1cb95bd3d1
Reviewed-by: ehelin, coleenp, kvn, ihse
729 lines
26 KiB
C++
729 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "gc/parallel/adjoiningGenerations.hpp"
|
|
#include "gc/parallel/adjoiningVirtualSpaces.hpp"
|
|
#include "gc/parallel/gcTaskManager.hpp"
|
|
#include "gc/parallel/generationSizer.hpp"
|
|
#include "gc/parallel/objectStartArray.inline.hpp"
|
|
#include "gc/parallel/parallelScavengeHeap.inline.hpp"
|
|
#include "gc/parallel/psAdaptiveSizePolicy.hpp"
|
|
#include "gc/parallel/psMarkSweepProxy.hpp"
|
|
#include "gc/parallel/psMemoryPool.hpp"
|
|
#include "gc/parallel/psParallelCompact.inline.hpp"
|
|
#include "gc/parallel/psPromotionManager.hpp"
|
|
#include "gc/parallel/psScavenge.hpp"
|
|
#include "gc/parallel/vmPSOperations.hpp"
|
|
#include "gc/shared/gcHeapSummary.hpp"
|
|
#include "gc/shared/gcLocker.hpp"
|
|
#include "gc/shared/gcWhen.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/metaspaceCounters.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "services/memoryManager.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
|
|
PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
|
|
PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
|
|
PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
|
|
GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
|
|
|
|
jint ParallelScavengeHeap::initialize() {
|
|
const size_t heap_size = _collector_policy->max_heap_byte_size();
|
|
|
|
ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
|
|
|
|
os::trace_page_sizes("Heap",
|
|
_collector_policy->min_heap_byte_size(),
|
|
heap_size,
|
|
generation_alignment(),
|
|
heap_rs.base(),
|
|
heap_rs.size());
|
|
|
|
initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
|
|
|
|
PSCardTable* card_table = new PSCardTable(reserved_region());
|
|
card_table->initialize();
|
|
CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
|
|
barrier_set->initialize();
|
|
BarrierSet::set_barrier_set(barrier_set);
|
|
|
|
// Make up the generations
|
|
// Calculate the maximum size that a generation can grow. This
|
|
// includes growth into the other generation. Note that the
|
|
// parameter _max_gen_size is kept as the maximum
|
|
// size of the generation as the boundaries currently stand.
|
|
// _max_gen_size is still used as that value.
|
|
double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
|
|
double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
|
|
|
|
_gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
|
|
|
|
_old_gen = _gens->old_gen();
|
|
_young_gen = _gens->young_gen();
|
|
|
|
const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
|
|
const size_t old_capacity = _old_gen->capacity_in_bytes();
|
|
const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
|
|
_size_policy =
|
|
new PSAdaptiveSizePolicy(eden_capacity,
|
|
initial_promo_size,
|
|
young_gen()->to_space()->capacity_in_bytes(),
|
|
_collector_policy->gen_alignment(),
|
|
max_gc_pause_sec,
|
|
max_gc_minor_pause_sec,
|
|
GCTimeRatio
|
|
);
|
|
|
|
assert(!UseAdaptiveGCBoundary ||
|
|
(old_gen()->virtual_space()->high_boundary() ==
|
|
young_gen()->virtual_space()->low_boundary()),
|
|
"Boundaries must meet");
|
|
// initialize the policy counters - 2 collectors, 2 generations
|
|
_gc_policy_counters =
|
|
new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
|
|
|
|
// Set up the GCTaskManager
|
|
_gc_task_manager = GCTaskManager::create(ParallelGCThreads);
|
|
|
|
if (UseParallelOldGC && !PSParallelCompact::initialize()) {
|
|
return JNI_ENOMEM;
|
|
}
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
void ParallelScavengeHeap::initialize_serviceability() {
|
|
|
|
_eden_pool = new EdenMutableSpacePool(_young_gen,
|
|
_young_gen->eden_space(),
|
|
"PS Eden Space",
|
|
false /* support_usage_threshold */);
|
|
|
|
_survivor_pool = new SurvivorMutableSpacePool(_young_gen,
|
|
"PS Survivor Space",
|
|
false /* support_usage_threshold */);
|
|
|
|
_old_pool = new PSGenerationPool(_old_gen,
|
|
"PS Old Gen",
|
|
true /* support_usage_threshold */);
