8cfd74f76a
Reviewed-by: sviswanathan, jbhateja, vlivanov
437 lines
20 KiB
Java
437 lines
20 KiB
Java
/*
|
|
* Copyright (c) 2022, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 8289551 8302976
|
|
* @summary Verify conversion between float and the binary16 format
|
|
* @requires (vm.cpu.features ~= ".*avx512vl.*" | vm.cpu.features ~= ".*f16c.*") | os.arch=="aarch64"
|
|
* @requires vm.compiler1.enabled & vm.compiler2.enabled
|
|
* @requires vm.compMode != "Xcomp"
|
|
* @comment default run
|
|
* @run main Binary16Conversion
|
|
* @comment C1 JIT compilation only:
|
|
* @run main/othervm -Xcomp -XX:TieredStopAtLevel=1 -XX:CompileCommand=compileonly,Binary16Conversion::test* Binary16Conversion
|
|
* @comment C2 JIT compilation only:
|
|
* @run main/othervm -Xcomp -XX:-TieredCompilation -XX:CompileCommand=compileonly,Binary16Conversion::test* Binary16Conversion
|
|
*/
|
|
|
|
public class Binary16Conversion {
|
|
|
|
public static final int FLOAT_SIGNIFICAND_WIDTH = 24;
|
|
|
|
public static void main(String... argv) {
|
|
System.out.println("Start ...");
|
|
short s = Float.floatToFloat16(0.0f); // Load Float class
|
|
|
|
int errors = 0;
|
|
errors += testBinary16RoundTrip();
|
|
// Note that helper methods do sign-symmetric testing
|
|
errors += testBinary16CardinalValues();
|
|
errors += testRoundFloatToBinary16();
|
|
errors += testRoundFloatToBinary16HalfWayCases();
|
|
errors += testRoundFloatToBinary16FullBinade();
|
|
errors += testAlternativeImplementation();
|
|
|
|
if (errors > 0)
|
|
throw new RuntimeException(errors + " errors");
|
|
}
|
|
|
|
/*
|
|
* Put all 16-bit values through a conversion loop and make sure
|
|
* the values are preserved (NaN bit patterns notwithstanding).
|
|
*/
|
|
private static int testBinary16RoundTrip() {
|
|
int errors = 0;
|
|
for (int i = Short.MIN_VALUE; i < Short.MAX_VALUE; i++) {
|
|
short s = (short)i;
|
|
float f = Float.float16ToFloat(s);
|
|
short s2 = Float.floatToFloat16(f);
|
|
|
|
if (!Binary16.equivalent(s, s2)) {
|
|
errors++;
|
|
System.out.println("Roundtrip failure on " +
|
|
Integer.toHexString(0xFFFF & (int)s) +
|
|
"\t got back " + Integer.toHexString(0xFFFF & (int)s2));
|
|
}
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testBinary16CardinalValues() {
|
|
int errors = 0;
|
|
// Encode short value for different binary16 cardinal values as an
|
|
// integer-valued float.
