
RegClass *regClass = (RegClass*)_regClass[className];
return regClass;
}
// Check that register classes are compatible with chunks
bool RegisterForm::verify() {
bool valid = true;
// Verify Register Classes
// check that each register class contains registers from one chunk
const char *rc_name = NULL;
_rclasses.reset();
while ( (rc_name = _rclasses.iter()) != NULL ) {
// Check the chunk value for all registers in this class
RegClass *reg_class = getRegClass(rc_name);
assert( reg_class != NULL, "InternalError() no matching register class");
} // end of RegClasses
// Verify that every register has been placed into an allocation class
RegDef *reg_def = NULL;
reset_RegDefs();
uint num_register_zero = 0;
while ( (reg_def = iter_RegDefs()) != NULL ) {
if( reg_def->register_num() == 0 ) ++num_register_zero;
}
if( num_register_zero > 1 ) {
fprintf(stderr,
"ERROR: More than one register has been assigned register-number 0.\n"
"Probably because a register has not been entered into an allocation class.\n");
}
return valid;
}
// Compute RegMask size
int RegisterForm::RegMask_Size() {
// Need at least this many words
int words_for_regs = (_reg_ctr + 31)>>5;
// The array of Register Mask bits should be large enough to cover
// all the machine registers and all parameters that need to be passed
// on the stack (stack registers) up to some interesting limit. Methods
// that need more parameters will NOT be compiled. On Intel, the limit
// is something like 90+ parameters.
// Add a few (3 words == 96 bits) for incoming & outgoing arguments to calls.
// Round up to the next doubleword size.
return (words_for_regs + 3 + 1) & ~1;
}
void RegisterForm::dump() { // Debug printer
output(stderr);
}
void RegisterForm::output(FILE *fp) { // Write info to output files
const char *name;
fprintf(fp,"\n");
fprintf(fp,"-------------------- Dump RegisterForm --------------------\n");
for(_rdefs.reset(); (name = _rdefs.iter()) != NULL;) {
((RegDef*)_regDef[name])->output(fp);
}
fprintf(fp,"\n");
for (_rclasses.reset(); (name = _rclasses.iter()) != NULL;) {
((RegClass*)_regClass[name])->output(fp);
}
fprintf(fp,"\n");
for (_aclasses.reset(); (name = _aclasses.iter()) != NULL;) {
((AllocClass*)_allocClass[name])->output(fp);
}
fprintf(fp,"-------------------- end RegisterForm --------------------\n");
}
//------------------------------RegDef-----------------------------------------
// Constructor
RegDef::RegDef(char *regname, char *callconv, char *c_conv, char * idealtype, char * encode, char * concrete)
: _regname(regname), _callconv(callconv), _c_conv(c_conv),
_idealtype(idealtype),
_register_encode(encode),
_concrete(concrete),
_register_num(0) {
// Chunk and register mask are determined by the register number
// _register_num is set when registers are added to an allocation class
}
RegDef::~RegDef() { // Destructor
}
void RegDef::set_register_num(uint32 register_num) {
_register_num = register_num;
}
// Bit pattern used for generating machine code
const char* RegDef::register_encode() const {
return _register_encode;
}
// Register number used in machine-independent code
uint32 RegDef::register_num() const {
return _register_num;
}
void RegDef::dump() {
output(stderr);
}
void RegDef::output(FILE *fp) { // Write info to output files
fprintf(fp,"RegDef: %s (%s) encode as %s using number %d\n",
_regname, (_callconv?_callconv:""), _register_encode, _register_num);
fprintf(fp,"\n");
}
//------------------------------RegClass---------------------------------------
// Construct a register class into which registers will be inserted
RegClass::RegClass(const char* classid) : _stack_or_reg(false), _classid(classid), _regDef(cmpstr, hashstr, Form::arena) {
}
RegClass::~RegClass() {
}
// record a register in this class
void RegClass::addReg(RegDef *regDef) {
_regDefs.addName(regDef->_regname);
_regDef.Insert((void*)regDef->_regname, regDef);
}
// Number of registers in class
uint RegClass::size() const {
return _regDef.Size();
}
const RegDef *RegClass::get_RegDef(const char *rd_name) const {
return (const RegDef*)_regDef[rd_name];
}
void RegClass::reset() {
_regDefs.reset();
}
const char *RegClass::rd_name_iter() {
return _regDefs.iter();
}
RegDef *RegClass::RegDef_iter() {
const char *rd_name = rd_name_iter();
RegDef *reg_def = rd_name ? (RegDef*)_regDef[rd_name] : NULL;
return reg_def;
}
const RegDef* RegClass::find_first_elem() {
const RegDef* first = NULL;
const RegDef* def = NULL;
reset();
while ((def = RegDef_iter()) != NULL) {
if (first == NULL || def->register_num() < first->register_num()) {
first = def;
}
}
assert(first != NULL, "empty mask?");
return first;;
}
// Collect all the registers in this register-word. One bit per register.
