Joseph Provino 5cef85023b 8132524: Missing includes to resourceArea.hpp
Files that use ResourceMark are missing the include of resourceArea.hpp

Reviewed-by: tschatzl, jwilhelm
2016-04-04 12:57:48 -04:00

1522 lines
48 KiB
C++

/*
* Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "jvmtifiles/jvmtiEnv.hpp"
#include "memory/resourceArea.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiEnvBase.hpp"
#include "prims/jvmtiEventController.inline.hpp"
#include "prims/jvmtiExtensions.hpp"
#include "prims/jvmtiImpl.hpp"
#include "prims/jvmtiManageCapabilities.hpp"
#include "prims/jvmtiTagMap.hpp"
#include "prims/jvmtiThreadState.inline.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/jfieldIDWorkaround.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/objectMonitor.inline.hpp"
#include "runtime/signature.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/vframe.hpp"
#include "runtime/vframe_hp.hpp"
#include "runtime/vmThread.hpp"
#include "runtime/vm_operations.hpp"
///////////////////////////////////////////////////////////////
//
// JvmtiEnvBase
//
JvmtiEnvBase* JvmtiEnvBase::_head_environment = NULL;
bool JvmtiEnvBase::_globally_initialized = false;
volatile bool JvmtiEnvBase::_needs_clean_up = false;
jvmtiPhase JvmtiEnvBase::_phase = JVMTI_PHASE_PRIMORDIAL;
volatile int JvmtiEnvBase::_dying_thread_env_iteration_count = 0;
extern jvmtiInterface_1_ jvmti_Interface;
extern jvmtiInterface_1_ jvmtiTrace_Interface;
// perform initializations that must occur before any JVMTI environments
// are released but which should only be initialized once (no matter
// how many environments are created).
void
JvmtiEnvBase::globally_initialize() {
assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(), "sanity check");
assert(_globally_initialized == false, "bad call");
JvmtiManageCapabilities::initialize();
// register extension functions and events
JvmtiExtensions::register_extensions();
#ifdef JVMTI_TRACE
JvmtiTrace::initialize();
#endif
_globally_initialized = true;
}
void
JvmtiEnvBase::initialize() {
assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(), "sanity check");
// Add this environment to the end of the environment list (order is important)
{
// This block of code must not contain any safepoints, as list deallocation
// (which occurs at a safepoint) cannot occur simultaneously with this list
// addition. Note: NoSafepointVerifier cannot, currently, be used before
// threads exist.
JvmtiEnvIterator it;
JvmtiEnvBase *previous_env = NULL;
for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
previous_env = env;
}
if (previous_env == NULL) {
_head_environment = this;
} else {
previous_env->set_next_environment(this);
}
}
if (_globally_initialized == false) {
globally_initialize();
}
}
jvmtiPhase
JvmtiEnvBase::phase() {
// For the JVMTI environments possessed the can_generate_early_vmstart:
// replace JVMTI_PHASE_PRIMORDIAL with JVMTI_PHASE_START
if (_phase == JVMTI_PHASE_PRIMORDIAL &&
JvmtiExport::early_vmstart_recorded() &&
early_vmstart_env()) {
return JVMTI_PHASE_START;
}
return _phase; // Normal case
}
bool
JvmtiEnvBase::is_valid() {
jint value = 0;
// This object might not be a JvmtiEnvBase so we can't assume
// the _magic field is properly aligned. Get the value in a safe
// way and then check against JVMTI_MAGIC.
switch (sizeof(_magic)) {
case 2:
value = Bytes::get_native_u2((address)&_magic);
break;
case 4:
value = Bytes::get_native_u4((address)&_magic);
break;
case 8:
value = Bytes::get_native_u8((address)&_magic);
break;
default:
guarantee(false, "_magic field is an unexpected size");
}
return value == JVMTI_MAGIC;
}
bool
JvmtiEnvBase::use_version_1_0_semantics() {
int major, minor, micro;
JvmtiExport::decode_version_values(_version, &major, &minor, &micro);
return major == 1 && minor == 0; // micro version doesn't matter here
}
bool
JvmtiEnvBase::use_version_1_1_semantics() {
int major, minor, micro;
JvmtiExport::decode_version_values(_version, &major, &minor, &micro);
return major == 1 && minor == 1; // micro version doesn't matter here
}
bool
JvmtiEnvBase::use_version_1_2_semantics() {
int major, minor, micro;
JvmtiExport::decode_version_values(_version, &major, &minor, &micro);
return major == 1 && minor == 2; // micro version doesn't matter here
}
JvmtiEnvBase::JvmtiEnvBase(jint version) : _env_event_enable() {
_version = version;
_env_local_storage = NULL;
_tag_map = NULL;
_native_method_prefix_count = 0;
_native_method_prefixes = NULL;
_next = NULL;
_class_file_load_hook_ever_enabled = false;
// Moot since ClassFileLoadHook not yet enabled.
