8d8189b9e5
Reviewed-by: jwilhelm, sjohanss
779 lines
29 KiB
C++
779 lines
29 KiB
C++
/*
|
|
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
|
|
#define SHARE_VM_GC_G1_HEAPREGION_HPP
|
|
|
|
#include "gc/g1/g1AllocationContext.hpp"
|
|
#include "gc/g1/g1BlockOffsetTable.hpp"
|
|
#include "gc/g1/g1HeapRegionTraceType.hpp"
|
|
#include "gc/g1/heapRegionTracer.hpp"
|
|
#include "gc/g1/heapRegionType.hpp"
|
|
#include "gc/g1/survRateGroup.hpp"
|
|
#include "gc/shared/ageTable.hpp"
|
|
#include "gc/shared/spaceDecorator.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
// A HeapRegion is the smallest piece of a G1CollectedHeap that
|
|
// can be collected independently.
|
|
|
|
// NOTE: Although a HeapRegion is a Space, its
|
|
// Space::initDirtyCardClosure method must not be called.
|
|
// The problem is that the existence of this method breaks
|
|
// the independence of barrier sets from remembered sets.
|
|
// The solution is to remove this method from the definition
|
|
// of a Space.
|
|
|
|
// Each heap region is self contained. top() and end() can never
|
|
// be set beyond the end of the region. For humongous objects,
|
|
// the first region is a StartsHumongous region. If the humongous
|
|
// object is larger than a heap region, the following regions will
|
|
// be of type ContinuesHumongous. In this case the top() of the
|
|
// StartHumongous region and all ContinuesHumongous regions except
|
|
// the last will point to their own end. For the last ContinuesHumongous
|
|
// region, top() will equal the object's top.
|
|
|
|
class G1CollectedHeap;
|
|
class HeapRegionRemSet;
|
|
class HeapRegionRemSetIterator;
|
|
class HeapRegion;
|
|
class HeapRegionSetBase;
|
|
class nmethod;
|
|
|
|
#define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
|
|
#define HR_FORMAT_PARAMS(_hr_) \
|
|
(_hr_)->hrm_index(), \
|
|
(_hr_)->get_short_type_str(), \
|
|
p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
|
|
|
|
// sentinel value for hrm_index
|
|
#define G1_NO_HRM_INDEX ((uint) -1)
|
|
|
|
// A dirty card to oop closure for heap regions. It
|
|
// knows how to get the G1 heap and how to use the bitmap
|
|
// in the concurrent marker used by G1 to filter remembered
|
|
// sets.
|
|
|
|
class HeapRegionDCTOC : public DirtyCardToOopClosure {
|
|
private:
|
|
HeapRegion* _hr;
|
|
G1ParPushHeapRSClosure* _rs_scan;
|
|
G1CollectedHeap* _g1;
|
|
|
|
// Walk the given memory region from bottom to (actual) top
|
|
// looking for objects and applying the oop closure (_cl) to
|
|
// them. The base implementation of this treats the area as
|
|
// blocks, where a block may or may not be an object. Sub-
|
|
// classes should override this to provide more accurate
|
|
// or possibly more efficient walking.
|
|
void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
|
|
|
|
public:
|
|
HeapRegionDCTOC(G1CollectedHeap* g1,
|
|
HeapRegion* hr,
|
|
G1ParPushHeapRSClosure* cl,
|
|
CardTableModRefBS::PrecisionStyle precision);
|
|
};
|
|
|
|
// The complicating factor is that BlockOffsetTable diverged
|
|
// significantly, and we need functionality that is only in the G1 version.
|
|
// So I copied that code, which led to an alternate G1 version of
|
|
// OffsetTableContigSpace. If the two versions of BlockOffsetTable could
|
|
// be reconciled, then G1OffsetTableContigSpace could go away.
|
|
|
|
// The idea behind time stamps is the following. We want to keep track of
|
|
// the highest address where it's safe to scan objects for each region.