int RegClass::regs_in_word( int wordnum, bool stack_also ) {
int word = 0;
const char *name;
for(_regDefs.reset(); (name = _regDefs.iter()) != NULL;) {
int rnum = ((RegDef*)_regDef[name])->register_num();
if( (rnum >> 5) == wordnum )
word |= (1 << (rnum & 31));
}
if( stack_also ) {
// Now also collect stack bits
for( int i = 0; i < 32; i++ )
if( wordnum*32+i >= RegisterForm::_reg_ctr )
word |= (1 << i);
}
return word;
}
void RegClass::dump() {
output(stderr);
}
void RegClass::output(FILE *fp) { // Write info to output files
fprintf(fp,"RegClass: %s\n",_classid);
const char *name;
for(_regDefs.reset(); (name = _regDefs.iter()) != NULL;) {
((RegDef*)_regDef[name])->output(fp);
}
fprintf(fp,"--- done with entries for reg_class %s\n\n",_classid);
}
void RegClass::declare_register_masks(FILE* fp) {
const char* prefix = "";
const char* rc_name_to_upper = toUpper(_classid);
fprintf(fp, "extern const RegMask _%s%s_mask;\n", prefix, rc_name_to_upper);
fprintf(fp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
if (_stack_or_reg) {
fprintf(fp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
fprintf(fp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
}
delete[] rc_name_to_upper;
}
void RegClass::build_register_masks(FILE* fp) {
int len = RegisterForm::RegMask_Size();
const char *prefix = "";
const char* rc_name_to_upper = toUpper(_classid);
fprintf(fp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
int i;
for(i = 0; i < len - 1; i++) {
fprintf(fp," 0x%x,", regs_in_word(i, false));
}
fprintf(fp," 0x%x );\n", regs_in_word(i, false));
if (_stack_or_reg) {
fprintf(fp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
for(i = 0; i < len - 1; i++) {
fprintf(fp," 0x%x,", regs_in_word(i, true));
}
fprintf(fp," 0x%x );\n", regs_in_word(i, true));
}
delete[] rc_name_to_upper;
}
//------------------------------CodeSnippetRegClass---------------------------
CodeSnippetRegClass::CodeSnippetRegClass(const char* classid) : RegClass(classid), _code_snippet(NULL) {
}
CodeSnippetRegClass::~CodeSnippetRegClass() {
delete _code_snippet;
}
void CodeSnippetRegClass::declare_register_masks(FILE* fp) {
const char* prefix = "";
const char* rc_name_to_upper = toUpper(_classid);
fprintf(fp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, _code_snippet);
delete[] rc_name_to_upper;
}
//------------------------------ConditionalRegClass---------------------------
ConditionalRegClass::ConditionalRegClass(const char *classid) : RegClass(classid), _condition_code(NULL) {
}
ConditionalRegClass::~ConditionalRegClass() {
delete _condition_code;
}
void ConditionalRegClass::declare_register_masks(FILE* fp) {
const char* prefix = "";
const char* rc_name_to_upper = toUpper(_classid);
const char* rclass_0_to_upper = toUpper(_rclasses[0]->_classid);
const char* rclass_1_to_upper = toUpper(_rclasses[1]->_classid);
fprintf(fp, "inline const RegMask &%s%s_mask() {"
" return (%s) ?"
" %s%s_mask() :"
" %s%s_mask(); }\n",
prefix, rc_name_to_upper,
_condition_code,
prefix, rclass_0_to_upper,
prefix, rclass_1_to_upper);
if (_stack_or_reg) {
fprintf(fp, "inline const RegMask &%sSTACK_OR_%s_mask() {"
" return (%s) ?"