// But "true" will give a more predictable ClassFileLoadHook behavior
// for environment creation during ClassFileLoadHook.
_is_retransformable = true;
// all callbacks initially NULL
memset(&_event_callbacks,0,sizeof(jvmtiEventCallbacks));
// all capabilities initially off
memset(&_current_capabilities, 0, sizeof(_current_capabilities));
// all prohibited capabilities initially off
memset(&_prohibited_capabilities, 0, sizeof(_prohibited_capabilities));
_magic = JVMTI_MAGIC;
JvmtiEventController::env_initialize((JvmtiEnv*)this);
#ifdef JVMTI_TRACE
_jvmti_external.functions = TraceJVMTI != NULL ? &jvmtiTrace_Interface : &jvmti_Interface;
#else
_jvmti_external.functions = &jvmti_Interface;
#endif
}
void
JvmtiEnvBase::dispose() {
#ifdef JVMTI_TRACE
JvmtiTrace::shutdown();
#endif
// Dispose of event info and let the event controller call us back
// in a locked state (env_dispose, below)
JvmtiEventController::env_dispose(this);
}
void
JvmtiEnvBase::env_dispose() {
assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(), "sanity check");
// We have been entered with all events disabled on this environment.
// A race to re-enable events (by setting callbacks) is prevented by
// checking for a valid environment when setting callbacks (while
// holding the JvmtiThreadState_lock).
// Mark as invalid.
_magic = DISPOSED_MAGIC;
// Relinquish all capabilities.
jvmtiCapabilities *caps = get_capabilities();
JvmtiManageCapabilities::relinquish_capabilities(caps, caps, caps);
// Same situation as with events (see above)
set_native_method_prefixes(0, NULL);
JvmtiTagMap* tag_map_to_deallocate = _tag_map;
set_tag_map(NULL);
// A tag map can be big, deallocate it now
if (tag_map_to_deallocate != NULL) {
delete tag_map_to_deallocate;
}
_needs_clean_up = true;
}
JvmtiEnvBase::~JvmtiEnvBase() {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
// There is a small window of time during which the tag map of a
// disposed environment could have been reallocated.
// Make sure it is gone.
JvmtiTagMap* tag_map_to_deallocate = _tag_map;
set_tag_map(NULL);
// A tag map can be big, deallocate it now
if (tag_map_to_deallocate != NULL) {
delete tag_map_to_deallocate;
}
_magic = BAD_MAGIC;
}
void
JvmtiEnvBase::periodic_clean_up() {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
// JvmtiEnvBase reference is saved in JvmtiEnvThreadState. So
// clean up JvmtiThreadState before deleting JvmtiEnv pointer.
JvmtiThreadState::periodic_clean_up();
// Unlink all invalid environments from the list of environments
// and deallocate them
JvmtiEnvIterator it;
JvmtiEnvBase* previous_env = NULL;
JvmtiEnvBase* env = it.first();
while (env != NULL) {
if (env->is_valid()) {
previous_env = env;
env = it.next(env);
} else {
// This one isn't valid, remove it from the list and deallocate it
JvmtiEnvBase* defunct_env = env;
env = it.next(env);
if (previous_env == NULL) {
_head_environment = env;
} else {
previous_env->set_next_environment(env);
}
delete defunct_env;
}
}
}
void
JvmtiEnvBase::check_for_periodic_clean_up() {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
class ThreadInsideIterationClosure: public ThreadClosure {
private:
bool _inside;
public:
ThreadInsideIterationClosure() : _inside(false) {};
void do_thread(Thread* thread) {
_inside |= thread->is_inside_jvmti_env_iteration();
}
bool is_inside_jvmti_env_iteration() {
return _inside;
}
};
if (_needs_clean_up) {
// Check if we are currently iterating environment,
// deallocation should not occur if we are
ThreadInsideIterationClosure tiic;
Threads::threads_do(&tiic);
if (!tiic.is_inside_jvmti_env_iteration() &&
!is_inside_dying_thread_env_iteration()) {
_needs_clean_up = false;
JvmtiEnvBase::periodic_clean_up();
}
}
}
void
JvmtiEnvBase::record_first_time_class_file_load_hook_enabled() {
assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(),
"sanity check");
if (!_class_file_load_hook_ever_enabled) {
_class_file_load_hook_ever_enabled = true;
if (get_capabilities()->can_retransform_classes) {
_is_retransformable = true;
} else {
_is_retransformable = false;
// cannot add retransform capability after ClassFileLoadHook has been enabled
get_prohibited_capabilities()->can_retransform_classes = 1;
