7f02f07f75
Reviewed-by: rgiulietti
297 lines
14 KiB
Java
297 lines
14 KiB
Java
/*
|
|
* Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4851638 8301392
|
|
* @key randomness
|
|
* @library /test/lib
|
|
* @build jdk.test.lib.RandomFactory
|
|
* @build Tests
|
|
* @build FdlibmTranslit
|
|
* @build Log1pTests
|
|
* @run main Log1pTests
|
|
* @summary Tests for StrictMath.log1p
|
|
*/
|
|
|
|
import jdk.test.lib.RandomFactory;
|
|
|
|
/**
|
|
* The tests in ../Math/Log1pTests.java test properties that should
|
|
* hold for any log1p implementation, including the FDLIBM-based one
|
|
* required for StrictMath.log1p. Therefore, the test cases in
|
|
* ../Math/Log1pTests.java are run against both the Math and
|
|
* StrictMath versions of log1p. The role of this test is to verify
|
|
* that the FDLIBM log1p algorithm is being used by running golden
|
|
* file tests on values that may vary from one conforming log1p
|
|
* implementation to another.
|
|
*/
|
|
|
|
public class Log1pTests {
|
|
private Log1pTests(){}
|
|
|
|
public static void main(String... args) {
|
|
int failures = 0;
|
|
|
|
failures += testLog1p();
|
|
failures += testAgainstTranslit();
|
|
|
|
if (failures > 0) {
|
|
System.err.println("Testing log1p incurred "
|
|
+ failures + " failures.");
|
|
throw new RuntimeException();
|
|
}
|
|
}
|
|
|
|
static int testLog1pCase(double input, double expected) {
|
|
return Tests.test("StrictMath.log1p(double)", input,
|
|
StrictMath::log1p, expected);
|
|
}
|
|
|
|
static int testLog1p() {
|
|
int failures = 0;
|
|
|
|
double [][] testCases = {
|
|
{0x1.fffffffffffffp-54, 0x1.fffffffffffffp-54},
|
|
{0x1.fffffffffcc48p-15, 0x1.fffc000aa74f3p-15},
|
|
{0x1.ffffffffff224p-14, 0x1.fff8002aa8ccfp-14},
|
|
{0x1.ffffffffff90cp-13, 0x1.fff000aaa23bdp-13},
|
|
{0x1.fffffffffffcep-4, 0x1.e27076e2af2bap-4},
|
|
{0x1.fffffffffffffp-2, 0x1.9f323ecbf984bp-2},
|
|
{0x1.ffffffffffffdp-1, 0x1.62e42fefa39eep-1},
|
|
{0x1.0p1, 0x1.193ea7aad030ap0},
|
|
{0x1.ffffffffffffbp1, 0x1.9c041f7ed8d31p0},
|
|
{0x1.fffffffffffffp2, 0x1.193ea7aad030ap1},
|
|
{0x1.fffffffffffe1p3, 0x1.6aa6bc1fa7f73p1},
|
|
{0x1.fffffffffffe1p4, 0x1.bf8d8f4d5b8cap1},
|
|
{0x1.ffffffffffff1p5, 0x1.0b29293942974p2},
|
|
{0x1.fffffffffff41p6, 0x1.37072a9b5b6b4p2},
|
|
{0x1.ffffffffffe65p7, 0x1.63241004e8fdep2},
|
|
{0x1.ffffffffffca1p8, 0x1.8f60adf041b73p2},
|
|
{0x1.fffffffffffffp9, 0x1.bbad39ebe1ccp2},
|
|
{0x1.fffffffffffffp10, 0x1.e801c1698ba43p2},
|
|
{0x1.ffffffffff2dep11, 0x1.0a2d23e3bb54bp3},
|
|
{0x1.ffffffffff18dp12, 0x1.205a66eeb4f81p3},
|
|
{0x1.ffffffffffff9p13, 0x1.368829f0af2dcp3},
|
|
{0x1.fffffffffbc1ep14, 0x1.4cb62cf069217p3},
|
|
{0x1.ffffffffffff5p16, 0x1.791282ee99d8ep3},
|
|
