jdk-24/test/jdk/java/lang/StrictMath/HyperbolicTests.java
2024-03-01 19:30:35 +00:00

476 lines
20 KiB
Java

/*
* Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.test.lib.RandomFactory;
import java.util.function.DoubleUnaryOperator;
/*
* @test
* @bug 4851625 8301444
* @key randomness
* @library /test/lib
* @build jdk.test.lib.RandomFactory
* @build Tests
* @build FdlibmTranslit
* @build HyperbolicTests
* @run main HyperbolicTests
* @summary Tests for StrictMath.{sinh, cosh, tanh}
*/
/**
* The tests in ../Math/HyperbolicTests.java test properties that
* should hold for any implementation of the hyperbolic functions
* sinh, cosh, and tanh, including the FDLIBM-based ones required by
* the StrictMath class. Therefore, the test cases in
* ../Math/HyperbolicTests.java are run against both the Math and
* StrictMath versions of the hyperbolic methods. The role of this
* test is to verify that the FDLIBM algorithms are being used by
* running golden file tests on values that may vary from one
* conforming implementation of the hyperbolics to another.
*/
public class HyperbolicTests {
private HyperbolicTests(){}
public static void main(String... args) {
int failures = 0;
failures += testAgainstTranslitCommon();
failures += testAgainstTranslitSinh();
failures += testAgainstTranslitCosh();
failures += testAgainstTranslitTanh();
failures += testSinh();
failures += testCosh();
failures += testTanh();
if (failures > 0) {
System.err.println("Testing the hyperbolics incurred "
+ failures + " failures.");
throw new RuntimeException();
}
}
/**
* Bundle together groups of testing methods.
*/
private static enum HyperbolicTest {
SINH(HyperbolicTests::testSinhCase, FdlibmTranslit::sinh),
COSH(HyperbolicTests::testCoshCase, FdlibmTranslit::cosh),
TANH(HyperbolicTests::testTanhCase, FdlibmTranslit::tanh);
private DoubleDoubleToInt testCase;
private DoubleUnaryOperator transliteration;
HyperbolicTest(DoubleDoubleToInt testCase, DoubleUnaryOperator transliteration) {
this.testCase = testCase;
this.transliteration = transliteration;
}
public DoubleDoubleToInt testCase() {return testCase;}
public DoubleUnaryOperator transliteration() {return transliteration;}
}
// Initialize shared random number generator
private static java.util.Random random = RandomFactory.getRandom();
/**
* Test against shared points of interest.
*/
private static int testAgainstTranslitCommon() {
int failures = 0;
double[] pointsOfInterest = {
Double.MIN_NORMAL,
1.0,
Tests.createRandomDouble(random),
};
for (var testMethods : HyperbolicTest.values()) {
for (double testPoint : pointsOfInterest) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, testMethods);
}
}
return failures;
}
/**
* Test StrictMath.sinh against transliteration port of sinh.
*/
private static int testAgainstTranslitSinh() {
int failures = 0;
double x;
// Probe near decision points in the FDLIBM algorithm.
double[] decisionPoints = {
0.0,
22.0,
-22.0,
0x1.0p-28,
-0x1.0p-28,
// StrictMath.log(Double.MAX_VALUE) ~= 709.782712893384
0x1.62e42fefa39efp9,
-0x1.62e42fefa39efp9,
// Largest argument with finite sinh, 710.4758600739439
0x1.633ce8fb9f87dp9,
-0x1.633ce8fb9f87dp9,
};
for (double testPoint : decisionPoints) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.SINH);
}
return failures;
}
/**
* Test StrictMath.cosh against transliteration port of cosh.
*/
private static int testAgainstTranslitCosh() {
int failures = 0;
double x;
// Probe near decision points in the FDLIBM algorithm.
double[] decisionPoints = {
0.0,
22.0,
-22.0,
// StrictMath.log(2)/2 ~= 0.34657359027997264
0x1.62e42fefa39efp-2,
-0x1.62e42fefa39efp-2,
0x1.0p-28,
-0x1.0p-28,
// StrictMath.log(Double.MAX_VALUE) ~= 709.782712893384
0x1.62e42fefa39efp9,
-0x1.62e42fefa39efp9,
// Largest argument with finite cosh, 710.4758600739439
0x1.633ce8fb9f87dp9,
-0x1.633ce8fb9f87dp9,
};
for (double testPoint : decisionPoints) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.COSH);
}
return failures;
}
/**
* Test StrictMath.tanh against transliteration port of tanh
*/
private static int testAgainstTranslitTanh() {
int failures = 0;
double x;
// Probe near decision points in the FDLIBM algorithm.
