jdk-24/test/hotspot/gtest/utilities/test_resourceHash.cpp
Gerard Ziemski eabfc6e4d9 8337563: NMT: rename MEMFLAGS to MemTag
Reviewed-by: dholmes, coleenp, jsjolen
2024-09-17 19:59:06 +00:00

478 lines
15 KiB
C++

/*
* Copyright (c) 2015, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "nmt/nmtCommon.hpp"
#include "memory/allocation.hpp"
#include "memory/resourceArea.hpp"
#include "oops/symbolHandle.hpp"
#include "unittest.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/resourceHash.hpp"
class CommonResourceHashtableTest : public ::testing::Test {
protected:
typedef void* K;
typedef uintx V;
const static MemTag MEM_TAG = mtInternal;
static unsigned identity_hash(const K& k) {
return (unsigned) (uintptr_t) k;
}
static unsigned bad_hash(const K& k) {
return 1;
}
static void* as_K(uintptr_t val) {
return (void*) val;
}
class EqualityTestIter {
public:
bool do_entry(K const& k, V const& v) {
if ((uintptr_t) k != (uintptr_t) v) {
EXPECT_EQ((uintptr_t) k, (uintptr_t) v);
return false;
} else {
return true; // continue iteration
}
}
};
class DeleterTestIter {
int _val;
public:
DeleterTestIter(int i) : _val(i) {}
bool do_entry(K const& k, V const& v) {
if ((uintptr_t) k == (uintptr_t) _val) {
// Delete me!
return true;
} else {
return false; // continue iteration
}
}
};
};
class SmallResourceHashtableTest : public CommonResourceHashtableTest {
protected:
template<
unsigned (*HASH) (K const&) = primitive_hash<K>,
bool (*EQUALS)(K const&, K const&) = primitive_equals<K>,
unsigned SIZE = 256,
AnyObj::allocation_type ALLOC_TYPE = AnyObj::RESOURCE_AREA
>
class Runner : public AllStatic {
public:
static void test(V step) {
EqualityTestIter et;
ResourceHashtable<K, V, SIZE, ALLOC_TYPE, MEM_TAG, HASH, EQUALS> rh;
ASSERT_FALSE(rh.contains(as_K(step)));
ASSERT_TRUE(rh.put(as_K(step), step));
ASSERT_TRUE(rh.contains(as_K(step)));
ASSERT_FALSE(rh.put(as_K(step), step));
ASSERT_TRUE(rh.put(as_K(2 * step), 2 * step));
ASSERT_TRUE(rh.put(as_K(3 * step), 3 * step));
ASSERT_TRUE(rh.put(as_K(4 * step), 4 * step));
ASSERT_TRUE(rh.put(as_K(5 * step), 5 * step));
ASSERT_FALSE(rh.remove(as_K(0x0)));
rh.iterate(&et);
if (::testing::Test::HasFailure()) {
return;
}
ASSERT_TRUE(rh.remove(as_K(step)));
ASSERT_FALSE(rh.contains(as_K(step)));
rh.iterate(&et);
// Test put_if_absent(key) (creating a default-created value)
bool created = false;
V* v = rh.put_if_absent(as_K(step), &created);
ASSERT_TRUE(rh.contains(as_K(step)));
ASSERT_TRUE(created);
*v = (V)step;
// Calling this function a second time should yield the same value pointer
V* v2 = rh.put_if_absent(as_K(step), &created);
ASSERT_EQ(v, v2);
ASSERT_EQ(*v2, *v);
ASSERT_FALSE(created);
ASSERT_TRUE(rh.remove(as_K(step)));
ASSERT_FALSE(rh.contains(as_K(step)));
rh.iterate(&et);
// Test put_if_absent(key, value)
v = rh.put_if_absent(as_K(step), step, &created);
