jdk-24/test/micro/org/openjdk/bench/java/lang/FPComparison.java
2022-06-07 07:23:30 +00:00

135 lines
4.0 KiB
Java

/*
* Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.java.lang;
import org.openjdk.jmh.annotations.*;
import java.util.concurrent.TimeUnit;
import java.util.random.RandomGenerator;
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Thread)
@Warmup(iterations = 5, time = 1)
@Measurement(iterations = 5, time = 1)
@Fork(3)
public class FPComparison {
static final int INVOCATIONS = 1024;
float[] f1;
double[] d1;
float[] f2;
double[] d2;
int[] res;
@Setup
public void setup() {
var random = RandomGenerator.getDefault();
f1 = new float[INVOCATIONS];
d1 = new double[INVOCATIONS];
f2 = new float[INVOCATIONS];
d2 = new double[INVOCATIONS];
res = new int[INVOCATIONS];
for (int i = 0; i < INVOCATIONS; i++) {
int type = random.nextInt(5);
if (type == 1) {
f1[i] = random.nextFloat();
d1[i] = random.nextDouble();
f2[i] = random.nextFloat();
d2[i] = random.nextDouble();
} else if (type == 2) {
f1[i] = Float.POSITIVE_INFINITY;
d1[i] = Double.POSITIVE_INFINITY;
f2[i] = Float.POSITIVE_INFINITY;
d2[i] = Double.POSITIVE_INFINITY;
} else if (type == 3) {
f1[i] = Float.NEGATIVE_INFINITY;
d1[i] = Double.NEGATIVE_INFINITY;
f2[i] = Float.NEGATIVE_INFINITY;
d2[i] = Double.NEGATIVE_INFINITY;
} else if (type >= 4) {
f1[i] = Float.NaN;
d1[i] = Double.NaN;
f2[i] = Float.NaN;
d2[i] = Double.NaN;
}
}
}
@Benchmark
public void isNanFloat() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = Float.isNaN(f1[i]) ? 1 : 0;
}
}
@Benchmark
public void isNanDouble() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = Double.isNaN(d1[i]) ? 1 : 0;
}
}
@Benchmark
public void isInfiniteFloat() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = Float.isInfinite(f1[i]) ? 1 : 0;
}
}
@Benchmark
public void isInfiniteDouble() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = Double.isInfinite(d1[i]) ? 1 : 0;
}
}
@Benchmark
public void isFiniteFloat() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = Float.isFinite(f1[i]) ? 1 : 0;
}
}
@Benchmark
public void isFiniteDouble() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = Double.isFinite(d1[i]) ? 1 : 0;
}
}
@Benchmark
public void equalFloat() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = (f1[i] == f2[i]) ? 1 : 0;
}
}
@Benchmark
public void equalDouble() {
for (int i = 0; i < INVOCATIONS; i++) {
res[i] = (d1[i] == d2[i]) ? 1 : 0;
}
}
}