|
|
float[][] testCases = {
|
|
{Binary16.POSITIVE_ZERO, +0.0f},
|
|
{Binary16.MIN_VALUE, 0x1.0p-24f},
|
|
{Binary16.MAX_SUBNORMAL, 0x1.ff8p-15f},
|
|
{Binary16.MIN_NORMAL, 0x1.0p-14f},
|
|
{Binary16.ONE, 1.0f},
|
|
{Binary16.MAX_VALUE, 65504.0f},
|
|
{Binary16.POSITIVE_INFINITY, Float.POSITIVE_INFINITY},
|
|
};
|
|
|
|
// Check conversions in both directions
|
|
|
|
// short -> float
|
|
for (var testCase : testCases) {
|
|
errors += compareAndReportError((short)testCase[0],
|
|
testCase[1]);
|
|
}
|
|
|
|
// float -> short
|
|
for (var testCase : testCases) {
|
|
errors += compareAndReportError(testCase[1],
|
|
(short)testCase[0]);
|
|
}
|
|
|
|
return errors;
|
|
}
|
|
|
|
private static int testRoundFloatToBinary16() {
|
|
int errors = 0;
|
|
|
|
float[][] testCases = {
|
|
// Test all combinations of LSB, round, and sticky bit
|
|
|
|
// LSB = 0, test combination of round and sticky
|
|
{0x1.ff8000p-1f, (short)0x3bfe}, // round = 0, sticky = 0
|
|
{0x1.ff8010p-1f, (short)0x3bfe}, // round = 0, sticky = 1
|
|
{0x1.ffa000p-1f, (short)0x3bfe}, // round = 1, sticky = 0
|
|
{0x1.ffa010p-1f, (short)0x3bff}, // round = 1, sticky = 1 => ++
|
|
|
|
// LSB = 1, test combination of round and sticky
|
|
{0x1.ffc000p-1f, Binary16.ONE-1}, // round = 0, sticky = 0
|
|
{0x1.ffc010p-1f, Binary16.ONE-1}, // round = 0, sticky = 1
|
|
{0x1.ffe000p-1f, Binary16.ONE}, // round = 1, sticky = 0 => ++
|
|
{0x1.ffe010p-1f, Binary16.ONE}, // round = 1, sticky = 1 => ++
|
|
|
|
// Test subnormal rounding
|
|
// Largest subnormal binary16 0x03ff => 0x1.ff8p-15f; LSB = 1
|
|
{0x1.ff8000p-15f, Binary16.MAX_SUBNORMAL}, // round = 0, sticky = 0
|
|
{0x1.ff8010p-15f, Binary16.MAX_SUBNORMAL}, // round = 0, sticky = 1
|
|
{0x1.ffc000p-15f, Binary16.MIN_NORMAL}, // round = 1, sticky = 0 => ++
|
|
{0x1.ffc010p-15f, Binary16.MIN_NORMAL}, // round = 1, sticky = 1 => ++
|
|
|
|
// Test rounding near binary16 MIN_VALUE
|
|
// Smallest in magnitude subnormal binary16 value 0x0001 => 0x1.0p-24f
|
|
// Half-way case,0x1.0p-25f, and smaller should round down to zero
|
|
{0x1.fffffep-26f, Binary16.POSITIVE_ZERO}, // nextDown in float
|
|
{0x1.000000p-25f, Binary16.POSITIVE_ZERO},
|
|
{0x1.000002p-25f, Binary16.MIN_VALUE}, // nextUp in float
|
|
{0x1.100000p-25f, Binary16.MIN_VALUE},
|
|
|
|
// Test rounding near overflow threshold
|
|
// Largest normal binary16 number 0x7bff => 0x1.ffcp15f; LSB = 1
|
|
{0x1.ffc000p15f, Binary16.MAX_VALUE}, // round = 0, sticky = 0
|
|
{0x1.ffc010p15f, Binary16.MAX_VALUE}, // round = 0, sticky = 1
|
|
{0x1.ffe000p15f, Binary16.POSITIVE_INFINITY}, // round = 1, sticky = 0 => ++
|
|
{0x1.ffe010p15f, Binary16.POSITIVE_INFINITY}, // round = 1, sticky = 1 => ++
|
|
};
|
|
|
|
for (var testCase : testCases) {
|
|
errors += compareAndReportError(testCase[0],
|
|
(short)testCase[1]);
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testRoundFloatToBinary16HalfWayCases() {
|
|
int errors = 0;
|
|
|
|
// Test rounding of exact half-way cases between each pair of
|
|
// finite exactly-representable binary16 numbers. Also test
|
|
// rounding of half-way +/- ulp of the *float* value.
|
|
// Additionally, test +/- float ulp of the endpoints. (Other
|
|
// tests in this file make sure all short values round-trip so
|
|
// that doesn't need to be tested here.)
