6825739d3f
Reviewed-by: shade, rehn
351 lines
12 KiB
C++
351 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "jvm.h"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1ThreadLocalData.hpp"
|
|
#include "gc/g1/satbMarkQueue.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/thread.hpp"
|
|
#include "runtime/threadSMR.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
|
|
SATBMarkQueue::SATBMarkQueue(SATBMarkQueueSet* qset, bool permanent) :
|
|
// SATB queues are only active during marking cycles. We create
|
|
// them with their active field set to false. If a thread is
|
|
// created during a cycle and its SATB queue needs to be activated
|
|
// before the thread starts running, we'll need to set its active
|
|
// field to true. This is done in G1SBarrierSet::on_thread_attach().
|
|
PtrQueue(qset, permanent, false /* active */)
|
|
{ }
|
|
|
|
void SATBMarkQueue::flush() {
|
|
// Filter now to possibly save work later. If filtering empties the
|
|
// buffer then flush_impl can deallocate the buffer.
|
|
filter();
|
|
flush_impl();
|
|
}
|
|
|
|
// Return true if a SATB buffer entry refers to an object that
|
|
// requires marking.
|
|
//
|
|
// The entry must point into the G1 heap. In particular, it must not
|
|
// be a NULL pointer. NULL pointers are pre-filtered and never
|
|
// inserted into a SATB buffer.
|
|
//
|
|
// An entry that is below the NTAMS pointer for the containing heap
|
|
// region requires marking. Such an entry must point to a valid object.
|
|
//
|
|
// An entry that is at least the NTAMS pointer for the containing heap
|
|
// region might be any of the following, none of which should be marked.
|
|
//
|
|
// * A reference to an object allocated since marking started.
|
|
// According to SATB, such objects are implicitly kept live and do
|
|
// not need to be dealt with via SATB buffer processing.
|
|
//
|
|
// * A reference to a young generation object. Young objects are
|
|
// handled separately and are not marked by concurrent marking.
|
|
//
|
|
// * A stale reference to a young generation object. If a young
|
|
// generation object reference is recorded and not filtered out
|
|
// before being moved by a young collection, the reference becomes
|
|
// stale.
|
|
//
|
|
// * A stale reference to an eagerly reclaimed humongous object. If a
|
|
// humongous object is recorded and then reclaimed, the reference
|
|
// becomes stale.
|
|
//
|
|
// The stale reference cases are implicitly handled by the NTAMS
|
|
// comparison. Because of the possibility of stale references, buffer
|
|
// processing must be somewhat circumspect and not assume entries
|
|
// in an unfiltered buffer refer to valid objects.
|
|
|
|
inline bool requires_marking(const void* entry, G1CollectedHeap* heap) {
|
|
// Includes rejection of NULL pointers.
|
|
assert(heap->is_in_reserved(entry),
|
|
"Non-heap pointer in SATB buffer: " PTR_FORMAT, p2i(entry));
|
|
|
|
HeapRegion* region = heap->heap_region_containing(entry);
|
|
assert(region != NULL, "No region for " PTR_FORMAT, p2i(entry));
|
|
if (entry >= region->next_top_at_mark_start()) {
|
|
return false;
|
|
}
|
|
|
|
assert(oopDesc::is_oop(oop(entry), true /* ignore mark word */),
|
|
"Invalid oop in SATB buffer: " PTR_FORMAT, p2i(entry));
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool retain_entry(const void* entry, G1CollectedHeap* heap) {
|
|
return requires_marking(entry, heap) && !heap->is_marked_next((oop)entry);
|
|
}
|
|
|
|
// This method removes entries from a SATB buffer that will not be
|
|
// useful to the concurrent marking threads. Entries are retained if
|
|
// they require marking and are not already marked. Retained entries
|
|
// are compacted toward the top of the buffer.
|
|
|
|
void SATBMarkQueue::filter() {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
void** buf = _buf;
|
|
|
|
if (buf == NULL) {
|
|
// nothing to do
|
|
return;
|
|
}
|
|
|
|
// Two-fingered compaction toward the end.
|
|
void** src = &buf[index()];
|
|
void** dst = &buf[capacity()];
|
|
assert(src <= dst, "invariant");
|
|
for ( ; src < dst; ++src) {
|
|
// Search low to high for an entry to keep.
