jdk-24/hotspot/src/share/vm/memory/generation.cpp
2015-03-27 15:29:19 +01:00

361 lines
11 KiB
C++

/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/blockOffsetTable.inline.hpp"
#include "memory/cardTableRS.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/genMarkSweep.hpp"
#include "memory/genOopClosures.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generation.hpp"
#include "memory/space.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
#include "utilities/copy.hpp"
#include "utilities/events.hpp"
Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
_level(level),
_ref_processor(NULL) {
if (!_virtual_space.initialize(rs, initial_size)) {
vm_exit_during_initialization("Could not reserve enough space for "
"object heap");
}
// Mangle all of the the initial generation.
if (ZapUnusedHeapArea) {
MemRegion mangle_region((HeapWord*)_virtual_space.low(),
(HeapWord*)_virtual_space.high());
SpaceMangler::mangle_region(mangle_region);
}
_reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
(HeapWord*)_virtual_space.high_boundary());
}
GenerationSpec* Generation::spec() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(level() == 0 || level() == 1, "Bad gen level");
return level() == 0 ? gch->gen_policy()->young_gen_spec() : gch->gen_policy()->old_gen_spec();
}
size_t Generation::max_capacity() const {
return reserved().byte_size();
}
void Generation::print_heap_change(size_t prev_used) const {
if (PrintGCDetails && Verbose) {
gclog_or_tty->print(" " SIZE_FORMAT
"->" SIZE_FORMAT
"(" SIZE_FORMAT ")",
prev_used, used(), capacity());
} else {
gclog_or_tty->print(" " SIZE_FORMAT "K"
"->" SIZE_FORMAT "K"
"(" SIZE_FORMAT "K)",
prev_used / K, used() / K, capacity() / K);
}
}
// By default we get a single threaded default reference processor;
// generations needing multi-threaded refs processing or discovery override this method.
void Generation::ref_processor_init() {
assert(_ref_processor == NULL, "a reference processor already exists");
assert(!_reserved.is_empty(), "empty generation?");
_ref_processor = new ReferenceProcessor(_reserved); // a vanilla reference processor
if (_ref_processor == NULL) {
vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
}
}
void Generation::print() const { print_on(tty); }
void Generation::print_on(outputStream* st) const {
st->print(" %-20s", name());
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
capacity()/K, used()/K);
st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
p2i(_virtual_space.low_boundary()),
p2i(_virtual_space.high()),
p2i(_virtual_space.high_boundary()));
}
void Generation::print_summary_info() { print_summary_info_on(tty); }
void Generation::print_summary_info_on(outputStream* st) {
StatRecord* sr = stat_record();
double time = sr->accumulated_time.seconds();
st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
"%d GC's, avg GC time %3.7f]",
level(), time, sr->invocations,
sr->invocations > 0 ? time / sr->invocations : 0.0);
}
// Utility iterator classes
class GenerationIsInReservedClosure : public SpaceClosure {
public:
const void* _p;
Space* sp;
virtual void do_space(Space* s) {
if (sp == NULL) {
if (s->is_in_reserved(_p)) sp = s;
}
}
GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
};
class GenerationIsInClosure : public SpaceClosure {
public:
const void* _p;
Space* sp;
virtual void do_space(Space* s) {
if (sp == NULL) {
if (s->is_in(_p)) sp = s;
}
}
GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
};
bool Generation::is_in(const void* p) const {
GenerationIsInClosure blk(p);
((Generation*)this)->space_iterate(&blk);
return blk.sp != NULL;
}
Generation* Generation::next_gen() const {
GenCollectedHeap* gch = GenCollectedHeap::heap();
if (level() == 0) {
return gch->old_gen();
} else {
return NULL;
}
}
size_t Generation::max_contiguous_available() const {
// The largest number of contiguous free words in this or any higher generation.
size_t max = 0;
for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
size_t avail = gen->contiguous_available();
if (avail > max) {
max = avail;
}
}
return max;
}
bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
size_t available = max_contiguous_available();
bool res = (available >= max_promotion_in_bytes);
if (PrintGC && Verbose) {
gclog_or_tty->print_cr(
"Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
res? "":" not", available, res? ">=":"<",
max_promotion_in_bytes);
}
return res;
}
// Ignores "ref" and calls allocate().
oop Generation::promote(oop obj, size_t obj_size) {
assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
#ifndef PRODUCT
if (Universe::heap()->promotion_should_fail()) {
return NULL;
}
#endif // #ifndef PRODUCT
HeapWord* result = allocate(obj_size, false);
if (result != NULL) {
Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
return oop(result);
} else {
GenCollectedHeap* gch = GenCollectedHeap::heap();
return gch->handle_failed_promotion(this, obj, obj_size);
}
}
oop Generation::par_promote(int thread_num,
oop obj, markOop m, size_t word_sz) {
// Could do a bad general impl here that gets a lock. But no.