}
}
}
void
JvmtiEnvBase::record_class_file_load_hook_enabled() {
if (!_class_file_load_hook_ever_enabled) {
if (Threads::number_of_threads() == 0) {
record_first_time_class_file_load_hook_enabled();
} else {
MutexLocker mu(JvmtiThreadState_lock);
record_first_time_class_file_load_hook_enabled();
}
}
}
jvmtiError
JvmtiEnvBase::set_native_method_prefixes(jint prefix_count, char** prefixes) {
assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(),
"sanity check");
int old_prefix_count = get_native_method_prefix_count();
char **old_prefixes = get_native_method_prefixes();
// allocate and install the new prefixex
if (prefix_count == 0 || !is_valid()) {
_native_method_prefix_count = 0;
_native_method_prefixes = NULL;
} else {
// there are prefixes, allocate an array to hold them, and fill it
char** new_prefixes = (char**)os::malloc((prefix_count) * sizeof(char*), mtInternal);
if (new_prefixes == NULL) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
for (int i = 0; i < prefix_count; i++) {
char* prefix = prefixes[i];
if (prefix == NULL) {
for (int j = 0; j < (i-1); j++) {
os::free(new_prefixes[j]);
}
os::free(new_prefixes);
return JVMTI_ERROR_NULL_POINTER;
}
prefix = os::strdup(prefixes[i]);
if (prefix == NULL) {
for (int j = 0; j < (i-1); j++) {
os::free(new_prefixes[j]);
}
os::free(new_prefixes);
return JVMTI_ERROR_OUT_OF_MEMORY;
}
new_prefixes[i] = prefix;
}
_native_method_prefix_count = prefix_count;
_native_method_prefixes = new_prefixes;
}
// now that we know the new prefixes have been successfully installed we can
// safely remove the old ones
if (old_prefix_count != 0) {
for (int i = 0; i < old_prefix_count; i++) {
os::free(old_prefixes[i]);
}
os::free(old_prefixes);
}
return JVMTI_ERROR_NONE;
}
// Collect all the prefixes which have been set in any JVM TI environments
// by the SetNativeMethodPrefix(es) functions. Be sure to maintain the
// order of environments and the order of prefixes within each environment.
// Return in a resource allocated array.
char**
JvmtiEnvBase::get_all_native_method_prefixes(int* count_ptr) {
assert(Threads::number_of_threads() == 0 ||
SafepointSynchronize::is_at_safepoint() ||
JvmtiThreadState_lock->is_locked(),
"sanity check");
int total_count = 0;
GrowableArray<char*>* prefix_array =new GrowableArray<char*>(5);
JvmtiEnvIterator it;
for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
int prefix_count = env->get_native_method_prefix_count();
char** prefixes = env->get_native_method_prefixes();
for (int j = 0; j < prefix_count; j++) {
// retrieve a prefix and so that it is safe against asynchronous changes
// copy it into the resource area
char* prefix = prefixes[j];
char* prefix_copy = NEW_RESOURCE_ARRAY(char, strlen(prefix)+1);
strcpy(prefix_copy, prefix);
prefix_array->at_put_grow(total_count++, prefix_copy);
}
}
char** all_prefixes = NEW_RESOURCE_ARRAY(char*, total_count);
char** p = all_prefixes;
for (int i = 0; i < total_count; ++i) {
*p++ = prefix_array->at(i);
}
*count_ptr = total_count;
return all_prefixes;
}
void
JvmtiEnvBase::set_event_callbacks(const jvmtiEventCallbacks* callbacks,
jint size_of_callbacks) {
assert(Threads::number_of_threads() == 0 || JvmtiThreadState_lock->is_locked(), "sanity check");
size_t byte_cnt = sizeof(jvmtiEventCallbacks);
// clear in either case to be sure we got any gap between sizes
memset(&_event_callbacks, 0, byte_cnt);
// Now that JvmtiThreadState_lock is held, prevent a possible race condition where events
// are re-enabled by a call to set event callbacks where the DisposeEnvironment
// occurs after the boiler-plate environment check and before the lock is acquired.
if (callbacks != NULL && is_valid()) {
if (size_of_callbacks < (jint)byte_cnt) {
byte_cnt = size_of_callbacks;
}
memcpy(&_event_callbacks, callbacks, byte_cnt);
}
}
// Called from JVMTI entry points which perform stack walking. If the
// associated JavaThread is the current thread, then wait_for_suspend
// is not used. Otherwise, it determines if we should wait for the
// "other" thread to complete external suspension. (NOTE: in future
// releases the suspension mechanism should be reimplemented so this
// is not necessary.)