|
|
// This is only relevant for current GC alloc regions so we keep a time stamp
|
|
// per region to determine if the region has been allocated during the current
|
|
// GC or not. If the time stamp is current we report a scan_top value which
|
|
// was saved at the end of the previous GC for retained alloc regions and which is
|
|
// equal to the bottom for all other regions.
|
|
// There is a race between card scanners and allocating gc workers where we must ensure
|
|
// that card scanners do not read the memory allocated by the gc workers.
|
|
// In order to enforce that, we must not return a value of _top which is more recent than the
|
|
// time stamp. This is due to the fact that a region may become a gc alloc region at
|
|
// some point after we've read the timestamp value as being < the current time stamp.
|
|
// The time stamps are re-initialized to zero at cleanup and at Full GCs.
|
|
// The current scheme that uses sequential unsigned ints will fail only if we have 4b
|
|
// evacuation pauses between two cleanups, which is _highly_ unlikely.
|
|
class G1ContiguousSpace: public CompactibleSpace {
|
|
friend class VMStructs;
|
|
HeapWord* volatile _top;
|
|
HeapWord* volatile _scan_top;
|
|
protected:
|
|
G1BlockOffsetTablePart _bot_part;
|
|
Mutex _par_alloc_lock;
|
|
volatile unsigned _gc_time_stamp;
|
|
// When we need to retire an allocation region, while other threads
|
|
// are also concurrently trying to allocate into it, we typically
|
|
// allocate a dummy object at the end of the region to ensure that
|
|
// no more allocations can take place in it. However, sometimes we
|
|
// want to know where the end of the last "real" object we allocated
|
|
// into the region was and this is what this keeps track.
|
|
HeapWord* _pre_dummy_top;
|
|
|
|
public:
|
|
G1ContiguousSpace(G1BlockOffsetTable* bot);
|
|
|
|
void set_top(HeapWord* value) { _top = value; }
|
|
HeapWord* top() const { return _top; }
|
|
|
|
protected:
|
|
// Reset the G1ContiguousSpace.
|
|
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
|
|
|
|
HeapWord* volatile* top_addr() { return &_top; }
|
|
// Try to allocate at least min_word_size and up to desired_size from this Space.
|
|
// Returns NULL if not possible, otherwise sets actual_word_size to the amount of
|
|
// space allocated.
|
|
// This version assumes that all allocation requests to this Space are properly
|
|
// synchronized.
|
|
inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
// Try to allocate at least min_word_size and up to desired_size from this Space.
|
|
// Returns NULL if not possible, otherwise sets actual_word_size to the amount of
|
|
// space allocated.
|
|
// This version synchronizes with other calls to par_allocate_impl().
|
|
inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
|
|
public:
|
|
void reset_after_compaction() { set_top(compaction_top()); }
|
|
|
|
size_t used() const { return byte_size(bottom(), top()); }
|
|
size_t free() const { return byte_size(top(), end()); }
|
|
bool is_free_block(const HeapWord* p) const { return p >= top(); }
|
|
|
|
MemRegion used_region() const { return MemRegion(bottom(), top()); }
|
|
|
|
void object_iterate(ObjectClosure* blk);
|
|
void safe_object_iterate(ObjectClosure* blk);
|
|
|
|
void mangle_unused_area() PRODUCT_RETURN;
|
|
void mangle_unused_area_complete() PRODUCT_RETURN;
|
|
|
|
HeapWord* scan_top() const;
|
|
void record_timestamp();
|
|
void reset_gc_time_stamp() { _gc_time_stamp = 0; }
|
|
unsigned get_gc_time_stamp() { return _gc_time_stamp; }
|
|
void record_retained_region();
|
|
|
|
// See the comment above in the declaration of _pre_dummy_top for an
|
|
// explanation of what it is.