ShouldNotCallThis();
return NULL;
}
Space* Generation::space_containing(const void* p) const {
GenerationIsInReservedClosure blk(p);
// Cast away const
((Generation*)this)->space_iterate(&blk);
return blk.sp;
}
// Some of these are mediocre general implementations. Should be
// overridden to get better performance.
class GenerationBlockStartClosure : public SpaceClosure {
public:
const void* _p;
HeapWord* _start;
virtual void do_space(Space* s) {
if (_start == NULL && s->is_in_reserved(_p)) {
_start = s->block_start(_p);
}
}
GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
};
HeapWord* Generation::block_start(const void* p) const {
GenerationBlockStartClosure blk(p);
// Cast away const
((Generation*)this)->space_iterate(&blk);
return blk._start;
}
class GenerationBlockSizeClosure : public SpaceClosure {
public:
const HeapWord* _p;
size_t size;
virtual void do_space(Space* s) {
if (size == 0 && s->is_in_reserved(_p)) {
size = s->block_size(_p);
}
}
GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
};
size_t Generation::block_size(const HeapWord* p) const {
GenerationBlockSizeClosure blk(p);
// Cast away const
((Generation*)this)->space_iterate(&blk);
assert(blk.size > 0, "seems reasonable");
return blk.size;
}
class GenerationBlockIsObjClosure : public SpaceClosure {
public:
const HeapWord* _p;
bool is_obj;
virtual void do_space(Space* s) {
if (!is_obj && s->is_in_reserved(_p)) {
is_obj |= s->block_is_obj(_p);
}
}
GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
};
bool Generation::block_is_obj(const HeapWord* p) const {
GenerationBlockIsObjClosure blk(p);
// Cast away const
((Generation*)this)->space_iterate(&blk);
return blk.is_obj;
}
class GenerationOopIterateClosure : public SpaceClosure {
public:
ExtendedOopClosure* _cl;
virtual void do_space(Space* s) {
s->oop_iterate(_cl);
}
GenerationOopIterateClosure(ExtendedOopClosure* cl) :
_cl(cl) {}
};
void Generation::oop_iterate(ExtendedOopClosure* cl) {
GenerationOopIterateClosure blk(cl);
space_iterate(&blk);
}
void Generation::younger_refs_in_space_iterate(Space* sp,
OopsInGenClosure* cl) {
GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
rs->younger_refs_in_space_iterate(sp, cl);
}
class GenerationObjIterateClosure : public SpaceClosure {
private:
ObjectClosure* _cl;
public:
virtual void do_space(Space* s) {
s->object_iterate(_cl);
}
GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
};
void Generation::object_iterate(ObjectClosure* cl) {
GenerationObjIterateClosure blk(cl);
space_iterate(&blk);
}
class GenerationSafeObjIterateClosure : public SpaceClosure {
private:
ObjectClosure* _cl;
public:
virtual void do_space(Space* s) {
s->safe_object_iterate(_cl);
}
GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
};
void Generation::safe_object_iterate(ObjectClosure* cl) {
GenerationSafeObjIterateClosure blk(cl);
space_iterate(&blk);
}
void Generation::prepare_for_compaction(CompactPoint* cp) {
// Generic implementation, can be specialized
CompactibleSpace* space = first_compaction_space();
while (space != NULL) {
space->prepare_for_compaction(cp);
space = space->next_compaction_space();
}
}
class AdjustPointersClosure: public SpaceClosure {
public:
void do_space(Space* sp) {
sp->adjust_pointers();
}
};
void Generation::adjust_pointers() {
// Note that this is done over all spaces, not just the compactible
// ones.
AdjustPointersClosure blk;
space_iterate(&blk, true);
}
void Generation::compact() {
CompactibleSpace* sp = first_compaction_space();
while (sp != NULL) {
sp->compact();
sp = sp->next_compaction_space();
}
}