" %sSTACK_OR_%s_mask() :"
" %sSTACK_OR_%s_mask(); }\n",
prefix, rc_name_to_upper,
_condition_code,
prefix, rclass_0_to_upper,
prefix, rclass_1_to_upper);
}
delete[] rc_name_to_upper;
delete[] rclass_0_to_upper;
delete[] rclass_1_to_upper;
return;
}
//------------------------------AllocClass-------------------------------------
AllocClass::AllocClass(char *classid) : _classid(classid), _regDef(cmpstr,hashstr, Form::arena) {
}
// record a register in this class
void AllocClass::addReg(RegDef *regDef) {
assert( regDef != NULL, "Can not add a NULL to an allocation class");
regDef->set_register_num( RegisterForm::_reg_ctr++ );
// Add regDef to this allocation class
_regDefs.addName(regDef->_regname);
_regDef.Insert((void*)regDef->_regname, regDef);
}
void AllocClass::dump() {
output(stderr);
}
void AllocClass::output(FILE *fp) { // Write info to output files
fprintf(fp,"AllocClass: %s \n",_classid);
const char *name;
for(_regDefs.reset(); (name = _regDefs.iter()) != NULL;) {
((RegDef*)_regDef[name])->output(fp);
}
fprintf(fp,"--- done with entries for alloc_class %s\n\n",_classid);
}
//==============================Frame Handling=================================
//------------------------------FrameForm--------------------------------------
FrameForm::FrameForm() {
_frame_pointer = NULL;
_c_frame_pointer = NULL;
_alignment = NULL;
_return_addr = NULL;
_c_return_addr = NULL;
_in_preserve_slots = NULL;
_varargs_C_out_slots_killed = NULL;
_calling_convention = NULL;
_c_calling_convention = NULL;
_return_value = NULL;
_c_return_value = NULL;
_interpreter_frame_pointer_reg = NULL;
}
FrameForm::~FrameForm() {
}
void FrameForm::dump() {
output(stderr);
}
void FrameForm::output(FILE *fp) { // Write info to output files
fprintf(fp,"\nFrame:\n");
}
//==============================Scheduling=====================================
//------------------------------PipelineForm-----------------------------------
PipelineForm::PipelineForm()
: _reslist ()
, _resdict (cmpstr, hashstr, Form::arena)
, _classdict (cmpstr, hashstr, Form::arena)
, _rescount (0)
, _maxcycleused (0)
, _stages ()
, _stagecnt (0)
, _classlist ()
, _classcnt (0)
, _noplist ()
, _nopcnt (0)
, _variableSizeInstrs (false)
, _branchHasDelaySlot (false)
, _maxInstrsPerBundle (0)
, _maxBundlesPerCycle (1)
, _instrUnitSize (0)
, _bundleUnitSize (0)
, _instrFetchUnitSize (0)
, _instrFetchUnits (0) {
}
PipelineForm::~PipelineForm() {
}
void PipelineForm::dump() {
output(stderr);
}
void PipelineForm::output(FILE *fp) { // Write info to output files
const char *res;
const char *stage;
const char *cls;
const char *nop;
int count = 0;
fprintf(fp,"\nPipeline:");
if (_variableSizeInstrs)
if (_instrUnitSize > 0)
fprintf(fp," variable-sized instructions in %d byte units", _instrUnitSize);
else
fprintf(fp," variable-sized instructions");
else
if (_instrUnitSize > 0)
fprintf(fp," fixed-sized instructions of %d bytes", _instrUnitSize);
else if (_bundleUnitSize > 0)
fprintf(fp," fixed-sized bundles of %d bytes", _bundleUnitSize);
else
fprintf(fp," fixed-sized instructions");
if (_branchHasDelaySlot)
fprintf(fp,", branch has delay slot");
if (_maxInstrsPerBundle > 0)
fprintf(fp,", max of %d instruction%s in parallel",
_maxInstrsPerBundle, _maxInstrsPerBundle > 1 ? "s" : "");
if (_maxBundlesPerCycle > 0)
fprintf(fp,", max of %d bundle%s in parallel",
_maxBundlesPerCycle, _maxBundlesPerCycle > 1 ? "s" : "");
if (_instrFetchUnitSize > 0 && _instrFetchUnits)
fprintf(fp, ", fetch %d x % d bytes per cycle", _instrFetchUnits, _instrFetchUnitSize);
fprintf(fp,"\nResource:");
for ( _reslist.reset(); (res = _reslist.iter()) != NULL; )
fprintf(fp," %s(0x%08x)", res, _resdict[res]->is_resource()->mask());
fprintf(fp,"\n");
fprintf(fp,"\nDescription:\n");
for ( _stages.reset(); (stage = _stages.iter()) != NULL; )