|
|
void* entry = *src;
|
|
if (retain_entry(entry, g1h)) {
|
|
// Found keeper. Search high to low for an entry to discard.
|
|
while (src < --dst) {
|
|
if (!retain_entry(*dst, g1h)) {
|
|
*dst = entry; // Replace discard with keeper.
|
|
break;
|
|
}
|
|
}
|
|
// If discard search failed (src == dst), the outer loop will also end.
|
|
}
|
|
}
|
|
// dst points to the lowest retained entry, or the end of the buffer
|
|
// if all the entries were filtered out.
|
|
set_index(dst - buf);
|
|
}
|
|
|
|
// This method will first apply the above filtering to the buffer. If
|
|
// post-filtering a large enough chunk of the buffer has been cleared
|
|
// we can re-use the buffer (instead of enqueueing it) and we can just
|
|
// allow the mutator to carry on executing using the same buffer
|
|
// instead of replacing it.
|
|
|
|
bool SATBMarkQueue::should_enqueue_buffer() {
|
|
assert(_lock == NULL || _lock->owned_by_self(),
|
|
"we should have taken the lock before calling this");
|
|
|
|
// If G1SATBBufferEnqueueingThresholdPercent == 0 we could skip filtering.
|
|
|
|
// This method should only be called if there is a non-NULL buffer
|
|
// that is full.
|
|
assert(index() == 0, "pre-condition");
|
|
assert(_buf != NULL, "pre-condition");
|
|
|
|
filter();
|
|
|
|
size_t cap = capacity();
|
|
size_t percent_used = ((cap - index()) * 100) / cap;
|
|
bool should_enqueue = percent_used > G1SATBBufferEnqueueingThresholdPercent;
|
|
return should_enqueue;
|
|
}
|
|
|
|
void SATBMarkQueue::apply_closure_and_empty(SATBBufferClosure* cl) {
|
|
assert(SafepointSynchronize::is_at_safepoint(),
|
|
"SATB queues must only be processed at safepoints");
|
|
if (_buf != NULL) {
|
|
cl->do_buffer(&_buf[index()], size());
|
|
reset();
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Helpful for debugging
|
|
|
|
static void print_satb_buffer(const char* name,
|
|
void** buf,
|
|
size_t index,
|
|
size_t capacity) {
|
|
tty->print_cr(" SATB BUFFER [%s] buf: " PTR_FORMAT " index: " SIZE_FORMAT
|
|
" capacity: " SIZE_FORMAT,
|
|
name, p2i(buf), index, capacity);
|
|
}
|
|
|
|
void SATBMarkQueue::print(const char* name) {
|
|
print_satb_buffer(name, _buf, index(), capacity());
|
|
}
|
|
|
|
#endif // PRODUCT
|
|
|
|
SATBMarkQueueSet::SATBMarkQueueSet() :
|
|
PtrQueueSet(),
|
|
_shared_satb_queue(this, true /* permanent */) { }
|
|
|
|
void SATBMarkQueueSet::initialize(Monitor* cbl_mon, Mutex* fl_lock,
|
|
int process_completed_threshold,
|
|
Mutex* lock) {
|
|
PtrQueueSet::initialize(cbl_mon, fl_lock, process_completed_threshold, -1);
|
|
_shared_satb_queue.set_lock(lock);
|
|
}
|
|
|
|
void SATBMarkQueueSet::handle_zero_index_for_thread(JavaThread* t) {
|
|
G1ThreadLocalData::satb_mark_queue(t).handle_zero_index();
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void SATBMarkQueueSet::dump_active_states(bool expected_active) {
|
|
log_error(gc, verify)("Expected SATB active state: %s", expected_active ? "ACTIVE" : "INACTIVE");
|
|
log_error(gc, verify)("Actual SATB active states:");
|
|
log_error(gc, verify)(" Queue set: %s", is_active() ? "ACTIVE" : "INACTIVE");
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
|
|
log_error(gc, verify)(" Thread \"%s\" queue: %s", t->name(), G1ThreadLocalData::satb_mark_queue(t).is_active() ? "ACTIVE" : "INACTIVE");
|
|
}
|
|
log_error(gc, verify)(" Shared queue: %s", shared_satb_queue()->is_active() ? "ACTIVE" : "INACTIVE");
|
|
}
|
|
|
|
void SATBMarkQueueSet::verify_active_states(bool expected_active) {
|
|
// Verify queue set state
|
|
if (is_active() != expected_active) {
|
|
dump_active_states(expected_active);
|
|
guarantee(false, "SATB queue set has an unexpected active state");
|
|
}
|
|
|
|
// Verify thread queue states
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