|
|
void set_pre_dummy_top(HeapWord* pre_dummy_top) {
|
|
assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
|
|
_pre_dummy_top = pre_dummy_top;
|
|
}
|
|
HeapWord* pre_dummy_top() {
|
|
return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
|
|
}
|
|
void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
|
|
|
|
virtual void clear(bool mangle_space);
|
|
|
|
HeapWord* block_start(const void* p);
|
|
HeapWord* block_start_const(const void* p) const;
|
|
|
|
// Allocation (return NULL if full). Assumes the caller has established
|
|
// mutually exclusive access to the space.
|
|
HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
// Allocation (return NULL if full). Enforces mutual exclusion internally.
|
|
HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
|
|
virtual HeapWord* allocate(size_t word_size);
|
|
virtual HeapWord* par_allocate(size_t word_size);
|
|
|
|
HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
|
|
|
|
// MarkSweep support phase3
|
|
virtual HeapWord* initialize_threshold();
|
|
virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
|
|
|
|
virtual void print() const;
|
|
|
|
void reset_bot() {
|
|
_bot_part.reset_bot();
|
|
}
|
|
|
|
void print_bot_on(outputStream* out) {
|
|
_bot_part.print_on(out);
|
|
}
|
|
};
|
|
|
|
class HeapRegion: public G1ContiguousSpace {
|
|
friend class VMStructs;
|
|
// Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
|
|
template <typename SpaceType>
|
|
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
|
|
private:
|
|
|
|
// The remembered set for this region.
|
|
// (Might want to make this "inline" later, to avoid some alloc failure
|
|
// issues.)
|
|
HeapRegionRemSet* _rem_set;
|
|
|
|
// Auxiliary functions for scan_and_forward support.
|
|
// See comments for CompactibleSpace for more information.
|
|
inline HeapWord* scan_limit() const {
|
|
return top();
|
|
}
|
|
|
|
inline bool scanned_block_is_obj(const HeapWord* addr) const {
|
|
return true; // Always true, since scan_limit is top
|
|
}
|
|
|
|
inline size_t scanned_block_size(const HeapWord* addr) const {
|
|
return HeapRegion::block_size(addr); // Avoid virtual call
|
|
}
|
|
|
|
void report_region_type_change(G1HeapRegionTraceType::Type to);
|
|
|
|
protected:
|
|
// The index of this region in the heap region sequence.
|
|
uint _hrm_index;
|
|
|
|
AllocationContext_t _allocation_context;
|
|
|
|
HeapRegionType _type;
|
|
|
|
// For a humongous region, region in which it starts.
|
|
HeapRegion* _humongous_start_region;
|
|
|
|
// True iff an attempt to evacuate an object in the region failed.
|
|
bool _evacuation_failed;
|
|
|
|
// A heap region may be a member one of a number of special subsets, each
|
|
// represented as linked lists through the field below. Currently, there
|
|
// is only one set:
|
|
// The collection set.
|
|
HeapRegion* _next_in_special_set;
|
|
|
|
// next region in the young "generation" region set
|
|
HeapRegion* _next_young_region;
|
|
|
|
// Next region whose cards need cleaning
|
|
HeapRegion* _next_dirty_cards_region;
|
|
|
|
// Fields used by the HeapRegionSetBase class and subclasses.
|
|
HeapRegion* _next;
|
|
HeapRegion* _prev;
|
|
#ifdef ASSERT
|
|
HeapRegionSetBase* _containing_set;
|
|
#endif // ASSERT
|
|
|
|
// We use concurrent marking to determine the amount of live data
|
|
// in each heap region.
|
|
size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
|
|
size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
|
|
|
|
// The calculated GC efficiency of the region.
|
|
double _gc_efficiency;
|
|
|
|
int _young_index_in_cset;
|
|
SurvRateGroup* _surv_rate_group;
|
|
int _age_index;
|
|
|
|
// The start of the unmarked area. The unmarked area extends from this
|
|
// word until the top and/or end of the region, and is the part
|
|
// of the region for which no marking was done, i.e. objects may
|
|
// have been allocated in this part since the last mark phase.