|
|
|
|
_young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
|
|
_old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
|
|
|
|
_old_manager->add_pool(_eden_pool);
|
|
_old_manager->add_pool(_survivor_pool);
|
|
_old_manager->add_pool(_old_pool);
|
|
|
|
_young_manager->add_pool(_eden_pool);
|
|
_young_manager->add_pool(_survivor_pool);
|
|
|
|
}
|
|
|
|
void ParallelScavengeHeap::post_initialize() {
|
|
CollectedHeap::post_initialize();
|
|
// Need to init the tenuring threshold
|
|
PSScavenge::initialize();
|
|
if (UseParallelOldGC) {
|
|
PSParallelCompact::post_initialize();
|
|
} else {
|
|
PSMarkSweepProxy::initialize();
|
|
}
|
|
PSPromotionManager::initialize();
|
|
}
|
|
|
|
void ParallelScavengeHeap::update_counters() {
|
|
young_gen()->update_counters();
|
|
old_gen()->update_counters();
|
|
MetaspaceCounters::update_performance_counters();
|
|
CompressedClassSpaceCounters::update_performance_counters();
|
|
}
|
|
|
|
size_t ParallelScavengeHeap::capacity() const {
|
|
size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
|
|
return value;
|
|
}
|
|
|
|
size_t ParallelScavengeHeap::used() const {
|
|
size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
|
|
return value;
|
|
}
|
|
|
|
bool ParallelScavengeHeap::is_maximal_no_gc() const {
|
|
return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
|
|
}
|
|
|
|
|
|
size_t ParallelScavengeHeap::max_capacity() const {
|
|
size_t estimated = reserved_region().byte_size();
|
|
if (UseAdaptiveSizePolicy) {
|
|
estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
|
|
} else {
|
|
estimated -= young_gen()->to_space()->capacity_in_bytes();
|
|
}
|
|
return MAX2(estimated, capacity());
|
|
}
|
|
|
|
bool ParallelScavengeHeap::is_in(const void* p) const {
|
|
return young_gen()->is_in(p) || old_gen()->is_in(p);
|
|
}
|
|
|
|
bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
|
|
return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
|
|
}
|
|
|
|
// There are two levels of allocation policy here.
|
|
//
|
|
// When an allocation request fails, the requesting thread must invoke a VM
|
|
// operation, transfer control to the VM thread, and await the results of a
|
|
// garbage collection. That is quite expensive, and we should avoid doing it
|
|
// multiple times if possible.
|
|
//
|
|
// To accomplish this, we have a basic allocation policy, and also a
|
|
// failed allocation policy.
|
|
//
|
|
// The basic allocation policy controls how you allocate memory without
|
|
// attempting garbage collection. It is okay to grab locks and
|
|
// expand the heap, if that can be done without coming to a safepoint.
|
|
// It is likely that the basic allocation policy will not be very
|
|
// aggressive.
|
|
//
|
|
// The failed allocation policy is invoked from the VM thread after
|
|
// the basic allocation policy is unable to satisfy a mem_allocate
|
|
// request. This policy needs to cover the entire range of collection,
|
|
// heap expansion, and out-of-memory conditions. It should make every
|
|
// attempt to allocate the requested memory.
|
|
|
|
// Basic allocation policy. Should never be called at a safepoint, or
|
|
// from the VM thread.
|
|
//
|
|
// This method must handle cases where many mem_allocate requests fail
|
|
// simultaneously. When that happens, only one VM operation will succeed,
|
|
// and the rest will not be executed. For that reason, this method loops
|
|
// during failed allocation attempts. If the java heap becomes exhausted,
|
|
// we rely on the size_policy object to force a bail out.
|
|
HeapWord* ParallelScavengeHeap::mem_allocate(
|
|
size_t size,
|
|
bool* gc_overhead_limit_was_exceeded) {
|
|
assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
|
|
assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
|
|
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
|
|
|
|
// In general gc_overhead_limit_was_exceeded should be false so
|
|
// set it so here and reset it to true only if the gc time
|
|
// limit is being exceeded as checked below.