double[] decisionPoints = {
0.0,
0x1.0p-55,
-0x1.0p-55,
1.0,
-1.0,
22.0,
};
for (double testPoint : decisionPoints) {
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.COSH);
}
return failures;
}
private interface DoubleDoubleToInt {
int apply(double x, double y);
}
private static int testRange(double start, double increment, int count,
HyperbolicTest testMethods) {
int failures = 0;
double x = start;
for (int i = 0; i < count; i++, x += increment) {
failures +=
testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x));
}
return failures;
}
private static int testRangeMidpoint(double midpoint, double increment, int count,
HyperbolicTest testMethods) {
int failures = 0;
double x = midpoint - increment*(count / 2) ;
for (int i = 0; i < count; i++, x += increment) {
failures +=
testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x));
}
return failures;
}
private static int testSinhCase(double input, double expected) {
return Tests.test("StrictMath.sinh(double)", input,
StrictMath::sinh, expected);
}
private static int testCoshCase(double input, double expected) {
return Tests.test("StrictMath.cosh(double)", input,
StrictMath::cosh, expected);
}
private static int testTanhCase(double input, double expected) {
return Tests.test("StrictMath.tanh(double)", input,
StrictMath::tanh, expected);
}
private static int testSinh() {
int failures = 0;
double [][] testCases = {
{0x1.5798ee2308c3ap-27, 0x1.5798ee2308c3bp-27},
{0x1.ffffffffffff8p-26, 0x1.ffffffffffffap-26},
{0x1.ffffffffffffep-26, 0x1.0p-25},
{0x1.ffffffffffff8p-25, 0x1.ffffffffffffep-25},
{0x1.ffffffffffffap-25, 0x1.0p-24},
{0x1.ad7f29abcaf47p-24, 0x1.ad7f29abcaf53p-24},
{0x1.ad7f29abcaf48p-24, 0x1.ad7f29abcaf54p-24},
{0x1.fffffffffffeap-24, 0x1.0p-23},
{0x1.ffffffffffff8p-24, 0x1.0000000000007p-23},
{0x1.fffffffffffaap-23, 0x1.0p-22},
{0x1.ffffffffffff8p-23, 0x1.0000000000027p-22},
{0x1.ffffffffffeaap-22, 0x1.0p-21},
{0x1.ffffffffffff8p-22, 0x1.00000000000a7p-21},
{0x1.ffffffffffaaap-21, 0x1.0p-20},
{0x1.ffffffffffff8p-21, 0x1.00000000002a7p-20},
{0x1.0c6f7a0b5ed8cp-20, 0x1.0c6f7a0b5f09fp-20},
{0x1.0c6f7a0b5ed8dp-20, 0x1.0c6f7a0b5f0ap-20},
{0x1.fffffffffeaaap-20, 0x1.0p-19},
{0x1.ffffffffffff8p-20, 0x1.0000000000aa7p-19},
{0x1.ffffffffffff8p-19, 0x1.0000000002aa7p-18},
{0x1.ffffffffffff7p-18, 0x1.000000000aaa6p-17},
{0x1.4f8b588e368d9p-17, 0x1.4f8b588e4e928p-17},
{0x1.ffffffffffffep-17, 0x1.000000002aaa9p-16},
{0x1.0p-16, 0x1.000000002aaaap-16},
{0x1.fffffffffffffp-16, 0x1.00000000aaaabp-15},
{0x1.fffffffffeaaap-15, 0x1.00000002aap-14},