{0x1.fffffffffba46p17, 0x1.8f40bded96cd1p3},
|
|
{0x1.ffffffffffff7p18, 0x1.a56efcec920cbp3},
|
|
{0x1.ffffffffffff7p19, 0x1.bb9d3deb8c76ap3},
|
|
{0x1.ffffffffffff9p20, 0x1.d1cb7fea86bcap3},
|
|
{0x1.ffffffffffff7p24, 0x1.1542457b37d42p4},
|
|
{0x1.fffffffffffe7p29, 0x1.4cb5ecf0e964fp4},
|
|
{0x1.ffffffffffff9p30, 0x1.57cd0e704682p4},
|
|
{0x1.ffffffffffffbp34, 0x1.8429946e1cf5dp4},
|
|
{0x1.fffffffffffedp35, 0x1.8f40b5ed9912dp4},
|
|
{0x1.fffffffffffefp39, 0x1.bb9d3beb8c96ap4},
|
|
{0x1.fffffffffffe1p40, 0x1.c6b45d6b09abap4},
|
|
{0x1.fffffffffffe3p44, 0x1.f310e368fe17fp4},
|
|
{0x1.ffffffffffff5p45, 0x1.fe2804e87b34cp4},
|
|
{0x1.fffffffffffc5p66, 0x1.7386e22edf4a5p5},
|
|
{0x1.fffffffffff98p90, 0x1.f89c7428bca5fp5},
|
|
{0x1.a36e2eb1c317dp-14, 0x1.a368d0657ee51p-14},
|
|
{0x1.0624dd2f18d5cp-10, 0x1.060354f8c2226p-10},
|
|
{0x1.ffffffffffffdp-1, 0x1.62e42fefa39eep-1},
|
|
{0x1.8ffffffffffccp6, 0x1.275e2271bba28p2},
|
|
{0x1.f3fffffffff1p9, 0x1.ba2909ce4f846p2},
|
|
{0x1.387ffffffffa8p13, 0x1.26bbed6fbd838p3},
|
|
{0x1.869ffffffffe4p16, 0x1.7069f7a2d94f4p3},
|
|
{0x1.e847fffffff3ep19, 0x1.ba18abb1dedbcp3},
|
|
{0x1.312cfffffff23p23, 0x1.01e3b85ec299p4},
|
|
{0x1.7d783ffffff17p26, 0x1.26bb1bbe0482ap4},
|
|
{0x1.dcd64ffffffcep29, 0x1.4b927f3304b3ap4},
|
|
{0x1.2a05f1ffffa3p33, 0x1.7069e2aa317fep4},
|
|
{0x1.74876e7ffffbep36, 0x1.9541462195ffap4},
|
|
{0x1.d1a94a1fffddp39, 0x1.ba18a999000a6p4},
|
|
{0x1.2309ce53ffed2p43, 0x1.def00d106aa4ep4},
|
|
{0x1.6bcc41e8ffe73p46, 0x1.01e3b843eaa6cp5},
|
|
{0x1.c6bf52633fe7dp49, 0x1.144f69ff9ffbep5},
|
|
{0x1.1c37937e07fffp53, 0x1.26bb1bbb55515p5},
|
|
{0x1.6345785d89f12p56, 0x1.3926cd770aa62p5},
|
|
{0x1.bc16d674ec76ap59, 0x1.4b927f32bffb6p5},
|
|
{0x1.158e460913c51p63, 0x1.5dfe30ee75504p5},
|
|
{0x1.5af1d78b58badp66, 0x1.7069e2aa2aa58p5},
|
|
{0x1.b1ae4d6e2ecd4p69, 0x1.82d59465dffap5},
|
|
{0x1.0f0cf064dd066p73, 0x1.95414621954d6p5},
|
|
{0x1.52d02c7e14a9p76, 0x1.a7acf7dd4aa4cp5},
|
|
{0x1.a784379d99c19p79, 0x1.ba18a998fff98p5},
|
|
{0x1.08b2a2c27fb5p83, 0x1.cc845b54b54bap5},
|
|
{0x1.4adf4b7320322p86, 0x1.def00d106aa42p5},
|
|
{0x1.9d971e4fe7b91p89, 0x1.f15bbecc1ff6ap5},
|
|
{0x1.027e72f1f0ea3p93, 0x1.01e3b843eaa63p6},
|
|
{0x1.431e0fae6d44bp96, 0x1.0b199121c5512p6},
|
|
{0x1.93e5939a086bcp99, 0x1.144f69ff9ffb4p6},
|
|
{0x1.f8def8808ac86p102, 0x1.1d8542dd7aa65p6},
|
|
{0x1.3b8b5b5056dc7p106, 0x1.26bb1bbb55514p6},
|
|
{0x1.8a6e32246c76cp109, 0x1.2ff0f4992ffb8p6},
|
|
{0x1.ed09bead86a07p112, 0x1.3926cd770aa41p6},
|
|
{0x1.3426172c74d33p116, 0x1.425ca654e550ep6},
|
|
{0x1.812f9cf791f1ep119, 0x1.4b927f32bffb4p6},
|
|
{0x1.e17b8435758f2p122, 0x1.54c858109aa3ep6},
|
|
{0x1.2ced32a169cfap126, 0x1.5dfe30ee754fap6},
|
|