fprintf(fp," %s(%d)", stage, count++);
fprintf(fp,"\n");
fprintf(fp,"\nClasses:\n");
for ( _classlist.reset(); (cls = _classlist.iter()) != NULL; )
_classdict[cls]->is_pipeclass()->output(fp);
fprintf(fp,"\nNop Instructions:");
for ( _noplist.reset(); (nop = _noplist.iter()) != NULL; )
fprintf(fp, " \"%s\"", nop);
fprintf(fp,"\n");
}
//------------------------------ResourceForm-----------------------------------
ResourceForm::ResourceForm(unsigned resmask)
: _resmask(resmask) {
}
ResourceForm::~ResourceForm() {
}
ResourceForm *ResourceForm::is_resource() const {
return (ResourceForm *)(this);
}
void ResourceForm::dump() {
output(stderr);
}
void ResourceForm::output(FILE *fp) { // Write info to output files
fprintf(fp, "resource: 0x%08x;\n", mask());
}
//------------------------------PipeClassOperandForm----------------------------------
void PipeClassOperandForm::dump() {
output(stderr);
}
void PipeClassOperandForm::output(FILE *fp) { // Write info to output files
fprintf(stderr,"PipeClassOperandForm: %s", _stage);
fflush(stderr);
if (_more_instrs > 0)
fprintf(stderr,"+%d", _more_instrs);
fprintf(stderr," (%s)\n", _iswrite ? "write" : "read");
fflush(stderr);
fprintf(fp,"PipeClassOperandForm: %s", _stage);
if (_more_instrs > 0)
fprintf(fp,"+%d", _more_instrs);
fprintf(fp," (%s)\n", _iswrite ? "write" : "read");
}
//------------------------------PipeClassResourceForm----------------------------------
void PipeClassResourceForm::dump() {
output(stderr);
}
void PipeClassResourceForm::output(FILE *fp) { // Write info to output files
fprintf(fp,"PipeClassResourceForm: %s at stage %s for %d cycles\n",
_resource, _stage, _cycles);
}
//------------------------------PipeClassForm----------------------------------
PipeClassForm::PipeClassForm(const char *id, int num)
: _ident(id)
, _num(num)
, _localNames(cmpstr, hashstr, Form::arena)
, _localUsage(cmpstr, hashstr, Form::arena)
, _has_fixed_latency(0)
, _fixed_latency(0)
, _instruction_count(0)
, _has_multiple_bundles(false)
, _has_branch_delay_slot(false)
, _force_serialization(false)
, _may_have_no_code(false) {
}
PipeClassForm::~PipeClassForm() {
}
PipeClassForm *PipeClassForm::is_pipeclass() const {
return (PipeClassForm *)(this);
}
void PipeClassForm::dump() {
output(stderr);
}
void PipeClassForm::output(FILE *fp) { // Write info to output files
fprintf(fp,"PipeClassForm: #%03d", _num);
if (_ident)
fprintf(fp," \"%s\":", _ident);
if (_has_fixed_latency)
fprintf(fp," latency %d", _fixed_latency);
if (_force_serialization)
fprintf(fp, ", force serialization");
if (_may_have_no_code)
fprintf(fp, ", may have no code");
fprintf(fp, ", %d instruction%s\n", InstructionCount(), InstructionCount() != 1 ? "s" : "");
}
//==============================Peephole Optimization==========================
int Peephole::_peephole_counter = 0;
//------------------------------Peephole---------------------------------------
Peephole::Peephole() : _match(NULL), _constraint(NULL), _replace(NULL), _next(NULL) {
_peephole_number = _peephole_counter++;
}
Peephole::~Peephole() {
}
// Append a peephole rule with the same root instruction
void Peephole::append_peephole(Peephole *next_peephole) {
if( _next == NULL ) {
_next = next_peephole;
} else {
_next->append_peephole( next_peephole );
}
}
// Store the components of this peephole rule
void Peephole::add_match(PeepMatch *match) {
assert( _match == NULL, "fatal()" );
_match = match;
}
void Peephole::append_constraint(PeepConstraint *next_constraint) {
if( _constraint == NULL ) {
_constraint = next_constraint;
} else {
_constraint->append( next_constraint );
}
}
void Peephole::add_replace(PeepReplace *replace) {
assert( _replace == NULL, "fatal()" );
_replace = replace;
}
// class Peephole accessor methods are in the declaration.