|
|
if (G1ThreadLocalData::satb_mark_queue(t).is_active() != expected_active) {
|
|
dump_active_states(expected_active);
|
|
guarantee(false, "Thread SATB queue has an unexpected active state");
|
|
}
|
|
}
|
|
|
|
// Verify shared queue state
|
|
if (shared_satb_queue()->is_active() != expected_active) {
|
|
dump_active_states(expected_active);
|
|
guarantee(false, "Shared SATB queue has an unexpected active state");
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void SATBMarkQueueSet::set_active_all_threads(bool active, bool expected_active) {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
|
|
#ifdef ASSERT
|
|
verify_active_states(expected_active);
|
|
#endif // ASSERT
|
|
_all_active = active;
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
|
|
G1ThreadLocalData::satb_mark_queue(t).set_active(active);
|
|
}
|
|
shared_satb_queue()->set_active(active);
|
|
}
|
|
|
|
void SATBMarkQueueSet::filter_thread_buffers() {
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
|
|
G1ThreadLocalData::satb_mark_queue(t).filter();
|
|
}
|
|
shared_satb_queue()->filter();
|
|
}
|
|
|
|
bool SATBMarkQueueSet::apply_closure_to_completed_buffer(SATBBufferClosure* cl) {
|
|
BufferNode* nd = NULL;
|
|
{
|
|
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
|
|
if (_completed_buffers_head != NULL) {
|
|
nd = _completed_buffers_head;
|
|
_completed_buffers_head = nd->next();
|
|
if (_completed_buffers_head == NULL) _completed_buffers_tail = NULL;
|
|
_n_completed_buffers--;
|
|
if (_n_completed_buffers == 0) _process_completed = false;
|
|
}
|
|
}
|
|
if (nd != NULL) {
|
|
void **buf = BufferNode::make_buffer_from_node(nd);
|
|
size_t index = nd->index();
|
|
size_t size = buffer_size();
|
|
assert(index <= size, "invariant");
|
|
cl->do_buffer(buf + index, size - index);
|
|
deallocate_buffer(nd);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Helpful for debugging
|
|
|
|
#define SATB_PRINTER_BUFFER_SIZE 256
|
|
|
|
void SATBMarkQueueSet::print_all(const char* msg) {
|
|
char buffer[SATB_PRINTER_BUFFER_SIZE];
|
|
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
|
|
|
|
tty->cr();
|
|
tty->print_cr("SATB BUFFERS [%s]", msg);
|
|
|
|
BufferNode* nd = _completed_buffers_head;
|
|
int i = 0;
|
|
while (nd != NULL) {
|
|
void** buf = BufferNode::make_buffer_from_node(nd);
|
|
jio_snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Enqueued: %d", i);
|
|
print_satb_buffer(buffer, buf, nd->index(), buffer_size());
|
|
nd = nd->next();
|
|
i += 1;
|
|
}
|
|
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
|
|
jio_snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Thread: %s", t->name());
|
|
G1ThreadLocalData::satb_mark_queue(t).print(buffer);
|
|
}
|
|
|
|
shared_satb_queue()->print("Shared");
|
|
|
|
tty->cr();
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
void SATBMarkQueueSet::abandon_partial_marking() {
|
|
BufferNode* buffers_to_delete = NULL;
|
|
{
|
|
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
|
|
while (_completed_buffers_head != NULL) {
|
|
BufferNode* nd = _completed_buffers_head;
|
|
_completed_buffers_head = nd->next();
|
|
nd->set_next(buffers_to_delete);
|
|
buffers_to_delete = nd;
|
|
}
|
|
_completed_buffers_tail = NULL;
|
|
_n_completed_buffers = 0;
|
|
DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked());
|
|
}
|
|
while (buffers_to_delete != NULL) {
|
|
BufferNode* nd = buffers_to_delete;
|
|
buffers_to_delete = nd->next();
|
|
deallocate_buffer(nd);
|
|
}
|
|
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
|
|
// So we can safely manipulate these queues.
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
|
|
G1ThreadLocalData::satb_mark_queue(t).reset();
|
|
}
|
|
shared_satb_queue()->reset();
|
|
}
|