//
bool
JvmtiEnvBase::is_thread_fully_suspended(JavaThread* thr, bool wait_for_suspend, uint32_t *bits) {
// "other" threads require special handling
if (thr != JavaThread::current()) {
if (wait_for_suspend) {
// We are allowed to wait for the external suspend to complete
// so give the other thread a chance to get suspended.
if (!thr->wait_for_ext_suspend_completion(SuspendRetryCount,
SuspendRetryDelay, bits)) {
// didn't make it so let the caller know
return false;
}
}
// We aren't allowed to wait for the external suspend to complete
// so if the other thread isn't externally suspended we need to
// let the caller know.
else if (!thr->is_ext_suspend_completed_with_lock(bits)) {
return false;
}
}
return true;
}
// In the fullness of time, all users of the method should instead
// directly use allocate, besides being cleaner and faster, this will
// mean much better out of memory handling
unsigned char *
JvmtiEnvBase::jvmtiMalloc(jlong size) {
unsigned char* mem = NULL;
jvmtiError result = allocate(size, &mem);
assert(result == JVMTI_ERROR_NONE, "Allocate failed");
return mem;
}
//
// Threads
//
jobject *
JvmtiEnvBase::new_jobjectArray(int length, Handle *handles) {
if (length == 0) {
return NULL;
}
jobject *objArray = (jobject *) jvmtiMalloc(sizeof(jobject) * length);
NULL_CHECK(objArray, NULL);
for (int i=0; i<length; i++) {
objArray[i] = jni_reference(handles[i]);
}
return objArray;
}
jthread *
JvmtiEnvBase::new_jthreadArray(int length, Handle *handles) {
return (jthread *) new_jobjectArray(length,handles);
}
jthreadGroup *
JvmtiEnvBase::new_jthreadGroupArray(int length, Handle *handles) {
return (jthreadGroup *) new_jobjectArray(length,handles);
}
JavaThread *
JvmtiEnvBase::get_JavaThread(jthread jni_thread) {
oop t = JNIHandles::resolve_external_guard(jni_thread);
if (t == NULL || !t->is_a(SystemDictionary::Thread_klass())) {
return NULL;
}
// The following returns NULL if the thread has not yet run or is in
// process of exiting
return java_lang_Thread::thread(t);
}
// return the vframe on the specified thread and depth, NULL if no such frame
vframe*
JvmtiEnvBase::vframeFor(JavaThread* java_thread, jint depth) {
if (!java_thread->has_last_Java_frame()) {
return NULL;
}
RegisterMap reg_map(java_thread);
vframe *vf = java_thread->last_java_vframe(&reg_map);
int d = 0;
while ((vf != NULL) && (d < depth)) {
vf = vf->java_sender();
d++;
}
return vf;
}
//
// utilities: JNI objects
//
jclass
JvmtiEnvBase::get_jni_class_non_null(Klass* k) {
assert(k != NULL, "k != NULL");
return (jclass)jni_reference(k->java_mirror());
}
//
// Field Information
//
bool
JvmtiEnvBase::get_field_descriptor(Klass* k, jfieldID field, fieldDescriptor* fd) {
if (!jfieldIDWorkaround::is_valid_jfieldID(k, field)) {
return false;
}
bool found = false;
if (jfieldIDWorkaround::is_static_jfieldID(field)) {
JNIid* id = jfieldIDWorkaround::from_static_jfieldID(field);
found = id->find_local_field(fd);
} else {
// Non-static field. The fieldID is really the offset of the field within the object.
int offset = jfieldIDWorkaround::from_instance_jfieldID(k, field);
found = InstanceKlass::cast(k)->find_field_from_offset(offset, false, fd);
}
return found;
}
//
// Object Monitor Information
//
//
// Count the number of objects for a lightweight monitor. The hobj
// parameter is object that owns the monitor so this routine will
// count the number of times the same object was locked by frames
// in java_thread.
//
jint
JvmtiEnvBase::count_locked_objects(JavaThread *java_thread, Handle hobj) {
jint ret = 0;
if (!java_thread->has_last_Java_frame()) {
return ret; // no Java frames so no monitors
}
ResourceMark rm;
HandleMark hm;
RegisterMap reg_map(java_thread);
for(javaVFrame *jvf=java_thread->last_java_vframe(&reg_map); jvf != NULL;
jvf = jvf->java_sender()) {
GrowableArray<MonitorInfo*>* mons = jvf->monitors();
if (!mons->is_empty()) {
for (int i = 0; i < mons->length(); i++) {
MonitorInfo *mi = mons->at(i);
if (mi->owner_is_scalar_replaced()) continue;
// see if owner of the monitor is our object
if (mi->owner() != NULL && mi->owner() == hobj()) {
ret++;
}
}
}
}
return ret;
}
jvmtiError
JvmtiEnvBase::get_current_contended_monitor(JavaThread *calling_thread, JavaThread *java_thread, jobject *monitor_ptr) {
#ifdef ASSERT
uint32_t debug_bits = 0;
#endif
assert((SafepointSynchronize::is_at_safepoint() ||
is_thread_fully_suspended(java_thread, false, &debug_bits)),
"at safepoint or target thread is suspended");
oop obj = NULL;
ObjectMonitor *mon = java_thread->current_waiting_monitor();
if (mon == NULL) {
// thread is not doing an Object.wait() call
mon = java_thread->current_pending_monitor();
if (mon != NULL) {
// The thread is trying to enter() or raw_enter() an ObjectMonitor.