{0x1.ffffffffffffep-15, 0x1.00000002aaaa9p-14},
{0x1.0p-14, 0x1.00000002aaaaap-14},
{0x1.a36e2eb1c3dd4p-14, 0x1.a36e2ebd7e43ap-14},
{0x1.a36e2eb1c3f8cp-14, 0x1.a36e2ebd7e5f1p-14},
{0x1.a36e2eb1c432cp-14, 0x1.a36e2ebd7e991p-14},
{0x1.fffffffffffffp-14, 0x1.0000000aaaaabp-13},
{0x1.ffffffffffffep-13, 0x1.0000002aaaaa9p-12},
{0x1.0p-12, 0x1.0000002aaaaaap-12},
{0x1.ffffffffff7f9p-12, 0x1.000000aaaa6a9p-11},
{0x1.fffffffffffffp-12, 0x1.000000aaaaaadp-11},
{0x1.ffffffffffffep-11, 0x1.000002aaaaacbp-10},
{0x1.0p-10, 0x1.000002aaaaaccp-10},
{0x1.0624dd2f1a79p-10, 0x1.0624e00c1c776p-10},
{0x1.0624dd2f1a8c9p-10, 0x1.0624e00c1c8bp-10},
{0x1.0624dd2f1a9fcp-10, 0x1.0624e00c1c9e3p-10},
{0x1.ffffffffffffep-10, 0x1.00000aaaaaccbp-9},
{0x1.0p-9, 0x1.00000aaaaacccp-9},
{0x1.ffffffffffe4ap-9, 0x1.00002aaaacbf2p-8},
{0x1.fffffffffffffp-9, 0x1.00002aaaacccdp-8},
{0x1.fffffffffff9dp-8, 0x1.0000aaaaccc9bp-7},
{0x1.ffffffffffffep-8, 0x1.0000aaaacccccp-7},
{0x1.0p-7, 0x1.0000aaaaccccdp-7},
{0x1.47ae147ae146fp-7, 0x1.47af7a654e9e2p-7},
{0x1.47ae147ae147ap-7, 0x1.47af7a654e9eep-7},
{0x1.47ae147ae147bp-7, 0x1.47af7a654e9efp-7},
{0x1.fffffffffffb6p-7, 0x1.0002aaaccccb4p-6},
{0x1.fffffffffffcap-7, 0x1.0002aaaccccbep-6},
{0x1.ffffffffffff7p-7, 0x1.0002aaaccccd5p-6},
{0x1.fffffffffffe9p-6, 0x1.000aaacccd001p-5},
{0x1.ffffffffffff7p-6, 0x1.000aaacccd008p-5},
{0x1.fffffffffffffp-6, 0x1.000aaacccd00dp-5},
{0x1.ffffffffffff6p-5, 0x1.002aacccd9cd7p-4},
{0x1.ffffffffffff8p-5, 0x1.002aacccd9cd9p-4},
{0x1.0p-4, 0x1.002aacccd9cddp-4},
{0x1.9999999999995p-4, 0x1.9a487337b59afp-4},
{0x1.9999999999996p-4, 0x1.9a487337b59afp-4},
{0x1.9999999999998p-4, 0x1.9a487337b59b1p-4},
{0x1.ffffffffffffap-4, 0x1.00aaccd00d2edp-3},
{0x1.ffffffffffffcp-4, 0x1.00aaccd00d2efp-3},
{0x1.ffffffffffff3p-3, 0x1.02accd9d080fbp-2},
{0x1.ffffffffffffdp-3, 0x1.02accd9d08101p-2},
{0x1.fffffffffffffp-3, 0x1.02accd9d08101p-2},
{0x1.fffffffffffecp-2, 0x1.0acd00fe63b8cp-1},
{0x1.ffffffffffffcp-2, 0x1.0acd00fe63b94p-1},
{0x1.0p-1, 0x1.0acd00fe63b97p-1},
{0x1.ffffffffffff6p-1, 0x1.2cd9fc44eb97ap0},
{0x1.ffffffffffffep-1, 0x1.2cd9fc44eb981p0},
{0x1.fffffffffffffp0, 0x1.d03cf63b6e19ep1},
{0x1.0p1, 0x1.d03cf63b6e1ap1},
{0x1.fffffffffffffp1, 0x1.b4a380370362dp4},
{0x1.0p2, 0x1.b4a380370363p4},
{0x1.ffffffffffffcp2, 0x1.749ea514eca4ep10},
{0x1.0p3, 0x1.749ea514eca66p10},
{0x1.fffffffffffffp3, 0x1.0f2ebd0a7ffdcp22},
{0x1.0p4, 0x1.0f2ebd0a7ffe4p22},
{0x1.fffffffffff68p4, 0x1.1f43fcc4b5b83p45},
{0x1.fffffffffffd4p4, 0x1.1f43fcc4b6316p45},
{0x1.0p5, 0x1.1f43fcc4b662cp45},
// Empirical worst-case points in other libraries with