|
|
*gc_overhead_limit_was_exceeded = false;
|
|
|
|
HeapWord* result = young_gen()->allocate(size);
|
|
|
|
uint loop_count = 0;
|
|
uint gc_count = 0;
|
|
uint gclocker_stalled_count = 0;
|
|
|
|
while (result == NULL) {
|
|
// We don't want to have multiple collections for a single filled generation.
|
|
// To prevent this, each thread tracks the total_collections() value, and if
|
|
// the count has changed, does not do a new collection.
|
|
//
|
|
// The collection count must be read only while holding the heap lock. VM
|
|
// operations also hold the heap lock during collections. There is a lock
|
|
// contention case where thread A blocks waiting on the Heap_lock, while
|
|
// thread B is holding it doing a collection. When thread A gets the lock,
|
|
// the collection count has already changed. To prevent duplicate collections,
|
|
// The policy MUST attempt allocations during the same period it reads the
|
|
// total_collections() value!
|
|
{
|
|
MutexLocker ml(Heap_lock);
|
|
gc_count = total_collections();
|
|
|
|
result = young_gen()->allocate(size);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// If certain conditions hold, try allocating from the old gen.
|
|
result = mem_allocate_old_gen(size);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
|
|
return NULL;
|
|
}
|
|
|
|
// Failed to allocate without a gc.
|
|
if (GCLocker::is_active_and_needs_gc()) {
|
|
// If this thread is not in a jni critical section, we stall
|
|
// the requestor until the critical section has cleared and
|
|
// GC allowed. When the critical section clears, a GC is
|
|
// initiated by the last thread exiting the critical section; so
|
|
// we retry the allocation sequence from the beginning of the loop,
|
|
// rather than causing more, now probably unnecessary, GC attempts.
|
|
JavaThread* jthr = JavaThread::current();
|
|
if (!jthr->in_critical()) {
|
|
MutexUnlocker mul(Heap_lock);
|
|
GCLocker::stall_until_clear();
|
|
gclocker_stalled_count += 1;
|
|
continue;
|
|
} else {
|
|
if (CheckJNICalls) {
|
|
fatal("Possible deadlock due to allocating while"
|
|
" in jni critical section");
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result == NULL) {
|
|
// Generate a VM operation
|
|
VM_ParallelGCFailedAllocation op(size, gc_count);
|
|
VMThread::execute(&op);
|
|
|
|
// Did the VM operation execute? If so, return the result directly.
|
|
// This prevents us from looping until time out on requests that can
|
|
// not be satisfied.
|
|
if (op.prologue_succeeded()) {
|
|
assert(is_in_or_null(op.result()), "result not in heap");
|
|
|
|
// If GC was locked out during VM operation then retry allocation
|
|
// and/or stall as necessary.
|
|
if (op.gc_locked()) {
|
|
assert(op.result() == NULL, "must be NULL if gc_locked() is true");
|
|
continue; // retry and/or stall as necessary
|
|
}
|
|
|
|
// Exit the loop if the gc time limit has been exceeded.
|
|
// The allocation must have failed above ("result" guarding
|
|
// this path is NULL) and the most recent collection has exceeded the
|
|
// gc overhead limit (although enough may have been collected to
|
|
// satisfy the allocation). Exit the loop so that an out-of-memory
|
|
// will be thrown (return a NULL ignoring the contents of
|
|
// op.result()),
|
|
// but clear gc_overhead_limit_exceeded so that the next collection
|
|
// starts with a clean slate (i.e., forgets about previous overhead
|
|
// excesses). Fill op.result() with a filler object so that the
|
|
// heap remains parsable.
|
|
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
|
|
const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
|
|
|
|
if (limit_exceeded && softrefs_clear) {
|
|
*gc_overhead_limit_was_exceeded = true;
|
|
size_policy()->set_gc_overhead_limit_exceeded(false);
|
|
log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
|
|
if (op.result() != NULL) {
|
|
CollectedHeap::fill_with_object(op.result(), size);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
return op.result();
|
|
}
|
|
}
|
|
|
|
// The policy object will prevent us from looping forever. If the
|
|
// time spent in gc crosses a threshold, we will bail out.