|
|
// "prev" is the top at the start of the last completed marking.
|
|
// "next" is the top at the start of the in-progress marking (if any.)
|
|
HeapWord* _prev_top_at_mark_start;
|
|
HeapWord* _next_top_at_mark_start;
|
|
// If a collection pause is in progress, this is the top at the start
|
|
// of that pause.
|
|
|
|
void init_top_at_mark_start() {
|
|
assert(_prev_marked_bytes == 0 &&
|
|
_next_marked_bytes == 0,
|
|
"Must be called after zero_marked_bytes.");
|
|
HeapWord* bot = bottom();
|
|
_prev_top_at_mark_start = bot;
|
|
_next_top_at_mark_start = bot;
|
|
}
|
|
|
|
// Cached attributes used in the collection set policy information
|
|
|
|
// The RSet length that was added to the total value
|
|
// for the collection set.
|
|
size_t _recorded_rs_length;
|
|
|
|
// The predicted elapsed time that was added to total value
|
|
// for the collection set.
|
|
double _predicted_elapsed_time_ms;
|
|
|
|
// The predicted number of bytes to copy that was added to
|
|
// the total value for the collection set.
|
|
size_t _predicted_bytes_to_copy;
|
|
|
|
public:
|
|
HeapRegion(uint hrm_index,
|
|
G1BlockOffsetTable* bot,
|
|
MemRegion mr);
|
|
|
|
// Initializing the HeapRegion not only resets the data structure, but also
|
|
// resets the BOT for that heap region.
|
|
// The default values for clear_space means that we will do the clearing if
|
|
// there's clearing to be done ourselves. We also always mangle the space.
|
|
virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
|
|
|
|
static int LogOfHRGrainBytes;
|
|
static int LogOfHRGrainWords;
|
|
|
|
static size_t GrainBytes;
|
|
static size_t GrainWords;
|
|
static size_t CardsPerRegion;
|
|
|
|
static size_t align_up_to_region_byte_size(size_t sz) {
|
|
return (sz + (size_t) GrainBytes - 1) &
|
|
~((1 << (size_t) LogOfHRGrainBytes) - 1);
|
|
}
|
|
|
|
|
|
// Returns whether a field is in the same region as the obj it points to.
|
|
template <typename T>
|
|
static bool is_in_same_region(T* p, oop obj) {
|
|
assert(p != NULL, "p can't be NULL");
|
|
assert(obj != NULL, "obj can't be NULL");
|
|
return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
|
|
}
|
|
|
|
static size_t max_region_size();
|
|
static size_t min_region_size_in_words();
|
|
|
|
// It sets up the heap region size (GrainBytes / GrainWords), as
|
|
// well as other related fields that are based on the heap region
|
|
// size (LogOfHRGrainBytes / LogOfHRGrainWords /
|
|
// CardsPerRegion). All those fields are considered constant
|
|
// throughout the JVM's execution, therefore they should only be set
|
|
// up once during initialization time.
|
|
static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
|
|
|
|
// All allocated blocks are occupied by objects in a HeapRegion
|
|
bool block_is_obj(const HeapWord* p) const;
|
|
|
|
// Returns the object size for all valid block starts
|
|
// and the amount of unallocated words if called on top()
|
|
size_t block_size(const HeapWord* p) const;
|
|
|
|
// Override for scan_and_forward support.
|
|
void prepare_for_compaction(CompactPoint* cp);
|
|
|
|
inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
|
|
inline HeapWord* allocate_no_bot_updates(size_t word_size);
|
|
inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
|
|
|
|
// If this region is a member of a HeapRegionManager, the index in that
|
|
// sequence, otherwise -1.
|
|
uint hrm_index() const { return _hrm_index; }
|
|
|
|
// The number of bytes marked live in the region in the last marking phase.