ASSERT_EQ(*v, step);
ASSERT_TRUE(rh.contains(as_K(step)));
ASSERT_TRUE(created);
v2 = rh.put_if_absent(as_K(step), step, &created);
// Calling this function a second time should yield the same value pointer
ASSERT_EQ(v, v2);
ASSERT_EQ(*v2, (V)step);
ASSERT_FALSE(created);
ASSERT_TRUE(rh.remove(as_K(step)));
ASSERT_FALSE(rh.contains(as_K(step)));
rh.iterate(&et);
}
};
};
TEST_VM_F(SmallResourceHashtableTest, default) {
ResourceMark rm;
Runner<>::test(0x1);
}
TEST_VM_F(SmallResourceHashtableTest, default_shifted) {
ResourceMark rm;
Runner<>::test(0x10);
}
TEST_VM_F(SmallResourceHashtableTest, bad_hash) {
ResourceMark rm;
Runner<bad_hash>::test(0x1);
}
TEST_VM_F(SmallResourceHashtableTest, bad_hash_shifted) {
ResourceMark rm;
Runner<bad_hash>::test(0x10);
}
TEST_VM_F(SmallResourceHashtableTest, identity_hash) {
ResourceMark rm;
Runner<identity_hash>::test(0x1);
}
TEST_VM_F(SmallResourceHashtableTest, identity_hash_shifted) {
ResourceMark rm;
Runner<identity_hash>::test(0x10);
}
TEST_VM_F(SmallResourceHashtableTest, primitive_hash_no_rm) {
Runner<primitive_hash<K>, primitive_equals<K>, 512, AnyObj::C_HEAP>::test(0x1);
}
TEST_VM_F(SmallResourceHashtableTest, primitive_hash_no_rm_shifted) {
Runner<primitive_hash<K>, primitive_equals<K>, 512, AnyObj::C_HEAP>::test(0x10);
}
TEST_VM_F(SmallResourceHashtableTest, bad_hash_no_rm) {
Runner<bad_hash, primitive_equals<K>, 512, AnyObj::C_HEAP>::test(0x1);
}
TEST_VM_F(SmallResourceHashtableTest, bad_hash_no_rm_shifted) {
Runner<bad_hash, primitive_equals<K>, 512, AnyObj::C_HEAP>::test(0x10);
}
TEST_VM_F(SmallResourceHashtableTest, identity_hash_no_rm) {
Runner<identity_hash, primitive_equals<K>, 1, AnyObj::C_HEAP>::test(0x1);
}
TEST_VM_F(SmallResourceHashtableTest, identity_hash_no_rm_shifted) {
Runner<identity_hash, primitive_equals<K>, 1, AnyObj::C_HEAP>::test(0x10);
}
class GenericResourceHashtableTest : public CommonResourceHashtableTest {
protected:
template<
unsigned (*HASH) (K const&) = primitive_hash<K>,
bool (*EQUALS)(K const&, K const&) = primitive_equals<K>,
unsigned SIZE = 256,
AnyObj::allocation_type ALLOC_TYPE = AnyObj::RESOURCE_AREA
>
class Runner : public AllStatic {
public:
static void test(unsigned num_elements = SIZE) {
EqualityTestIter et;
ResourceHashtable<K, V, SIZE, ALLOC_TYPE, MEM_TAG, HASH, EQUALS> rh;
for (uintptr_t i = 0; i < num_elements; ++i) {
ASSERT_TRUE(rh.put(as_K(i), i));
}
rh.iterate(&et);
if (::testing::Test::HasFailure()) {
return;
}
for (uintptr_t i = num_elements; i > 0; --i) {
uintptr_t index = i - 1;
ASSERT_TRUE((rh.remove(as_K(index))));
}
rh.iterate(&et);
if (::testing::Test::HasFailure()) {
return;
}
for (uintptr_t i = num_elements; i > 0; --i) {
uintptr_t index = i - 1;
ASSERT_FALSE(rh.remove(as_K(index)));
}
rh.iterate(&et);
// Add more entries in and then delete one.