|
|
loop_count++;
|
|
if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
|
|
(loop_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
|
|
log_warning(gc)("\tsize=" SIZE_FORMAT, size);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// A "death march" is a series of ultra-slow allocations in which a full gc is
|
|
// done before each allocation, and after the full gc the allocation still
|
|
// cannot be satisfied from the young gen. This routine detects that condition;
|
|
// it should be called after a full gc has been done and the allocation
|
|
// attempted from the young gen. The parameter 'addr' should be the result of
|
|
// that young gen allocation attempt.
|
|
void
|
|
ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
|
|
if (addr != NULL) {
|
|
_death_march_count = 0; // death march has ended
|
|
} else if (_death_march_count == 0) {
|
|
if (should_alloc_in_eden(size)) {
|
|
_death_march_count = 1; // death march has started
|
|
}
|
|
}
|
|
}
|
|
|
|
HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
|
|
if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
|
|
// Size is too big for eden, or gc is locked out.
|
|
return old_gen()->allocate(size);
|
|
}
|
|
|
|
// If a "death march" is in progress, allocate from the old gen a limited
|
|
// number of times before doing a GC.
|
|
if (_death_march_count > 0) {
|
|
if (_death_march_count < 64) {
|
|
++_death_march_count;
|
|
return old_gen()->allocate(size);
|
|
} else {
|
|
_death_march_count = 0;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
|
|
if (UseParallelOldGC) {
|
|
// The do_full_collection() parameter clear_all_soft_refs
|
|
// is interpreted here as maximum_compaction which will
|
|
// cause SoftRefs to be cleared.
|
|
bool maximum_compaction = clear_all_soft_refs;
|
|
PSParallelCompact::invoke(maximum_compaction);
|
|
} else {
|
|
PSMarkSweepProxy::invoke(clear_all_soft_refs);
|
|
}
|
|
}
|
|
|
|
// Failed allocation policy. Must be called from the VM thread, and
|
|
// only at a safepoint! Note that this method has policy for allocation
|
|
// flow, and NOT collection policy. So we do not check for gc collection
|
|
// time over limit here, that is the responsibility of the heap specific
|
|
// collection methods. This method decides where to attempt allocations,
|
|
// and when to attempt collections, but no collection specific policy.
|
|
HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
|
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
|
|
assert(!is_gc_active(), "not reentrant");
|
|
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
|
|
|
|
// We assume that allocation in eden will fail unless we collect.
|
|
|
|
// First level allocation failure, scavenge and allocate in young gen.
|
|
GCCauseSetter gccs(this, GCCause::_allocation_failure);
|
|
const bool invoked_full_gc = PSScavenge::invoke();
|
|
HeapWord* result = young_gen()->allocate(size);
|
|
|
|
// Second level allocation failure.
|
|
// Mark sweep and allocate in young generation.
|
|
if (result == NULL && !invoked_full_gc) {
|
|
do_full_collection(false);
|
|
result = young_gen()->allocate(size);
|
|
}
|
|
|
|
death_march_check(result, size);
|
|
|
|
// Third level allocation failure.
|
|
// After mark sweep and young generation allocation failure,
|
|
// allocate in old generation.
|
|
if (result == NULL) {
|
|
result = old_gen()->allocate(size);
|
|
}
|
|
|
|
// Fourth level allocation failure. We're running out of memory.
|
|
// More complete mark sweep and allocate in young generation.
|
|
if (result == NULL) {
|
|
do_full_collection(true);
|
|
result = young_gen()->allocate(size);
|
|
}
|
|
|
|
// Fifth level allocation failure.
|
|
// After more complete mark sweep, allocate in old generation.