|
|
size_t marked_bytes() { return _prev_marked_bytes; }
|
|
size_t live_bytes() {
|
|
return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
|
|
}
|
|
|
|
// The number of bytes counted in the next marking.
|
|
size_t next_marked_bytes() { return _next_marked_bytes; }
|
|
// The number of bytes live wrt the next marking.
|
|
size_t next_live_bytes() {
|
|
return
|
|
(top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
|
|
}
|
|
|
|
// A lower bound on the amount of garbage bytes in the region.
|
|
size_t garbage_bytes() {
|
|
size_t used_at_mark_start_bytes =
|
|
(prev_top_at_mark_start() - bottom()) * HeapWordSize;
|
|
return used_at_mark_start_bytes - marked_bytes();
|
|
}
|
|
|
|
// Return the amount of bytes we'll reclaim if we collect this
|
|
// region. This includes not only the known garbage bytes in the
|
|
// region but also any unallocated space in it, i.e., [top, end),
|
|
// since it will also be reclaimed if we collect the region.
|
|
size_t reclaimable_bytes() {
|
|
size_t known_live_bytes = live_bytes();
|
|
assert(known_live_bytes <= capacity(), "sanity");
|
|
return capacity() - known_live_bytes;
|
|
}
|
|
|
|
// An upper bound on the number of live bytes in the region.
|
|
size_t max_live_bytes() { return used() - garbage_bytes(); }
|
|
|
|
void add_to_marked_bytes(size_t incr_bytes) {
|
|
_next_marked_bytes = _next_marked_bytes + incr_bytes;
|
|
}
|
|
|
|
void zero_marked_bytes() {
|
|
_prev_marked_bytes = _next_marked_bytes = 0;
|
|
}
|
|
|
|
const char* get_type_str() const { return _type.get_str(); }
|
|
const char* get_short_type_str() const { return _type.get_short_str(); }
|
|
G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
|
|
|
|
bool is_free() const { return _type.is_free(); }
|
|
|
|
bool is_young() const { return _type.is_young(); }
|
|
bool is_eden() const { return _type.is_eden(); }
|
|
bool is_survivor() const { return _type.is_survivor(); }
|
|
|
|
bool is_humongous() const { return _type.is_humongous(); }
|
|
bool is_starts_humongous() const { return _type.is_starts_humongous(); }
|
|
bool is_continues_humongous() const { return _type.is_continues_humongous(); }
|
|
|
|
bool is_old() const { return _type.is_old(); }
|
|
|
|
// A pinned region contains objects which are not moved by garbage collections.
|
|
// Humongous regions and archive regions are pinned.
|
|
bool is_pinned() const { return _type.is_pinned(); }
|
|
|
|
// An archive region is a pinned region, also tagged as old, which
|
|
// should not be marked during mark/sweep. This allows the address
|
|
// space to be shared by JVM instances.
|
|
bool is_archive() const { return _type.is_archive(); }
|
|
|
|
// For a humongous region, region in which it starts.
|
|
HeapRegion* humongous_start_region() const {
|
|
return _humongous_start_region;
|
|
}
|
|
|
|
// Makes the current region be a "starts humongous" region, i.e.,
|
|
// the first region in a series of one or more contiguous regions
|
|
// that will contain a single "humongous" object.
|
|
//
|
|
// obj_top : points to the top of the humongous object.
|
|
// fill_size : size of the filler object at the end of the region series.
|
|
void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
|
|
|
|
// Makes the current region be a "continues humongous'
|
|
// region. first_hr is the "start humongous" region of the series
|
|
// which this region will be part of.
|
|
void set_continues_humongous(HeapRegion* first_hr);
|
|
|
|
// Unsets the humongous-related fields on the region.
|
|
void clear_humongous();
|
|
|
|
// If the region has a remembered set, return a pointer to it.