for (uintptr_t i = 10; i > 0; --i) {
uintptr_t index = i - 1;
ASSERT_TRUE(rh.put(as_K(index), index));
}
DeleterTestIter dt(5);
rh.unlink(&dt);
ASSERT_FALSE(rh.get(as_K(5)));
}
};
};
TEST_VM_F(GenericResourceHashtableTest, default) {
ResourceMark rm;
Runner<>::test();
}
TEST_VM_F(GenericResourceHashtableTest, bad_hash) {
ResourceMark rm;
Runner<bad_hash>::test();
}
TEST_VM_F(GenericResourceHashtableTest, identity_hash) {
ResourceMark rm;
Runner<identity_hash>::test();
}
TEST_VM_F(GenericResourceHashtableTest, primitive_hash_no_rm) {
Runner<primitive_hash<K>, primitive_equals<K>, 512, AnyObj::C_HEAP>::test();
}
TEST_VM_F(GenericResourceHashtableTest, bad_hash_no_rm) {
Runner<bad_hash, primitive_equals<K>, 512, AnyObj::C_HEAP>::test();
}
TEST_VM_F(GenericResourceHashtableTest, identity_hash_no_rm) {
Runner<identity_hash, primitive_equals<K>, 1, AnyObj::C_HEAP>::test(512);
}
// Simple ResourceHashtable whose key is a SymbolHandle and value is an int
// This test is to show that the SymbolHandle will correctly handle the refcounting
// in the table.
class SimpleResourceHashtableDeleteTest : public ::testing::Test {
public:
ResourceHashtable<SymbolHandle, int, 107, AnyObj::C_HEAP, mtTest, SymbolHandle::compute_hash> _simple_test_table;
class SimpleDeleter : public StackObj {
public:
bool do_entry(SymbolHandle& key, int value) {
return true;
}
};
};
TEST_VM_F(SimpleResourceHashtableDeleteTest, simple_remove) {
TempNewSymbol t = SymbolTable::new_symbol("abcdefg_simple");
Symbol* s = t;
int s_orig_count = s->refcount();
_simple_test_table.put(s, 55);
ASSERT_EQ(s->refcount(), s_orig_count + 1) << "refcount should be incremented in table";
// Deleting this value from a hashtable
_simple_test_table.remove(s);
ASSERT_EQ(s->refcount(), s_orig_count) << "refcount should be same as start";
}
TEST_VM_F(SimpleResourceHashtableDeleteTest, simple_delete) {
TempNewSymbol t = SymbolTable::new_symbol("abcdefg_simple");
Symbol* s = t;
int s_orig_count = s->refcount();
_simple_test_table.put(s, 66);
ASSERT_EQ(s->refcount(), s_orig_count + 1) << "refcount should be incremented in table";
// Use unlink to remove the matching (or all) values from the table.
SimpleDeleter deleter;
_simple_test_table.unlink(&deleter);
ASSERT_EQ(s->refcount(), s_orig_count) << "refcount should be same as start";
}
// More complicated ResourceHashtable with SymbolHandle in the key. Since the *same* Symbol is part
// of the value, it's not necessary to manipulate the refcount of the key, but you must in the value.
// Luckily SymbolHandle does this.
class ResourceHashtableDeleteTest : public ::testing::Test {
public:
class TestValue : public CHeapObj<mtTest> {
SymbolHandle _s;
public:
// Never have ctors and dtors fix refcounts without copy ctors and assignment operators!
// Unless it's declared and used as a CHeapObj with
// NONCOPYABLE(TestValue)
// Using SymbolHandle deals with refcount manipulation so this class doesn't have to
// have dtors, copy ctors and assignment operators to do so.
TestValue(Symbol* name) : _s(name) { }
// Symbol* s() const { return _s; } // needed for conversion from TempNewSymbol to SymbolHandle member
};
// ResourceHashtable whose value is a *copy* of TestValue.
ResourceHashtable<Symbol*, TestValue, 107, AnyObj::C_HEAP, mtTest> _test_table;
class Deleter : public StackObj {
public:
bool do_entry(Symbol*& key, TestValue& value) {
// Since we didn't increment the key, we shouldn't decrement it.
// Calling delete on the hashtable Node which contains value will
// decrement the refcount. That's actually best since the whole
// entry will be gone at once.
return true;
}
};
// ResourceHashtable whose value is a pointer to TestValue.