|
|
if (result == NULL) {
|
|
result = old_gen()->allocate(size);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
|
|
CollectedHeap::ensure_parsability(retire_tlabs);
|
|
young_gen()->eden_space()->ensure_parsability();
|
|
}
|
|
|
|
size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
|
|
return young_gen()->eden_space()->tlab_capacity(thr);
|
|
}
|
|
|
|
size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
|
|
return young_gen()->eden_space()->tlab_used(thr);
|
|
}
|
|
|
|
size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
|
|
return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
|
|
}
|
|
|
|
HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
|
|
HeapWord* result = young_gen()->allocate(requested_size);
|
|
if (result != NULL) {
|
|
*actual_size = requested_size;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
|
|
CollectedHeap::accumulate_statistics_all_tlabs();
|
|
}
|
|
|
|
void ParallelScavengeHeap::resize_all_tlabs() {
|
|
CollectedHeap::resize_all_tlabs();
|
|
}
|
|
|
|
// This method is used by System.gc() and JVMTI.
|
|
void ParallelScavengeHeap::collect(GCCause::Cause cause) {
|
|
assert(!Heap_lock->owned_by_self(),
|
|
"this thread should not own the Heap_lock");
|
|
|
|
uint gc_count = 0;
|
|
uint full_gc_count = 0;
|
|
{
|
|
MutexLocker ml(Heap_lock);
|
|
// This value is guarded by the Heap_lock
|
|
gc_count = total_collections();
|
|
full_gc_count = total_full_collections();
|
|
}
|
|
|
|
VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
|
|
VMThread::execute(&op);
|
|
}
|
|
|
|
void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
|
|
young_gen()->object_iterate(cl);
|
|
old_gen()->object_iterate(cl);
|
|
}
|
|
|
|
|
|
HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
|
|
if (young_gen()->is_in_reserved(addr)) {
|
|
assert(young_gen()->is_in(addr),
|
|
"addr should be in allocated part of young gen");
|
|
// called from os::print_location by find or VMError
|
|
if (Debugging || VMError::fatal_error_in_progress()) return NULL;
|
|
Unimplemented();
|
|
} else if (old_gen()->is_in_reserved(addr)) {
|
|
assert(old_gen()->is_in(addr),
|
|
"addr should be in allocated part of old gen");
|
|
return old_gen()->start_array()->object_start((HeapWord*)addr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
|
|
return oop(addr)->size();
|
|
}
|
|
|
|
bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
|
|
return block_start(addr) == addr;
|
|
}
|
|
|
|
jlong ParallelScavengeHeap::millis_since_last_gc() {
|
|
return UseParallelOldGC ?
|
|
PSParallelCompact::millis_since_last_gc() :
|
|
PSMarkSweepProxy::millis_since_last_gc();
|
|
}
|
|
|
|
void ParallelScavengeHeap::prepare_for_verify() {
|
|
ensure_parsability(false); // no need to retire TLABs for verification
|
|
}
|
|
|
|
PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
|
|
PSOldGen* old = old_gen();
|
|
HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
|
|
VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
|
|
SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
|
|
|
|
PSYoungGen* young = young_gen();
|
|
VirtualSpaceSummary young_summary(young->reserved().start(),
|
|
(HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
|
|
|
|
MutableSpace* eden = young_gen()->eden_space();
|
|
SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
|
|
|
|
MutableSpace* from = young_gen()->from_space();
|
|
SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
|
|
|
|
MutableSpace* to = young_gen()->to_space();
|
|
SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
|
|
|
|
VirtualSpaceSummary heap_summary = create_heap_space_summary();
|
|
return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
|
|
}
|
|
|
|
void ParallelScavengeHeap::print_on(outputStream* st) const {
|
|
young_gen()->print_on(st);
|
|
old_gen()->print_on(st);
|
|
MetaspaceUtils::print_on(st);
|
|
}
|
|
|
|
void ParallelScavengeHeap::print_on_error(outputStream* st) const {
|
|
this->CollectedHeap::print_on_error(st);
|
|
|
|
if (UseParallelOldGC) {
|
|
st->cr();
|
|
PSParallelCompact::print_on_error(st);
|
|
}
|
|
}
|
|
|
|
void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
|
|
PSScavenge::gc_task_manager()->threads_do(tc);
|
|
}
|
|
|
|
void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
|
|
PSScavenge::gc_task_manager()->print_threads_on(st);
|
|
}
|
|
|
|
void ParallelScavengeHeap::print_tracing_info() const {
|
|
AdaptiveSizePolicyOutput::print();
|
|
log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
|
|
log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
|
|
UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
|
|
}
|
|
|
|
|
|
void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
|
|
// Why do we need the total_collections()-filter below?