|
|
HeapRegionRemSet* rem_set() const {
|
|
return _rem_set;
|
|
}
|
|
|
|
inline bool in_collection_set() const;
|
|
|
|
inline HeapRegion* next_in_collection_set() const;
|
|
inline void set_next_in_collection_set(HeapRegion* r);
|
|
|
|
void set_allocation_context(AllocationContext_t context) {
|
|
_allocation_context = context;
|
|
}
|
|
|
|
AllocationContext_t allocation_context() const {
|
|
return _allocation_context;
|
|
}
|
|
|
|
// Methods used by the HeapRegionSetBase class and subclasses.
|
|
|
|
// Getter and setter for the next and prev fields used to link regions into
|
|
// linked lists.
|
|
HeapRegion* next() { return _next; }
|
|
HeapRegion* prev() { return _prev; }
|
|
|
|
void set_next(HeapRegion* next) { _next = next; }
|
|
void set_prev(HeapRegion* prev) { _prev = prev; }
|
|
|
|
// Every region added to a set is tagged with a reference to that
|
|
// set. This is used for doing consistency checking to make sure that
|
|
// the contents of a set are as they should be and it's only
|
|
// available in non-product builds.
|
|
#ifdef ASSERT
|
|
void set_containing_set(HeapRegionSetBase* containing_set) {
|
|
assert((containing_set == NULL && _containing_set != NULL) ||
|
|
(containing_set != NULL && _containing_set == NULL),
|
|
"containing_set: " PTR_FORMAT " "
|
|
"_containing_set: " PTR_FORMAT,
|
|
p2i(containing_set), p2i(_containing_set));
|
|
|
|
_containing_set = containing_set;
|
|
}
|
|
|
|
HeapRegionSetBase* containing_set() { return _containing_set; }
|
|
#else // ASSERT
|
|
void set_containing_set(HeapRegionSetBase* containing_set) { }
|
|
|
|
// containing_set() is only used in asserts so there's no reason
|
|
// to provide a dummy version of it.
|
|
#endif // ASSERT
|
|
|
|
HeapRegion* get_next_young_region() { return _next_young_region; }
|
|
void set_next_young_region(HeapRegion* hr) {
|
|
_next_young_region = hr;
|
|
}
|
|
|
|
HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
|
|
HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
|
|
void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
|
|
bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
|
|
|
|
// Reset HR stuff to default values.
|
|
void hr_clear(bool par, bool clear_space, bool locked = false);
|
|
void par_clear();
|
|
|
|
// Get the start of the unmarked area in this region.
|
|
HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
|
|
HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
|
|
|
|
// Note the start or end of marking. This tells the heap region
|
|
// that the collector is about to start or has finished (concurrently)
|
|
// marking the heap.
|
|
|
|
// Notify the region that concurrent marking is starting. Initialize
|
|
// all fields related to the next marking info.
|
|
inline void note_start_of_marking();
|
|
|
|
// Notify the region that concurrent marking has finished. Copy the
|
|
// (now finalized) next marking info fields into the prev marking
|
|
// info fields.
|
|
inline void note_end_of_marking();
|
|
|
|
// Notify the region that it will be used as to-space during a GC
|
|
// and we are about to start copying objects into it.
|
|
inline void note_start_of_copying(bool during_initial_mark);
|
|
|
|
// Notify the region that it ceases being to-space during a GC and
|
|
// we will not copy objects into it any more.
|
|
inline void note_end_of_copying(bool during_initial_mark);
|
|
|
|
// Notify the region that we are about to start processing
|
|
// self-forwarded objects during evac failure handling.
|
|
void note_self_forwarding_removal_start(bool during_initial_mark,
|
|
bool during_conc_mark);
|
|
|
|
// Notify the region that we have finished processing self-forwarded
|
|
// objects during evac failure handling.
|
|
void note_self_forwarding_removal_end(bool during_initial_mark,
|
|
bool during_conc_mark,
|
|
size_t marked_bytes);
|
|
|
|
// Returns "false" iff no object in the region was allocated when the
|
|
// last mark phase ended.