// larger worst-case errors than FDLIBM
{-0x1.633c654fee2bap+9, -0x1.fdf25fc26e7cp1023},
{-0x1.633cae1335f26p+9, -0x1.ff149489e50a1p1023},
{ 0x1.9fcba01feb507p-2, 0x1.ab50d8e4d8c56p-2},
};
for (double[] testCase: testCases)
failures += testSinhCase(testCase[0], testCase[1]);
return failures;
}
private static int testCosh() {
int failures = 0;
double [][] testCases = {
{0x1.fffffffffb49fp-8, 0x1.00020000aaaabp0},
{0x1.47ae147ae0e45p-7, 0x1.000346de27853p0},
{0x1.fffffffffd9f3p-7, 0x1.0008000aaab05p0},
{0x1.ffffffffff9f1p-7, 0x1.0008000aaab05p0},
{0x1.fffffffffe27dp-6, 0x1.002000aaac169p0},
{0x1.ffffffffff27bp-6, 0x1.002000aaac16bp0},
{0x1.ffffffffffb9cp-5, 0x1.00800aab05b1ep0},
{0x1.ffffffffffd9dp-5, 0x1.00800aab05b1fp0},
{0x1.9999999999368p-4, 0x1.0147f40224b2ep0},
{0x1.9999999999727p-4, 0x1.0147f40224b35p0},
{0x1.ffffffffffed1p-4, 0x1.0200aac16db6cp0},
{0x1.fffffffffffd1p-4, 0x1.0200aac16db6ep0},
{0x1.ffffffffffeb4p-3, 0x1.080ab05ca613bp0},
{0x1.ffffffffffff2p-3, 0x1.080ab05ca6146p0},
{0x1.ffffffffffff3p-2, 0x1.20ac1862ae8cep0},
{0x1.ffffffffffff9p-2, 0x1.20ac1862ae8dp0},
{0x1.0p0, 0x1.8b07551d9f551p0},
{0x1.ffffffffffffbp0, 0x1.e18fa0df2d9b3p1},
{0x1.ffffffffffffep0, 0x1.e18fa0df2d9b8p1},
{0x1.fffffffffffffp0, 0x1.e18fa0df2d9bap1},
{0x1.ffffffffffff9p1, 0x1.b4ee858de3e68p4},
{0x1.ffffffffffffep1, 0x1.b4ee858de3e7ap4},
{0x1.fffffffffffffp1, 0x1.b4ee858de3e7dp4},
{0x1.ffffffffffffcp2, 0x1.749eaa93f4e5ep10},
{0x1.ffffffffffffdp2, 0x1.749eaa93f4e64p10},
{0x1.0p3, 0x1.749eaa93f4e76p10},
{0x1.fffffffffff6fp3, 0x1.0f2ebd0a7fb9p22},
{0x1.0p4, 0x1.0f2ebd0a8005cp22},
{0x1.fffffffffffd4p4, 0x1.1f43fcc4b6316p45},
{0x1.0p5, 0x1.1f43fcc4b662cp45},
// Empirical worst-case points in other libraries with
// larger worst-case errors than FDLIBM
{-0x1.633c654fee2bap+9, 0x1.fdf25fc26e7cp1023},
{ 0x1.ff76fb3f476d5p+0, 0x1.e0976c8f0ebdfp1},
{ 0x1.633cc2ae1c934p+9, 0x1.ff66e0de4dc6fp1023},
{-0x1.1ff088806d82ep+3, 0x1.f97ccb0aef314p11},
{-0x1.628af341989dap+9, 0x1.fdf28623ef923p1021},
};
for (double[] testCase: testCases)
failures += testCoshCase(testCase[0], testCase[1]);
return failures;
}
private static int testTanh() {
int failures = 0;
double [][] testCases = {
{0x1.5798ee2308c36p-27, 0x1.5798ee2308c36p-27},
{0x1.ffffffffffffep-26, 0x1.ffffffffffffbp-26},
{0x1.ffffffffffffep-25, 0x1.ffffffffffff3p-25},
{0x1.ad7f29abcaf47p-24, 0x1.ad7f29abcaf2dp-24},
{0x1.ad7f29abcaf48p-24, 0x1.ad7f29abcaf2ep-24},
{0x1.ffffffffffffep-24, 0x1.fffffffffffd3p-24},
{0x1.ffffffffffffep-23, 0x1.fffffffffff53p-23},