obj = (oop)mon->object();
// If obj == NULL, then ObjectMonitor is raw which doesn't count
// as contended for this API
}
// implied else: no contended ObjectMonitor
} else {
// thread is doing an Object.wait() call
obj = (oop)mon->object();
assert(obj != NULL, "Object.wait() should have an object");
}
if (obj == NULL) {
*monitor_ptr = NULL;
} else {
HandleMark hm;
Handle hobj(obj);
*monitor_ptr = jni_reference(calling_thread, hobj);
}
return JVMTI_ERROR_NONE;
}
jvmtiError
JvmtiEnvBase::get_owned_monitors(JavaThread *calling_thread, JavaThread* java_thread,
GrowableArray<jvmtiMonitorStackDepthInfo*> *owned_monitors_list) {
jvmtiError err = JVMTI_ERROR_NONE;
#ifdef ASSERT
uint32_t debug_bits = 0;
#endif
assert((SafepointSynchronize::is_at_safepoint() ||
is_thread_fully_suspended(java_thread, false, &debug_bits)),
"at safepoint or target thread is suspended");
if (java_thread->has_last_Java_frame()) {
ResourceMark rm;
HandleMark hm;
RegisterMap reg_map(java_thread);
int depth = 0;
for (javaVFrame *jvf = java_thread->last_java_vframe(&reg_map); jvf != NULL;
jvf = jvf->java_sender()) {
if (depth++ < MaxJavaStackTraceDepth) { // check for stack too deep
// add locked objects for this frame into list
err = get_locked_objects_in_frame(calling_thread, java_thread, jvf, owned_monitors_list, depth-1);
if (err != JVMTI_ERROR_NONE) {
return err;
}
}
}
}
// Get off stack monitors. (e.g. acquired via jni MonitorEnter).
JvmtiMonitorClosure jmc(java_thread, calling_thread, owned_monitors_list, this);
ObjectSynchronizer::monitors_iterate(&jmc);
err = jmc.error();
return err;
}
// Save JNI local handles for any objects that this frame owns.
jvmtiError
JvmtiEnvBase::get_locked_objects_in_frame(JavaThread* calling_thread, JavaThread* java_thread,
javaVFrame *jvf, GrowableArray<jvmtiMonitorStackDepthInfo*>* owned_monitors_list, int stack_depth) {
jvmtiError err = JVMTI_ERROR_NONE;
ResourceMark rm;
GrowableArray<MonitorInfo*>* mons = jvf->monitors();
if (mons->is_empty()) {
return err; // this javaVFrame holds no monitors
}
HandleMark hm;
oop wait_obj = NULL;
{
// save object of current wait() call (if any) for later comparison
ObjectMonitor *mon = java_thread->current_waiting_monitor();
if (mon != NULL) {
wait_obj = (oop)mon->object();
}
}
oop pending_obj = NULL;
{
// save object of current enter() call (if any) for later comparison
ObjectMonitor *mon = java_thread->current_pending_monitor();
if (mon != NULL) {
pending_obj = (oop)mon->object();
}
}
for (int i = 0; i < mons->length(); i++) {
MonitorInfo *mi = mons->at(i);
if (mi->owner_is_scalar_replaced()) continue;
oop obj = mi->owner();
if (obj == NULL) {
// this monitor doesn't have an owning object so skip it
continue;
}
if (wait_obj == obj) {
// the thread is waiting on this monitor so it isn't really owned
continue;
}
if (pending_obj == obj) {
// the thread is pending on this monitor so it isn't really owned
continue;
}
if (owned_monitors_list->length() > 0) {
// Our list has at least one object on it so we have to check
// for recursive object locking
bool found = false;
for (int j = 0; j < owned_monitors_list->length(); j++) {
jobject jobj = ((jvmtiMonitorStackDepthInfo*)owned_monitors_list->at(j))->monitor;
oop check = JNIHandles::resolve(jobj);
if (check == obj) {
found = true; // we found the object
break;
}
}
if (found) {
// already have this object so don't include it
continue;
}
}
// add the owning object to our list
jvmtiMonitorStackDepthInfo *jmsdi;
err = allocate(sizeof(jvmtiMonitorStackDepthInfo), (unsigned char **)&jmsdi);