{0x1.78287f49c497cp129, 0x1.673409cc4ffbp6},
|
|
{0x1.d6329f1c3492ep132, 0x1.7069e2aa2aa3p6},
|
|
{0x1.25dfa371a14b8p136, 0x1.799fbb88054f2p6},
|
|
{0x1.6f578c4e09f0ap139, 0x1.82d59465dffa8p6},
|
|
{0x1.cb2d6f618c4b4p142, 0x1.8c0b6d43baa4cp6},
|
|
{0x1.1efc659cf77abp146, 0x1.95414621954eap6},
|
|
{0x1.66bb7f0435c5bp149, 0x1.9e771eff6ffa6p6},
|
|
{0x1.c06a5ec5428a4p152, 0x1.a7acf7dd4aa36p6},
|
|
{0x1.18427b3b49fc9p156, 0x1.b0e2d0bb254f6p6},
|
|
{0x1.5e531a0a1c729p159, 0x1.ba18a998fff9cp6},
|
|
{0x1.b5e7e08ca3686p162, 0x1.c34e8276daa4p6},
|
|
{0x1.11b0ec57e6492p166, 0x1.cc845b54b54f2p6},
|
|
{0x1.561d276ddfd7dp169, 0x1.d5ba34328ff9ap6},
|
|
{0x1.aba471495757bp172, 0x1.def00d106aa3p6},
|
|
{0x1.0b46c6cdd6a8ep176, 0x1.e825e5ee454ddp6},
|
|
{0x1.4e1878814c5f4p179, 0x1.f15bbecc1ff88p6},
|
|
{0x1.a19e96a19f65ap182, 0x1.fa9197a9faa2ep6},
|
|
{0x1.05031e2503cfcp186, 0x1.01e3b843eaa71p7},
|
|
{0x1.4643e5ae441d2p189, 0x1.067ea4b2d7fb6p7},
|
|
{0x1.97d4df19d5c5dp192, 0x1.0b199121c5516p7},
|
|
{0x1.fdca16e04ae24p195, 0x1.0fb47d90b2a65p7},
|
|
{0x1.3e9e4e4c2f2dap199, 0x1.144f69ff9ffc4p7},
|
|
{0x1.8e45e1df3ac31p202, 0x1.18ea566e8d514p7},
|
|
{0x1.f1d75a5709306p205, 0x1.1d8542dd7aa63p7},
|
|
{0x1.372698766608cp209, 0x1.22202f4c67fcp7},
|
|
{0x1.84f03e93fef5p212, 0x1.26bb1bbb55508p7},
|
|
{0x1.e62c4e38fdba1p215, 0x1.2b56082a42a4bp7},
|
|
{0x1.2fdbb0e39f6b8p219, 0x1.2ff0f4992ffb6p7},
|
|
{0x1.7bd29d1c875a2p222, 0x1.348be1081d50cp7},
|
|
{0x1.dac74463a76e9p225, 0x1.3926cd770aa42p7},
|
|
{0x1.28bc8abe48f57p229, 0x1.3dc1b9e5f7fap7},
|
|
{0x1.72ebad6ddc67ep232, 0x1.425ca654e550ep7},
|
|
{0x1.cfa698c952a3ap235, 0x1.46f792c3d2a53p7},
|
|
{0x1.21c81f7dd42b1p239, 0x1.4b927f32bffb6p7},
|
|
{0x1.6a3a275d4926bp242, 0x1.502d6ba1ad50ap7},
|
|
{0x1.c4c8b134970ddp245, 0x1.54c858109aa0ep7},
|
|
{0x1.61bcca711985dp252, 0x1.5dfe30ee75508p7},
|
|
{0x1.ba2bfd0d5fe2ap255, 0x1.62991d5d62a5cp7},
|
|
{0x1.59725db2728b7p262, 0x1.6bcef63b3d4fcp7},
|
|
{0x1.afcef51f0fa33p265, 0x1.7069e2aa2aa5ap7},
|
|
{0x1.0de1593368f8cp269, 0x1.7504cf1917f95p7},
|
|
{0x1.5159af804425ep272, 0x1.799fbb88055p7},
|
|
{0x1.a5b01b605409p275, 0x1.7e3aa7f6f2a3ep7},
|
|
{0x1.078e111c34e5bp279, 0x1.82d59465dff9fp7},
|
|
{0x1.497195634225fp282, 0x1.877080d4cd4f4p7},
|
|
{0x1.9bcdfabc13053p285, 0x1.8c0b6d43baa4ep7},
|
|
{0x1.0160bcb58c08cp289, 0x1.90a659b2a7fa7p7},
|
|
{0x1.41b8ebe2eec13p292, 0x1.95414621954f4p7},
|
|
{0x1.922726dbaa542p295, 0x1.99dc329082a46p7},
|
|
{0x1.f6b0f09295714p298, 0x1.9e771eff6ffa3p7},
|
|
{0x1.3a2e965b9d0b2p302, 0x1.a3120b6e5d4eep7},
|
|
{0x1.88ba3bf284dd1p305, 0x1.a7acf7dd4aa4ep7},
|
|
{0x1.32d17ed576f35p312, 0x1.b0e2d0bb254ep7},
|
|
{0x1.7f85de8ad56bep315, 0x1.b57dbd2a12a44p7},
|
|
{0x1.df67562d87c5cp318, 0x1.ba18a998fff65p7},