|
|
|
|
for (int i = Binary16.POSITIVE_ZERO; // 0x0000
|
|
i <= Binary16.MAX_VALUE; // 0x7bff
|
|
i += 2) { // Check every even/odd pair once
|
|
short lower = (short) i;
|
|
short upper = (short)(i+1);
|
|
|
|
float lowerFloat = Float.float16ToFloat(lower);
|
|
float upperFloat = Float.float16ToFloat(upper);
|
|
assert lowerFloat < upperFloat;
|
|
|
|
float midway = (lowerFloat + upperFloat) * 0.5f; // Exact midpoint
|
|
|
|
errors += compareAndReportError(Math.nextUp(lowerFloat), lower);
|
|
errors += compareAndReportError(Math.nextDown(midway), lower);
|
|
|
|
// Under round to nearest even, the midway point will
|
|
// round *down* to the (even) lower endpoint.
|
|
errors += compareAndReportError( midway, lower);
|
|
|
|
errors += compareAndReportError(Math.nextUp( midway), upper);
|
|
errors += compareAndReportError(Math.nextDown(upperFloat), upper);
|
|
}
|
|
|
|
// More testing around the overflow threshold
|
|
// Binary16.ulp(Binary16.MAX_VALUE) == 32.0f; test around Binary16.MAX_VALUE + 1/2 ulp
|
|
float binary16_MAX_VALUE = Float.float16ToFloat(Binary16.MAX_VALUE);
|
|
float binary16_MAX_VALUE_halfUlp = binary16_MAX_VALUE + 16.0f;
|
|
|
|
errors += compareAndReportError(Math.nextDown(binary16_MAX_VALUE), Binary16.MAX_VALUE);
|
|
errors += compareAndReportError( binary16_MAX_VALUE, Binary16.MAX_VALUE);
|
|
errors += compareAndReportError(Math.nextUp( binary16_MAX_VALUE), Binary16.MAX_VALUE);
|
|
|
|
// Binary16.MAX_VALUE is an "odd" value since its LSB = 1 so
|
|
// the half-way value greater than Binary16.MAX_VALUE should
|
|
// round up to the next even value, in this case Binary16.POSITIVE_INFINITY.
|
|
errors += compareAndReportError(Math.nextDown(binary16_MAX_VALUE_halfUlp), Binary16.MAX_VALUE);
|
|
errors += compareAndReportError( binary16_MAX_VALUE_halfUlp, Binary16.POSITIVE_INFINITY);
|
|
errors += compareAndReportError(Math.nextUp( binary16_MAX_VALUE_halfUlp), Binary16.POSITIVE_INFINITY);
|
|
|
|
return errors;
|
|
}
|
|
|
|
private static int compareAndReportError(float input,
|
|
short expected) {
|
|
// Round to nearest even is sign symmetric
|
|
return compareAndReportError0( input, expected) +
|
|
compareAndReportError0(-input, Binary16.negate(expected));
|
|
}
|
|
|
|
private static int compareAndReportError0(float input,
|
|
short expected) {
|
|
short actual = Float.floatToFloat16(input);
|
|
if (!Binary16.equivalent(actual, expected)) {
|
|
System.out.println("Unexpected result of converting " +
|
|
Float.toHexString(input) +
|
|
" to short. Expected 0x" + Integer.toHexString(0xFFFF & expected) +
|
|
" got 0x" + Integer.toHexString(0xFFFF & actual));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
private static int compareAndReportError0(short input,
|
|
float expected) {
|
|
float actual = Float.float16ToFloat(input);
|
|
if (Float.compare(actual, expected) != 0) {
|
|
System.out.println("Unexpected result of converting " +
|
|
Integer.toHexString(input & 0xFFFF) +
|
|
" to float. Expected " + Float.toHexString(expected) +
|
|
" got " + Float.toHexString(actual));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
private static int compareAndReportError(short input,
|
|
float expected) {
|
|
// Round to nearest even is sign symmetric
|
|
return compareAndReportError0( input, expected) +
|
|
compareAndReportError0(Binary16.negate(input), -expected);
|
|
}
|
|
|
|
private static int testRoundFloatToBinary16FullBinade() {
|
|
int errors = 0;
|
|
|
|
// For each float value between 1.0 and less than 2.0
|
|
// (i.e. set of float values with an exponent of 0), convert
|
|
// each value to binary16 and then convert that binary16 value
|
|
// back to float.