if (err != JVMTI_ERROR_NONE) {
return err;
}
Handle hobj(obj);
jmsdi->monitor = jni_reference(calling_thread, hobj);
jmsdi->stack_depth = stack_depth;
owned_monitors_list->append(jmsdi);
}
return err;
}
jvmtiError
JvmtiEnvBase::get_stack_trace(JavaThread *java_thread,
jint start_depth, jint max_count,
jvmtiFrameInfo* frame_buffer, jint* count_ptr) {
#ifdef ASSERT
uint32_t debug_bits = 0;
#endif
assert((SafepointSynchronize::is_at_safepoint() ||
is_thread_fully_suspended(java_thread, false, &debug_bits)),
"at safepoint or target thread is suspended");
int count = 0;
if (java_thread->has_last_Java_frame()) {
RegisterMap reg_map(java_thread);
Thread* current_thread = Thread::current();
ResourceMark rm(current_thread);
javaVFrame *jvf = java_thread->last_java_vframe(&reg_map);
HandleMark hm(current_thread);
if (start_depth != 0) {
if (start_depth > 0) {
for (int j = 0; j < start_depth && jvf != NULL; j++) {
jvf = jvf->java_sender();
}
if (jvf == NULL) {
// start_depth is deeper than the stack depth
return JVMTI_ERROR_ILLEGAL_ARGUMENT;
}
} else { // start_depth < 0
// we are referencing the starting depth based on the oldest
// part of the stack.
// optimize to limit the number of times that java_sender() is called
javaVFrame *jvf_cursor = jvf;
javaVFrame *jvf_prev = NULL;
javaVFrame *jvf_prev_prev = NULL;
int j = 0;
while (jvf_cursor != NULL) {
jvf_prev_prev = jvf_prev;
jvf_prev = jvf_cursor;
for (j = 0; j > start_depth && jvf_cursor != NULL; j--) {
jvf_cursor = jvf_cursor->java_sender();
}
}
if (j == start_depth) {
// previous pointer is exactly where we want to start
jvf = jvf_prev;
} else {
// we need to back up further to get to the right place
if (jvf_prev_prev == NULL) {
// the -start_depth is greater than the stack depth
return JVMTI_ERROR_ILLEGAL_ARGUMENT;
}
// j now is the number of frames on the stack starting with
// jvf_prev, we start from jvf_prev_prev and move older on
// the stack that many, the result is -start_depth frames
// remaining.
jvf = jvf_prev_prev;
for (; j < 0; j++) {
jvf = jvf->java_sender();
}
}
}
}
for (; count < max_count && jvf != NULL; count++) {
frame_buffer[count].method = jvf->method()->jmethod_id();
frame_buffer[count].location = (jvf->method()->is_native() ? -1 : jvf->bci());
jvf = jvf->java_sender();
}
} else {
if (start_depth != 0) {
// no frames and there is a starting depth
return JVMTI_ERROR_ILLEGAL_ARGUMENT;
}
}
*count_ptr = count;
return JVMTI_ERROR_NONE;
}
jvmtiError
JvmtiEnvBase::get_frame_count(JvmtiThreadState *state, jint *count_ptr) {
assert((state != NULL),
"JavaThread should create JvmtiThreadState before calling this method");
*count_ptr = state->count_frames();
return JVMTI_ERROR_NONE;
}
jvmtiError
JvmtiEnvBase::get_frame_location(JavaThread *java_thread, jint depth,
jmethodID* method_ptr, jlocation* location_ptr) {
#ifdef ASSERT
uint32_t debug_bits = 0;
#endif
assert((SafepointSynchronize::is_at_safepoint() ||
is_thread_fully_suspended(java_thread, false, &debug_bits)),
"at safepoint or target thread is suspended");
Thread* current_thread = Thread::current();
ResourceMark rm(current_thread);
vframe *vf = vframeFor(java_thread, depth);
if (vf == NULL) {
return JVMTI_ERROR_NO_MORE_FRAMES;
}
// vframeFor should return a java frame. If it doesn't
// it means we've got an internal error and we return the
// error in product mode. In debug mode we will instead
// attempt to cast the vframe to a javaVFrame and will
// cause an assertion/crash to allow further diagnosis.