|
|
{0x1.2ba095dc76db7p322, 0x1.beb39607ed4fp7},
|
|
{0x1.7688bb5394bd3p325, 0x1.c34e8276daa48p7},
|
|
{0x1.d42aea2878b45p328, 0x1.c7e96ee5c7f87p7},
|
|
{0x1.249ad2594989p332, 0x1.cc845b54b54a6p7},
|
|
|
|
// Empirical worst-case points in other libraries with
|
|
// larger worst-case errors than FDLIBM
|
|
{-0x1.2bf183e0344b2p-2, -0x1.62ebb44459d79p-2},
|
|
{-0x1.2bf32aaf122e2p-2, -0x1.62ee0a3a4baf9p-2},
|
|
{-0x1.8000000000000p-53, -0x1.8000000000001p-53},
|
|
{-0x1.2e496d25897ecp-2, -0x1.663d81cb08f56p-2},
|
|
{-0x1.ffffffbaefe27p-2, -0x1.62e42faa93817p-1},
|
|
{-0x1.5efad5491a79bp-1022, -0x1.5efad5491a79bp-1022},
|
|
};
|
|
|
|
for (double[] testCase: testCases)
|
|
failures+=testLog1pCase(testCase[0], testCase[1]);
|
|
|
|
return failures;
|
|
}
|
|
|
|
// Initialize shared random number generator
|
|
private static java.util.Random random = RandomFactory.getRandom();
|
|
|
|
/**
|
|
* Test StrictMath.log1p against transliteration port of log1p.
|
|
*/
|
|
private static int testAgainstTranslit() {
|
|
int failures = 0;
|
|
double x;
|
|
|
|
// Test just above subnormal threshold...
|
|
x = Double.MIN_NORMAL;
|
|
failures += testRange(x, Math.ulp(x), 1000);
|
|
|
|
// ... and just below subnormal threshold ...
|
|
x = Math.nextDown(Double.MIN_NORMAL);
|
|
failures += testRange(x, -Math.ulp(x), 1000);
|
|
|
|
// Probe near decision points in the FDLIBM algorithm.
|
|
double[] decisionPoints = {
|
|
1.0,
|
|
-0x1.0p-29,
|
|
0x1.0p-29,
|
|
-0x1.0p-54,
|
|
0x1.0p-54,
|
|
|
|
-0.2930, // approx. sqrt(2)/2 -1
|
|
-0.2929,
|
|
-0.2928,
|
|
|
|
0.41421, // approx. sqrt(2) -1
|
|
0.41422,
|
|
0.41423,
|
|
};
|
|
|
|
for (double testPoint : decisionPoints) {
|
|
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000);
|
|
}
|
|
|
|
x = Tests.createRandomDouble(random);
|
|
|
|
// Make the increment twice the ulp value in case the random
|
|
// value is near an exponent threshold. Don't worry about test
|
|
// elements overflowing to infinity if the starting value is
|
|
// near Double.MAX_VALUE.
|
|
failures += testRange(x, 2.0 * Math.ulp(x), 1000);
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int testRange(double start, double increment, int count) {
|
|
int failures = 0;
|
|
double x = start;
|
|
for (int i = 0; i < count; i++, x += increment) {
|
|
failures += testLog1pCase(x, FdlibmTranslit.log1p(x));
|
|
}
|
|
return failures;
|
|
}
|
|
|
|
private static int testRangeMidpoint(double midpoint, double increment, int count) {
|
|
int failures = 0;
|
|
double x = midpoint - increment*(count / 2) ;
|
|
for (int i = 0; i < count; i++, x += increment) {
|
|
failures += testLog1pCase(x, FdlibmTranslit.log1p(x));
|
|
}
|
|
return failures;
|
|
}
|
|
}
|