jdk-24/hotspot/src/share/vm/gc/g1/g1IHOPControl.cpp
Thomas Schatzl 352c2060f2 8136679: JFR event for adaptive IHOP
Reviewed-by: tbenson, mgerdin, sangheki, ehelin
2015-11-25 14:43:29 +01:00

296 lines
13 KiB
C++

/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ErgoVerbose.hpp"
#include "gc/g1/g1IHOPControl.hpp"
#include "gc/g1/g1Predictions.hpp"
#include "gc/shared/gcTrace.hpp"
G1IHOPControl::G1IHOPControl(double initial_ihop_percent, size_t target_occupancy) :
_initial_ihop_percent(initial_ihop_percent),
_target_occupancy(target_occupancy),
_last_allocated_bytes(0),
_last_allocation_time_s(0.0)
{
assert(_initial_ihop_percent >= 0.0 && _initial_ihop_percent <= 100.0, "Initial IHOP value must be between 0 and 100 but is %.3f", initial_ihop_percent);
}
void G1IHOPControl::update_allocation_info(double allocation_time_s, size_t allocated_bytes, size_t additional_buffer_size) {
assert(allocation_time_s >= 0.0, "Allocation time must be positive but is %.3f", allocation_time_s);
_last_allocation_time_s = allocation_time_s;
_last_allocated_bytes = allocated_bytes;
}
void G1IHOPControl::print() {
size_t cur_conc_mark_start_threshold = get_conc_mark_start_threshold();
ergo_verbose6(ErgoIHOP,
"basic information",
ergo_format_reason("value update")
ergo_format_byte_perc("threshold")
ergo_format_byte("target occupancy")
ergo_format_byte("current occupancy")
ergo_format_double("recent old gen allocation rate")
ergo_format_double("recent marking phase length"),
cur_conc_mark_start_threshold,
cur_conc_mark_start_threshold * 100.0 / _target_occupancy,
_target_occupancy,
G1CollectedHeap::heap()->used(),
_last_allocation_time_s > 0.0 ? _last_allocated_bytes / _last_allocation_time_s : 0.0,
last_marking_length_s());
}
void G1IHOPControl::send_trace_event(G1NewTracer* tracer) {
tracer->report_basic_ihop_statistics(get_conc_mark_start_threshold(),
_target_occupancy,
G1CollectedHeap::heap()->used(),
_last_allocated_bytes,
_last_allocation_time_s,
last_marking_length_s());
}
G1StaticIHOPControl::G1StaticIHOPControl(double ihop_percent, size_t target_occupancy) :
G1IHOPControl(ihop_percent, target_occupancy),
_last_marking_length_s(0.0) {
assert(_target_occupancy > 0, "Target occupancy must be larger than zero.");
}
#ifndef PRODUCT
static void test_update(G1IHOPControl* ctrl, double alloc_time, size_t alloc_amount, size_t young_size, double mark_time) {
for (int i = 0; i < 100; i++) {
ctrl->update_allocation_info(alloc_time, alloc_amount, young_size);
ctrl->update_marking_length(mark_time);
}
}
void G1StaticIHOPControl::test() {
size_t const initial_ihop = 45;
G1StaticIHOPControl ctrl(initial_ihop, 100);
size_t threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_ihop,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_ihop, threshold);
ctrl.update_allocation_info(100.0, 100, 100);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_ihop,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_ihop, threshold);
ctrl.update_marking_length(1000.0);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_ihop,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_ihop, threshold);
// Whatever we pass, the IHOP value must stay the same.
test_update(&ctrl, 2, 10, 10, 3);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_ihop,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_ihop, threshold);
test_update(&ctrl, 12, 10, 10, 3);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_ihop,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_ihop, threshold);
}
#endif
G1AdaptiveIHOPControl::G1AdaptiveIHOPControl(double ihop_percent,
size_t initial_target_occupancy,
G1Predictions const* predictor,
size_t heap_reserve_percent,
size_t heap_waste_percent) :
G1IHOPControl(ihop_percent, initial_target_occupancy),
_predictor(predictor),
_marking_times_s(10, 0.95),
_allocation_rate_s(10, 0.95),
_last_unrestrained_young_size(0),
_heap_reserve_percent(heap_reserve_percent),
_heap_waste_percent(heap_waste_percent)
{
}
size_t G1AdaptiveIHOPControl::actual_target_threshold() const {
// The actual target threshold takes the heap reserve and the expected waste in
// free space into account.
// _heap_reserve is that part of the total heap capacity that is reserved for
// eventual promotion failure.