#ifdef PRODUCT
if (!vf->is_java_frame()) {
return JVMTI_ERROR_INTERNAL;
}
#endif
HandleMark hm(current_thread);
javaVFrame *jvf = javaVFrame::cast(vf);
Method* method = jvf->method();
if (method->is_native()) {
*location_ptr = -1;
} else {
*location_ptr = jvf->bci();
}
*method_ptr = method->jmethod_id();
return JVMTI_ERROR_NONE;
}
jvmtiError
JvmtiEnvBase::get_object_monitor_usage(JavaThread* calling_thread, jobject object, jvmtiMonitorUsage* info_ptr) {
HandleMark hm;
Handle hobj;
bool at_safepoint = SafepointSynchronize::is_at_safepoint();
// Check arguments
{
oop mirror = JNIHandles::resolve_external_guard(object);
NULL_CHECK(mirror, JVMTI_ERROR_INVALID_OBJECT);
NULL_CHECK(info_ptr, JVMTI_ERROR_NULL_POINTER);
hobj = Handle(mirror);
}
JavaThread *owning_thread = NULL;
ObjectMonitor *mon = NULL;
jvmtiMonitorUsage ret = {
NULL, 0, 0, NULL, 0, NULL
};
uint32_t debug_bits = 0;
// first derive the object's owner and entry_count (if any)
{
// Revoke any biases before querying the mark word
if (SafepointSynchronize::is_at_safepoint()) {
BiasedLocking::revoke_at_safepoint(hobj);
} else {
BiasedLocking::revoke_and_rebias(hobj, false, calling_thread);
}
address owner = NULL;
{
markOop mark = hobj()->mark();
if (!mark->has_monitor()) {
// this object has a lightweight monitor
if (mark->has_locker()) {
owner = (address)mark->locker(); // save the address of the Lock word
}
// implied else: no owner
} else {
// this object has a heavyweight monitor
mon = mark->monitor();
// The owner field of a heavyweight monitor may be NULL for no
// owner, a JavaThread * or it may still be the address of the
// Lock word in a JavaThread's stack. A monitor can be inflated
// by a non-owning JavaThread, but only the owning JavaThread
// can change the owner field from the Lock word to the
// JavaThread * and it may not have done that yet.
owner = (address)mon->owner();
}
}
if (owner != NULL) {
// This monitor is owned so we have to find the owning JavaThread.
// Since owning_thread_from_monitor_owner() grabs a lock, GC can
// move our object at this point. However, our owner value is safe
// since it is either the Lock word on a stack or a JavaThread *.
owning_thread = Threads::owning_thread_from_monitor_owner(owner, !at_safepoint);
// Cannot assume (owning_thread != NULL) here because this function
// may not have been called at a safepoint and the owning_thread
// might not be suspended.
if (owning_thread != NULL) {
// The monitor's owner either has to be the current thread, at safepoint
// or it has to be suspended. Any of these conditions will prevent both
// contending and waiting threads from modifying the state of
// the monitor.
if (!at_safepoint && !JvmtiEnv::is_thread_fully_suspended(owning_thread, true, &debug_bits)) {
// Don't worry! This return of JVMTI_ERROR_THREAD_NOT_SUSPENDED
// will not make it back to the JVM/TI agent. The error code will
// get intercepted in JvmtiEnv::GetObjectMonitorUsage() which
// will retry the call via a VM_GetObjectMonitorUsage VM op.
return JVMTI_ERROR_THREAD_NOT_SUSPENDED;
}
HandleMark hm;
Handle th(owning_thread->threadObj());
ret.owner = (jthread)jni_reference(calling_thread, th);
}
// implied else: no owner
}
if (owning_thread != NULL) { // monitor is owned
// The recursions field of a monitor does not reflect recursions
// as lightweight locks before inflating the monitor are not included.
// We have to count the number of recursive monitor entries the hard way.
// We pass a handle to survive any GCs along the way.
ResourceMark rm;
ret.entry_count = count_locked_objects(owning_thread, hobj);
}
// implied else: entry_count == 0
}
jint nWant = 0, nWait = 0;
if (mon != NULL) {
// this object has a heavyweight monitor
nWant = mon->contentions(); // # of threads contending for monitor
nWait = mon->waiters(); // # of threads in Object.wait()
ret.waiter_count = nWant + nWait;
ret.notify_waiter_count = nWait;
} else {
// this object has a lightweight monitor
ret.waiter_count = 0;
ret.notify_waiter_count = 0;
}
// Allocate memory for heavyweight and lightweight monitor.
jvmtiError err;
err = allocate(ret.waiter_count * sizeof(jthread *), (unsigned char**)&ret.waiters);
if (err != JVMTI_ERROR_NONE) {
return err;
}
err = allocate(ret.notify_waiter_count * sizeof(jthread *),
(unsigned char**)&ret.notify_waiters);
if (err != JVMTI_ERROR_NONE) {
deallocate((unsigned char*)ret.waiters);
return err;
}
// now derive the rest of the fields
if (mon != NULL) {
// this object has a heavyweight monitor
// Number of waiters may actually be less than the waiter count.