ResourceHashtable<Symbol*, TestValue*, 107, AnyObj::C_HEAP, mtTest> _ptr_test_table;
class PtrDeleter : public StackObj {
public:
bool do_entry(Symbol*& key, TestValue*& value) {
// If the hashtable value is a pointer, need to delete it from here.
// This will also potentially make the refcount of the Key = 0, but the
// next thing that happens is that the hashtable node is deleted so this is ok.
delete value;
return true;
}
};
};
TEST_VM_F(ResourceHashtableDeleteTest, value_remove) {
TempNewSymbol s = SymbolTable::new_symbol("abcdefg");
int s_orig_count = s->refcount();
{
TestValue tv(s);
// Since TestValue contains the pointer to the key, it will handle the
// refcounting.
_test_table.put(s, tv);
ASSERT_EQ(s->refcount(), s_orig_count + 2) << "refcount incremented by copy";
}
ASSERT_EQ(s->refcount(), s_orig_count + 1) << "refcount incremented in table";
// Deleting this value from a hashtable calls the destructor!
_test_table.remove(s);
// Removal should make the refcount be the original refcount.
ASSERT_EQ(s->refcount(), s_orig_count) << "refcount should be as we started";
}
TEST_VM_F(ResourceHashtableDeleteTest, value_delete) {
TempNewSymbol d = SymbolTable::new_symbol("defghijklmnop");
int d_orig_count = d->refcount();
{
TestValue tv(d);
// Same as above, but the do_entry does nothing because the value is deleted when the
// hashtable node is deleted.
_test_table.put(d, tv);
ASSERT_EQ(d->refcount(), d_orig_count + 2) << "refcount incremented by copy";
}
ASSERT_EQ(d->refcount(), d_orig_count + 1) << "refcount incremented in table";
Deleter deleter;
_test_table.unlink(&deleter);
ASSERT_EQ(d->refcount(), d_orig_count) << "refcount should be as we started";
}
TEST_VM_F(ResourceHashtableDeleteTest, check_delete_ptr) {
TempNewSymbol s = SymbolTable::new_symbol("abcdefg_ptr");
int s_orig_count = s->refcount();
{
TestValue* tv = new TestValue(s);
// Again since TestValue contains the pointer to the key Symbol, it will
// handle the refcounting.
_ptr_test_table.put(s, tv);
ASSERT_EQ(s->refcount(), s_orig_count + 1) << "refcount incremented by allocation";
}
ASSERT_EQ(s->refcount(), s_orig_count + 1) << "refcount incremented in table";
// Deleting this pointer value from a hashtable must call the destructor in the
// do_entry function.
PtrDeleter deleter;
_ptr_test_table.unlink(&deleter);
// Removal should make the refcount be the original refcount.
ASSERT_EQ(s->refcount(), s_orig_count) << "refcount should be as we started";
}
class ResourceHashtablePrintTest : public ::testing::Test {
public:
class TestValue {
int _i;
int _j;
int _k;
public:
TestValue(int i) : _i(i), _j(i+1), _k(i+2) {}
};
ResourceHashtable<int, TestValue*, 30, AnyObj::C_HEAP, mtTest> _test_table;
class TableDeleter {
public:
bool do_entry(int& key, TestValue*& val) {
delete val;
return true;
}
};
};
TEST_VM_F(ResourceHashtablePrintTest, print_test) {
for (int i = 0; i < 300; i++) {
TestValue* tv = new TestValue(i);
_test_table.put(i, tv); // all the entries can be the same.
}
auto printer = [&] (int& key, TestValue*& val) {
return sizeof(*val);
};
TableStatistics ts = _test_table.statistics_calculate(printer);
ResourceMark rm;
stringStream st;
ts.print(&st, "TestTable");
// Verify output in string
const char* strings[] = {
"Number of buckets", "Number of entries", "300", "Number of literals", "Average bucket size", "Maximum bucket size" };
for (const auto& str : strings) {
ASSERT_THAT(st.base(), testing::HasSubstr(str));
}
// Cleanup: need to delete pointers in entries
TableDeleter deleter;
_test_table.unlink(&deleter);
}