// _heap_waste is the amount of space will never be reclaimed in any
// heap, so can not be used for allocation during marking and must always be
// considered.
double safe_total_heap_percentage = MIN2((double)(_heap_reserve_percent + _heap_waste_percent), 100.0);
return MIN2(
G1CollectedHeap::heap()->max_capacity() * (100.0 - safe_total_heap_percentage) / 100.0,
_target_occupancy * (100.0 - _heap_waste_percent) / 100.0
);
}
bool G1AdaptiveIHOPControl::have_enough_data_for_prediction() const {
return ((size_t)_marking_times_s.num() >= G1AdaptiveIHOPNumInitialSamples) &&
((size_t)_allocation_rate_s.num() >= G1AdaptiveIHOPNumInitialSamples);
}
size_t G1AdaptiveIHOPControl::get_conc_mark_start_threshold() {
if (have_enough_data_for_prediction()) {
double pred_marking_time = _predictor->get_new_prediction(&_marking_times_s);
double pred_promotion_rate = _predictor->get_new_prediction(&_allocation_rate_s);
size_t predicted_needed_bytes_during_marking =
(pred_marking_time * pred_promotion_rate +
_last_unrestrained_young_size); // In reality we would need the maximum size of the young gen during marking. This is a conservative estimate.
size_t internal_threshold = actual_target_threshold();
size_t predicted_initiating_threshold = predicted_needed_bytes_during_marking < internal_threshold ?
internal_threshold - predicted_needed_bytes_during_marking :
0;
return predicted_initiating_threshold;
} else {
// Use the initial value.
return _initial_ihop_percent * _target_occupancy / 100.0;
}
}
void G1AdaptiveIHOPControl::update_allocation_info(double allocation_time_s, size_t allocated_bytes, size_t additional_buffer_size) {
G1IHOPControl::update_allocation_info(allocation_time_s, allocated_bytes, additional_buffer_size);
double allocation_rate = (double) allocated_bytes / allocation_time_s;
_allocation_rate_s.add(allocation_rate);
_last_unrestrained_young_size = additional_buffer_size;
}
void G1AdaptiveIHOPControl::update_marking_length(double marking_length_s) {
assert(marking_length_s >= 0.0, "Marking length must be larger than zero but is %.3f", marking_length_s);
_marking_times_s.add(marking_length_s);
}
void G1AdaptiveIHOPControl::print() {
G1IHOPControl::print();
size_t actual_target = actual_target_threshold();
ergo_verbose6(ErgoIHOP,
"adaptive IHOP information",
ergo_format_reason("value update")
ergo_format_byte_perc("threshold")
ergo_format_byte("internal target occupancy")
ergo_format_double("predicted old gen allocation rate")
ergo_format_double("predicted marking phase length")
ergo_format_str("prediction active"),
get_conc_mark_start_threshold(),
percent_of(get_conc_mark_start_threshold(), actual_target),
actual_target,
_predictor->get_new_prediction(&_allocation_rate_s),
_predictor->get_new_prediction(&_marking_times_s),
have_enough_data_for_prediction() ? "true" : "false"
);
}
void G1AdaptiveIHOPControl::send_trace_event(G1NewTracer* tracer) {
G1IHOPControl::send_trace_event(tracer);
tracer->report_adaptive_ihop_statistics(get_conc_mark_start_threshold(),
actual_target_threshold(),
G1CollectedHeap::heap()->used(),
_last_unrestrained_young_size,
_predictor->get_new_prediction(&_allocation_rate_s),
_predictor->get_new_prediction(&_marking_times_s),
have_enough_data_for_prediction());
}
#ifndef PRODUCT
void G1AdaptiveIHOPControl::test() {
size_t const initial_threshold = 45;
size_t const young_size = 10;
size_t const target_size = 100;
// The final IHOP value is always
// target_size - (young_size + alloc_amount/alloc_time * marking_time)
G1Predictions pred(0.95);
G1AdaptiveIHOPControl ctrl(initial_threshold, target_size, &pred, 0, 0);
// First "load".
size_t const alloc_time1 = 2;
size_t const alloc_amount1 = 10;
size_t const marking_time1 = 2;
size_t const settled_ihop1 = target_size - (young_size + alloc_amount1/alloc_time1 * marking_time1);
size_t threshold;
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_threshold,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_threshold, threshold);
for (size_t i = 0; i < G1AdaptiveIHOPNumInitialSamples - 1; i++) {
ctrl.update_allocation_info(alloc_time1, alloc_amount1, young_size);
ctrl.update_marking_length(marking_time1);
// Not enough data yet.
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_threshold,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_threshold, threshold);
}
test_update(&ctrl, alloc_time1, alloc_amount1, young_size, marking_time1);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == settled_ihop1,
"Expected IHOP threshold to settle at " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop1, threshold);
// Second "load". A bit higher allocation rate.
size_t const alloc_time2 = 2;
size_t const alloc_amount2 = 30;
size_t const marking_time2 = 2;
size_t const settled_ihop2 = target_size - (young_size + alloc_amount2/alloc_time2 * marking_time2);
test_update(&ctrl, alloc_time2, alloc_amount2, young_size, marking_time2);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold < settled_ihop1,
"Expected IHOP threshold to settle at a value lower than " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop1, threshold);
// Third "load". Very high (impossible) allocation rate.
size_t const alloc_time3 = 1;
size_t const alloc_amount3 = 50;
size_t const marking_time3 = 2;
size_t const settled_ihop3 = 0;
test_update(&ctrl, alloc_time3, alloc_amount3, young_size, marking_time3);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == settled_ihop3,
"Expected IHOP threshold to settle at " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop3, threshold);
// And back to some arbitrary value.
test_update(&ctrl, alloc_time2, alloc_amount2, young_size, marking_time2);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold > settled_ihop3,
"Expected IHOP threshold to settle at value larger than " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop3, threshold);
}
void IHOP_test() {
G1StaticIHOPControl::test();
}
#endif