|
|
bool is_marked() { return _prev_top_at_mark_start != bottom(); }
|
|
|
|
void reset_during_compaction() {
|
|
assert(is_humongous(),
|
|
"should only be called for humongous regions");
|
|
|
|
zero_marked_bytes();
|
|
init_top_at_mark_start();
|
|
}
|
|
|
|
void calc_gc_efficiency(void);
|
|
double gc_efficiency() { return _gc_efficiency;}
|
|
|
|
int young_index_in_cset() const { return _young_index_in_cset; }
|
|
void set_young_index_in_cset(int index) {
|
|
assert( (index == -1) || is_young(), "pre-condition" );
|
|
_young_index_in_cset = index;
|
|
}
|
|
|
|
int age_in_surv_rate_group() {
|
|
assert( _surv_rate_group != NULL, "pre-condition" );
|
|
assert( _age_index > -1, "pre-condition" );
|
|
return _surv_rate_group->age_in_group(_age_index);
|
|
}
|
|
|
|
void record_surv_words_in_group(size_t words_survived) {
|
|
assert( _surv_rate_group != NULL, "pre-condition" );
|
|
assert( _age_index > -1, "pre-condition" );
|
|
int age_in_group = age_in_surv_rate_group();
|
|
_surv_rate_group->record_surviving_words(age_in_group, words_survived);
|
|
}
|
|
|
|
int age_in_surv_rate_group_cond() {
|
|
if (_surv_rate_group != NULL)
|
|
return age_in_surv_rate_group();
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
SurvRateGroup* surv_rate_group() {
|
|
return _surv_rate_group;
|
|
}
|
|
|
|
void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
|
|
assert( surv_rate_group != NULL, "pre-condition" );
|
|
assert( _surv_rate_group == NULL, "pre-condition" );
|
|
assert( is_young(), "pre-condition" );
|
|
|
|
_surv_rate_group = surv_rate_group;
|
|
_age_index = surv_rate_group->next_age_index();
|
|
}
|
|
|
|
void uninstall_surv_rate_group() {
|
|
if (_surv_rate_group != NULL) {
|
|
assert( _age_index > -1, "pre-condition" );
|
|
assert( is_young(), "pre-condition" );
|
|
|
|
_surv_rate_group = NULL;
|
|
_age_index = -1;
|
|
} else {
|
|
assert( _age_index == -1, "pre-condition" );
|
|
}
|
|
}
|
|
|
|
void set_free();
|
|
|
|
void set_eden();
|
|
void set_eden_pre_gc();
|
|
void set_survivor();
|
|
|
|
void set_old();
|
|
|
|
void set_archive();
|
|
|
|
// Determine if an object has been allocated since the last
|
|
// mark performed by the collector. This returns true iff the object
|
|
// is within the unmarked area of the region.
|
|
bool obj_allocated_since_prev_marking(oop obj) const {
|
|
return (HeapWord *) obj >= prev_top_at_mark_start();
|
|
}
|
|
bool obj_allocated_since_next_marking(oop obj) const {
|
|
return (HeapWord *) obj >= next_top_at_mark_start();
|
|
}
|
|
|
|
// Returns the "evacuation_failed" property of the region.
|
|
bool evacuation_failed() { return _evacuation_failed; }
|
|
|
|
// Sets the "evacuation_failed" property of the region.
|
|
void set_evacuation_failed(bool b) {
|
|
_evacuation_failed = b;
|
|
|
|
if (b) {
|
|
_next_marked_bytes = 0;
|
|
}
|
|
}
|
|
|
|
// Requires that "mr" be entirely within the region.
|
|
// Apply "cl->do_object" to all objects that intersect with "mr".
|
|
// If the iteration encounters an unparseable portion of the region,
|
|
// or if "cl->abort()" is true after a closure application,
|
|
// terminate the iteration and return the address of the start of the
|
|
// subregion that isn't done. (The two can be distinguished by querying
|
|
// "cl->abort()".) Return of "NULL" indicates that the iteration
|
|
// completed.