void Peephole::dump() {
output(stderr);
}
void Peephole::output(FILE *fp) { // Write info to output files
fprintf(fp,"Peephole:\n");
if( _match != NULL ) _match->output(fp);
if( _constraint != NULL ) _constraint->output(fp);
if( _replace != NULL ) _replace->output(fp);
// Output the next entry
if( _next ) _next->output(fp);
}
//------------------------------PeepMatch--------------------------------------
PeepMatch::PeepMatch(char *rule) : _max_position(0), _rule(rule) {
}
PeepMatch::~PeepMatch() {
}
// Insert info into the match-rule
void PeepMatch::add_instruction(int parent, int position, const char *name,
int input) {
if( position > _max_position ) _max_position = position;
_parent.addName((char*) (intptr_t) parent);
_position.addName((char*) (intptr_t) position);
_instrs.addName(name);
_input.addName((char*) (intptr_t) input);
}
// Access info about instructions in the peep-match rule
int PeepMatch::max_position() {
return _max_position;
}
const char *PeepMatch::instruction_name(int position) {
return _instrs.name(position);
}
// Iterate through all info on matched instructions
void PeepMatch::reset() {
_parent.reset();
_position.reset();
_instrs.reset();
_input.reset();
}
void PeepMatch::next_instruction(int &parent, int &position, const char* &name, int &input) {
parent = (int) (intptr_t) _parent.iter();
position = (int) (intptr_t) _position.iter();
name = _instrs.iter();
input = (int) (intptr_t) _input.iter();
}
// 'true' if current position in iteration is a placeholder, not matched.
bool PeepMatch::is_placeholder() {
return _instrs.current_is_signal();
}
void PeepMatch::dump() {
output(stderr);
}
void PeepMatch::output(FILE *fp) { // Write info to output files
fprintf(fp,"PeepMatch:\n");
}
//------------------------------PeepConstraint---------------------------------
PeepConstraint::PeepConstraint(int left_inst, char* left_op, char* relation,
int right_inst, char* right_op)
: _left_inst(left_inst), _left_op(left_op), _relation(relation),
_right_inst(right_inst), _right_op(right_op), _next(NULL) {}
PeepConstraint::~PeepConstraint() {
}
// Check if constraints use instruction at position
bool PeepConstraint::constrains_instruction(int position) {
// Check local instruction constraints
if( _left_inst == position ) return true;
if( _right_inst == position ) return true;
// Check remaining constraints in list
if( _next == NULL ) return false;
else return _next->constrains_instruction(position);
}
// Add another constraint
void PeepConstraint::append(PeepConstraint *next_constraint) {
if( _next == NULL ) {
_next = next_constraint;
} else {
_next->append( next_constraint );
}
}
// Access the next constraint in the list
PeepConstraint *PeepConstraint::next() {
return _next;
}
void PeepConstraint::dump() {
output(stderr);
}
void PeepConstraint::output(FILE *fp) { // Write info to output files
fprintf(fp,"PeepConstraint:\n");
}
//------------------------------PeepReplace------------------------------------
PeepReplace::PeepReplace(char *rule) : _rule(rule) {
}
PeepReplace::~PeepReplace() {
}
// Add contents of peepreplace
void PeepReplace::add_instruction(char *root) {
_instruction.addName(root);
_operand_inst_num.add_signal();
_operand_op_name.add_signal();
}
void PeepReplace::add_operand( int inst_num, char *inst_operand ) {
_instruction.add_signal();
_operand_inst_num.addName((char*) (intptr_t) inst_num);
_operand_op_name.addName(inst_operand);
}
// Access contents of peepreplace
void PeepReplace::reset() {
_instruction.reset();
_operand_inst_num.reset();
_operand_op_name.reset();
}
void PeepReplace::next_instruction(const char* &inst){
inst = _instruction.iter();
int inst_num = (int) (intptr_t) _operand_inst_num.iter();
const char* inst_operand = _operand_op_name.iter();
}
void PeepReplace::next_operand(int &inst_num, const char* &inst_operand) {
const char* inst = _instruction.iter();
inst_num = (int) (intptr_t) _operand_inst_num.iter();
inst_operand = _operand_op_name.iter();
}
void PeepReplace::dump() {
output(stderr);
}
void PeepReplace::output(FILE *fp) { // Write info to output files
fprintf(fp,"PeepReplace:\n");
}