|
|
//
|
|
// Any exponent could be used; the maximum exponent for normal
|
|
// values would not exercise the full set of code paths since
|
|
// there is an up-front check on values that would overflow,
|
|
// which correspond to a ripple-carry of the significand that
|
|
// bumps the exponent.
|
|
short previous = (short)0;
|
|
for (int i = Float.floatToIntBits(1.0f);
|
|
i <= Float.floatToIntBits(Math.nextDown(2.0f));
|
|
i++) {
|
|
// (Could also express the loop control directly in terms
|
|
// of floating-point operations, incrementing by ulp(1.0),
|
|
// etc.)
|
|
|
|
float f = Float.intBitsToFloat(i);
|
|
short f_as_bin16 = Float.floatToFloat16(f);
|
|
short f_as_bin16_down = (short)(f_as_bin16 - 1);
|
|
short f_as_bin16_up = (short)(f_as_bin16 + 1);
|
|
|
|
// Across successive float values to convert to binary16,
|
|
// the binary16 results should be semi-monotonic,
|
|
// non-decreasing in this case.
|
|
|
|
// Only positive binary16 values so can compare using integer operations
|
|
if (f_as_bin16 < previous) {
|
|
errors++;
|
|
System.out.println("Semi-monotonicity violation observed on loat: " + Float.toHexString(f) + "/" + Integer.toHexString(i) + " " +
|
|
Integer.toHexString(0xffff & f_as_bin16) + " previous: " + Integer.toHexString(0xffff & previous) + " f_as_bin16: " + Integer.toHexString(0xffff & f_as_bin16));
|
|
}
|
|
// previous = f_as_bin16;
|
|
|
|
// If round-to-nearest was correctly done, when exactly
|
|
// mapped back to float, f_as_bin16 should be at least as
|
|
// close as either of its neighbors to the original value
|
|
// of f.
|
|
|
|
float f_prime_down = Float.float16ToFloat(f_as_bin16_down);
|
|
float f_prime = Float.float16ToFloat(f_as_bin16);
|
|
float f_prime_up = Float.float16ToFloat(f_as_bin16_up);
|
|
|
|
previous = f_as_bin16;
|
|
|
|
float f_prime_diff = Math.abs(f - f_prime);
|
|
if (f_prime_diff == 0.0) {
|
|
continue;
|
|
}
|
|
float f_prime_down_diff = Math.abs(f - f_prime_down);
|
|
float f_prime_up_diff = Math.abs(f - f_prime_up);
|
|
|
|
if (f_prime_diff > f_prime_down_diff ||
|
|
f_prime_diff > f_prime_up_diff) {
|
|
errors++;
|
|
System.out.println("Round-to-nearest violation on converting " +
|
|
Float.toHexString(f) + "/" + Integer.toHexString(i) + " to binary16 and back: " + Integer.toHexString(0xffff & f_as_bin16) + " f_prime: " + Float.toHexString(f_prime));
|
|
}
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testAlternativeImplementation() {
|
|
int errors = 0;
|
|
|
|
// For exhaustive test of all float values use
|
|
// for (long ell = Integer.MIN_VALUE; ell <= Integer.MAX_VALUE; ell++) {
|
|
|
|
for (long ell = Float.floatToIntBits(2.0f);
|
|
ell <= Float.floatToIntBits(4.0f);
|
|
ell++) {
|
|
float f = Float.intBitsToFloat((int)ell);
|
|
short s1 = Float.floatToFloat16(f);
|
|
short s2 = testAltFloatToFloat16(f);
|
|
|
|
if (s1 != s2) {
|
|
errors++;
|
|
System.out.println("Different conversion of float value " + Float.toHexString(f));
|
|
}
|
|
}
|
|
|
|
return errors;
|
|
}
|
|
|
|
/*
|
|
* Rely on float operations to do rounding in both normal and
|
|
* subnormal binary16 cases.
|
|
*/
|
|
public static short testAltFloatToFloat16(float f) {
|
|
int doppel = Float.floatToRawIntBits(f);
|
|
short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
|
|
|
|
if (Float.isNaN(f)) {
|
|
// Preserve sign and attempt to preserve significand bits
|
|
return (short)(sign_bit
|
|
| 0x7c00 // max exponent + 1
|
|
// Preserve high order bit of float NaN in the
|
|
// binary16 result NaN (tenth bit); OR in remaining
|
|
// bits into lower 9 bits of binary 16 significand.