|
|
HeapWord*
|
|
object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
|
|
|
|
// filter_young: if true and the region is a young region then we
|
|
// skip the iteration.
|
|
// card_ptr: if not NULL, and we decide that the card is not young
|
|
// and we iterate over it, we'll clean the card before we start the
|
|
// iteration.
|
|
HeapWord*
|
|
oops_on_card_seq_iterate_careful(MemRegion mr,
|
|
FilterOutOfRegionClosure* cl,
|
|
bool filter_young,
|
|
jbyte* card_ptr);
|
|
|
|
size_t recorded_rs_length() const { return _recorded_rs_length; }
|
|
double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
|
|
size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
|
|
|
|
void set_recorded_rs_length(size_t rs_length) {
|
|
_recorded_rs_length = rs_length;
|
|
}
|
|
|
|
void set_predicted_elapsed_time_ms(double ms) {
|
|
_predicted_elapsed_time_ms = ms;
|
|
}
|
|
|
|
void set_predicted_bytes_to_copy(size_t bytes) {
|
|
_predicted_bytes_to_copy = bytes;
|
|
}
|
|
|
|
virtual CompactibleSpace* next_compaction_space() const;
|
|
|
|
virtual void reset_after_compaction();
|
|
|
|
// Routines for managing a list of code roots (attached to the
|
|
// this region's RSet) that point into this heap region.
|
|
void add_strong_code_root(nmethod* nm);
|
|
void add_strong_code_root_locked(nmethod* nm);
|
|
void remove_strong_code_root(nmethod* nm);
|
|
|
|
// Applies blk->do_code_blob() to each of the entries in
|
|
// the strong code roots list for this region
|
|
void strong_code_roots_do(CodeBlobClosure* blk) const;
|
|
|
|
// Verify that the entries on the strong code root list for this
|
|
// region are live and include at least one pointer into this region.
|
|
void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
|
|
|
|
void print() const;
|
|
void print_on(outputStream* st) const;
|
|
|
|
// vo == UsePrevMarking -> use "prev" marking information,
|
|
// vo == UseNextMarking -> use "next" marking information
|
|
// vo == UseMarkWord -> use the mark word in the object header
|
|
//
|
|
// NOTE: Only the "prev" marking information is guaranteed to be
|
|
// consistent most of the time, so most calls to this should use
|
|
// vo == UsePrevMarking.
|
|
// Currently, there is only one case where this is called with
|
|
// vo == UseNextMarking, which is to verify the "next" marking
|
|
// information at the end of remark.
|
|
// Currently there is only one place where this is called with
|
|
// vo == UseMarkWord, which is to verify the marking during a
|
|
// full GC.
|
|
void verify(VerifyOption vo, bool *failures) const;
|
|
|
|
// Override; it uses the "prev" marking information
|
|
virtual void verify() const;
|
|
|
|
void verify_rem_set(VerifyOption vo, bool *failures) const;
|
|
void verify_rem_set() const;
|
|
};
|
|
|
|
// HeapRegionClosure is used for iterating over regions.
|
|
// Terminates the iteration when the "doHeapRegion" method returns "true".
|
|
class HeapRegionClosure : public StackObj {
|
|
friend class HeapRegionManager;
|
|
friend class G1CollectedHeap;
|
|
|
|
bool _complete;
|
|
void incomplete() { _complete = false; }
|
|
|
|
public:
|
|
HeapRegionClosure(): _complete(true) {}
|
|
|
|
// Typically called on each region until it returns true.
|
|
virtual bool doHeapRegion(HeapRegion* r) = 0;
|
|
|
|
// True after iteration if the closure was applied to all heap regions
|
|
// and returned "false" in all cases.
|
|
bool complete() { return _complete; }
|
|
};
|
|
|
|
#endif // SHARE_VM_GC_G1_HEAPREGION_HPP
|