|
|
if (total_collections() > 0) {
|
|
log_debug(gc, verify)("Tenured");
|
|
old_gen()->verify();
|
|
|
|
log_debug(gc, verify)("Eden");
|
|
young_gen()->verify();
|
|
}
|
|
}
|
|
|
|
void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
|
|
const PSHeapSummary& heap_summary = create_ps_heap_summary();
|
|
gc_tracer->report_gc_heap_summary(when, heap_summary);
|
|
|
|
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
|
|
gc_tracer->report_metaspace_summary(when, metaspace_summary);
|
|
}
|
|
|
|
ParallelScavengeHeap* ParallelScavengeHeap::heap() {
|
|
CollectedHeap* heap = Universe::heap();
|
|
assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
|
|
assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
|
|
return (ParallelScavengeHeap*)heap;
|
|
}
|
|
|
|
CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
|
|
return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
|
|
}
|
|
|
|
PSCardTable* ParallelScavengeHeap::card_table() {
|
|
return static_cast<PSCardTable*>(barrier_set()->card_table());
|
|
}
|
|
|
|
// Before delegating the resize to the young generation,
|
|
// the reserved space for the young and old generations
|
|
// may be changed to accommodate the desired resize.
|
|
void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
|
|
size_t survivor_size) {
|
|
if (UseAdaptiveGCBoundary) {
|
|
if (size_policy()->bytes_absorbed_from_eden() != 0) {
|
|
size_policy()->reset_bytes_absorbed_from_eden();
|
|
return; // The generation changed size already.
|
|
}
|
|
gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
|
|
}
|
|
|
|
// Delegate the resize to the generation.
|
|
_young_gen->resize(eden_size, survivor_size);
|
|
}
|
|
|
|
// Before delegating the resize to the old generation,
|
|
// the reserved space for the young and old generations
|
|
// may be changed to accommodate the desired resize.
|
|
void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
|
|
if (UseAdaptiveGCBoundary) {
|
|
if (size_policy()->bytes_absorbed_from_eden() != 0) {
|
|
size_policy()->reset_bytes_absorbed_from_eden();
|
|
return; // The generation changed size already.
|
|
}
|
|
gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
|
|
}
|
|
|
|
// Delegate the resize to the generation.
|
|
_old_gen->resize(desired_free_space);
|
|
}
|
|
|
|
ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
|
|
// nothing particular
|
|
}
|
|
|
|
ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
|
|
// nothing particular
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void ParallelScavengeHeap::record_gen_tops_before_GC() {
|
|
if (ZapUnusedHeapArea) {
|
|
young_gen()->record_spaces_top();
|
|
old_gen()->record_spaces_top();
|
|
}
|
|
}
|
|
|
|
void ParallelScavengeHeap::gen_mangle_unused_area() {
|
|
if (ZapUnusedHeapArea) {
|
|
young_gen()->eden_space()->mangle_unused_area();
|
|
young_gen()->to_space()->mangle_unused_area();
|
|
young_gen()->from_space()->mangle_unused_area();
|
|
old_gen()->object_space()->mangle_unused_area();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool ParallelScavengeHeap::is_scavengable(oop obj) {
|
|
return is_in_young(obj);
|
|
}
|
|
|
|
void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
|
|
CodeCache::register_scavenge_root_nmethod(nm);
|
|
}
|
|
|
|
void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
|
|
CodeCache::verify_scavenge_root_nmethod(nm);
|
|
}
|
|
|
|
GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
|
|
GrowableArray<GCMemoryManager*> memory_managers(2);
|
|
memory_managers.append(_young_manager);
|
|
memory_managers.append(_old_manager);
|
|
return memory_managers;
|
|
}
|
|
|
|
GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
|
|
GrowableArray<MemoryPool*> memory_pools(3);
|
|
memory_pools.append(_eden_pool);
|
|
memory_pools.append(_survivor_pool);
|
|
memory_pools.append(_old_pool);
|
|
return memory_pools;
|
|
}
|