{0x1.ffffffffffffep-22, 0x1.ffffffffffd53p-22},
{0x1.ffffffffffffep-21, 0x1.ffffffffff553p-21},
{0x1.0c6f7a0b5ed8dp-20, 0x1.0c6f7a0b5e767p-20},
{0x1.ffffffffffffep-20, 0x1.fffffffffd553p-20},
{0x1.ffffffffffffep-19, 0x1.fffffffff5553p-19},
{0x1.fffffffffffffp-18, 0x1.ffffffffd5555p-18},
{0x1.0p-17, 0x1.ffffffffd5556p-18},
{0x1.4f8b588e368edp-17, 0x1.4f8b588e0685p-17},
{0x1.fffffffffffffp-17, 0x1.ffffffff55554p-17},
{0x1.fffffffffffffp-16, 0x1.fffffffd55555p-16},
{0x1.0p-15, 0x1.fffffffd55556p-16},
{0x1.fffffffffe5ddp-15, 0x1.fffffff553b33p-15},
{0x1.fffffffffffffp-15, 0x1.fffffff555554p-15},
{0x1.a36e2eb1c432dp-14, 0x1.a36e2e9a4f663p-14},
{0x1.ffffffffffffep-14, 0x1.ffffffd555553p-14},
{0x1.0p-13, 0x1.ffffffd555555p-14},
{0x1.ffffffffffd51p-13, 0x1.ffffff55552aap-13},
{0x1.fffffffffffffp-13, 0x1.ffffff5555559p-13},
{0x1.ffffffffffffep-12, 0x1.fffffd5555597p-12},
{0x1.0p-11, 0x1.fffffd5555599p-12},
{0x1.fffffffffff1p-11, 0x1.fffff555558a9p-11},
{0x1.0p-10, 0x1.fffff5555599ap-11},
{0x1.0624dd2f1a9c6p-10, 0x1.0624d77516cabp-10},
{0x1.0624dd2f1a9f8p-10, 0x1.0624d77516cdep-10},
{0x1.fffffffffffddp-10, 0x1.ffffd55559976p-10},
{0x1.fffffffffffffp-10, 0x1.ffffd55559999p-10},
{0x1.ffffffffffffcp-9, 0x1.ffff555599993p-9},
{0x1.ffffffffffffep-9, 0x1.ffff555599996p-9},
{0x1.ffffffffffff8p-8, 0x1.fffd555999924p-8},
{0x1.ffffffffffffep-8, 0x1.fffd555999929p-8},
{0x1.47ae147ae1458p-7, 0x1.47ab48ae4593cp-7},
{0x1.47ae147ae1464p-7, 0x1.47ab48ae45947p-7},
{0x1.ffffffffffffep-7, 0x1.fff5559997df6p-7},
{0x1.fffffffffffffp-7, 0x1.fff5559997df8p-7},
{0x1.ffffffffffff9p-6, 0x1.ffd559992b1d8p-6},
{0x1.ffffffffffffep-6, 0x1.ffd559992b1dcp-6},
{0x1.ffffffffffff9p-5, 0x1.ff55997e030d1p-5},
{0x1.fffffffffffffp-5, 0x1.ff55997e030d6p-5},
{0x1.9999999999996p-4, 0x1.983d7795f4137p-4},
{0x1.9999999999997p-4, 0x1.983d7795f4137p-4},
{0x1.fffffffffffffp-4, 0x1.fd5992bc4b834p-4},
{0x1.0p-3, 0x1.fd5992bc4b834p-4},
{0x1.fffffffffffffp-3, 0x1.f597ea69a1c86p-3},
{0x1.ffffffffffffcp-2, 0x1.d9353d7568aefp-2},
{0x1.ffffffffffffep-2, 0x1.d9353d7568af3p-2},
{0x1.ffffffffffffbp-1, 0x1.85efab514f393p-1},
{0x1.ffffffffffffep-1, 0x1.85efab514f393p-1},
{0x1.fffffffffffd3p0, 0x1.ed9505e1bc3cep-1},
{0x1.fffffffffffe1p0, 0x1.ed9505e1bc3cfp-1},
{0x1.ffffffffffed8p1, 0x1.ffa81708a0b4p-1},
{0x1.fffffffffff92p1, 0x1.ffa81708a0b41p-1},
// Empirical worst-case points in other libraries with
// larger worst-case errors than FDLIBM
{-0x1.c41e527b70f43p-3, -0x1.bcea047cc736cp-3},
};
for (double[] testCase: testCases)
failures += testTanhCase(testCase[0], testCase[1]);
return failures;
}
}