|
|
| (doppel & 0x007f_e000) >> 13 // 10 bits
|
|
| (doppel & 0x0000_1ff0) >> 4 // 9 bits
|
|
| (doppel & 0x0000_000f)); // 4 bits
|
|
}
|
|
|
|
float abs_f = Math.abs(f);
|
|
|
|
// The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
|
|
if (abs_f >= (65504.0f + 16.0f) ) {
|
|
return (short)(sign_bit | 0x7c00); // Positive or negative infinity
|
|
} else {
|
|
// Smallest magnitude nonzero representable binary16 value
|
|
// is equal to 0x1.0p-24; half-way and smaller rounds to zero.
|
|
if (abs_f <= 0x1.0p-25f) { // Covers float zeros and subnormals.
|
|
return sign_bit; // Positive or negative zero
|
|
}
|
|
|
|
// Dealing with finite values in exponent range of
|
|
// binary16 (when rounding is done, could still round up)
|
|
int exp = Math.getExponent(f);
|
|
assert -25 <= exp && exp <= 15;
|
|
short signif_bits;
|
|
|
|
if (exp <= -15) { // scale down to float subnormal range to do rounding
|
|
// Use a float multiply to compute the correct
|
|
// trailing significand bits for a binary16 subnormal.
|
|
//
|
|
// The exponent range of normalized binary16 subnormal
|
|
// values is [-24, -15]. The exponent range of float
|
|
// subnormals is [-149, -140]. Multiply abs_f down by
|
|
// 2^(-125) -- since (-125 = -149 - (-24)) -- so that
|
|
// the trailing bits of a subnormal float represent
|
|
// the correct trailing bits of a binary16 subnormal.
|
|
exp = -15; // Subnormal encoding using -E_max.
|
|
float f_adjust = abs_f * 0x1.0p-125f;
|
|
|
|
// In case the significand rounds up and has a carry
|
|
// propagate all the way up, take the bottom 11 bits
|
|
// rather than bottom 10 bits. Adding this value,
|
|
// rather than OR'ing htis value, will cause the right
|
|
// exponent adjustment.
|
|
signif_bits = (short)(Float.floatToRawIntBits(f_adjust) & 0x07ff);
|
|
return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
|
|
} else {
|
|
// Scale down to subnormal range to round off excess bits
|
|
int scalingExp = -139 - exp;
|
|
float scaled = Math.scalb(Math.scalb(f, scalingExp),
|
|
-scalingExp);
|
|
exp = Math.getExponent(scaled);
|
|
doppel = Float.floatToRawIntBits(scaled);
|
|
|
|
signif_bits = (short)((doppel & 0x007f_e000) >>
|
|
(FLOAT_SIGNIFICAND_WIDTH - 11));
|
|
return (short)(sign_bit | ( ((exp + 15) << 10) | signif_bits ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
public static class Binary16 {
|
|
public static final short POSITIVE_INFINITY = (short)0x7c00;
|
|
public static final short MAX_VALUE = 0x7bff;
|
|
public static final short ONE = 0x3c00;
|
|
public static final short MIN_NORMAL = 0x0400;
|
|
public static final short MAX_SUBNORMAL = 0x03ff;
|
|
public static final short MIN_VALUE = 0x0001;
|
|
public static final short POSITIVE_ZERO = 0x0000;
|
|
|
|
public static boolean isNaN(short binary16) {
|
|
return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and...
|
|
&& ((binary16 & 0x03ff) != 0 ); // significand nonzero.
|
|
}
|
|
|
|
public static short negate(short binary16) {
|
|
return (short)(binary16 ^ 0x8000 ); // Flip only sign bit.
|
|
}
|
|
|
|
public static boolean equivalent(short bin16_1, short bin16_2) {
|
|
return (bin16_1 == bin16_2) ||
|
|
isNaN(bin16_1) && isNaN(bin16_2);
|
|
}
|
|
}
|
|
}
|