// So NULL out memory so that unused memory will be NULL.
memset(ret.waiters, 0, ret.waiter_count * sizeof(jthread *));
memset(ret.notify_waiters, 0, ret.notify_waiter_count * sizeof(jthread *));
if (ret.waiter_count > 0) {
// we have contending and/or waiting threads
HandleMark hm;
if (nWant > 0) {
// we have contending threads
ResourceMark rm;
// get_pending_threads returns only java thread so we do not need to
// check for non java threads.
GrowableArray<JavaThread*>* wantList = Threads::get_pending_threads(
nWant, (address)mon, !at_safepoint);
if (wantList->length() < nWant) {
// robustness: the pending list has gotten smaller
nWant = wantList->length();
}
for (int i = 0; i < nWant; i++) {
JavaThread *pending_thread = wantList->at(i);
// If the monitor has no owner, then a non-suspended contending
// thread could potentially change the state of the monitor by
// entering it. The JVM/TI spec doesn't allow this.
if (owning_thread == NULL && !at_safepoint &
!JvmtiEnv::is_thread_fully_suspended(pending_thread, true, &debug_bits)) {
if (ret.owner != NULL) {
destroy_jni_reference(calling_thread, ret.owner);
}
for (int j = 0; j < i; j++) {
destroy_jni_reference(calling_thread, ret.waiters[j]);
}
deallocate((unsigned char*)ret.waiters);
deallocate((unsigned char*)ret.notify_waiters);
return JVMTI_ERROR_THREAD_NOT_SUSPENDED;
}
Handle th(pending_thread->threadObj());
ret.waiters[i] = (jthread)jni_reference(calling_thread, th);
}
}
if (nWait > 0) {
// we have threads in Object.wait()
int offset = nWant; // add after any contending threads
ObjectWaiter *waiter = mon->first_waiter();
for (int i = 0, j = 0; i < nWait; i++) {
if (waiter == NULL) {
// robustness: the waiting list has gotten smaller
nWait = j;
break;
}
Thread *t = mon->thread_of_waiter(waiter);
if (t != NULL && t->is_Java_thread()) {
JavaThread *wjava_thread = (JavaThread *)t;
// If the thread was found on the ObjectWaiter list, then
// it has not been notified. This thread can't change the
// state of the monitor so it doesn't need to be suspended.
Handle th(wjava_thread->threadObj());
ret.waiters[offset + j] = (jthread)jni_reference(calling_thread, th);
ret.notify_waiters[j++] = (jthread)jni_reference(calling_thread, th);
}
waiter = mon->next_waiter(waiter);
}
}
}
// Adjust count. nWant and nWait count values may be less than original.
ret.waiter_count = nWant + nWait;
ret.notify_waiter_count = nWait;
} else {
// this object has a lightweight monitor and we have nothing more
// to do here because the defaults are just fine.
}
// we don't update return parameter unless everything worked
*info_ptr = ret;
return JVMTI_ERROR_NONE;
}
ResourceTracker::ResourceTracker(JvmtiEnv* env) {
_env = env;
_allocations = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<unsigned char*>(20, true);
_failed = false;
}
ResourceTracker::~ResourceTracker() {
if (_failed) {
for (int i=0; i<_allocations->length(); i++) {
_env->deallocate(_allocations->at(i));
}
}
delete _allocations;
}
jvmtiError ResourceTracker::allocate(jlong size, unsigned char** mem_ptr) {
unsigned char *ptr;
jvmtiError err = _env->allocate(size, &ptr);
if (err == JVMTI_ERROR_NONE) {
_allocations->append(ptr);
*mem_ptr = ptr;
} else {
*mem_ptr = NULL;
_failed = true;
}
return err;
}
unsigned char* ResourceTracker::allocate(jlong size) {
unsigned char* ptr;
allocate(size, &ptr);
return ptr;
}
char* ResourceTracker::strdup(const char* str) {
char *dup_str = (char*)allocate(strlen(str)+1);
if (dup_str != NULL) {
strcpy(dup_str, str);
}
return dup_str;
}
struct StackInfoNode {
struct StackInfoNode *next;
jvmtiStackInfo info;
};
// Create a jvmtiStackInfo inside a linked list node and create a
// buffer for the frame information, both allocated as resource objects.
// Fill in both the jvmtiStackInfo and the jvmtiFrameInfo.
// Note that either or both of thr and thread_oop
// may be null if the thread is new or has exited.
void
VM_GetMultipleStackTraces::fill_frames(jthread jt, JavaThread *thr, oop thread_oop) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
jint state = 0;
struct StackInfoNode *node = NEW_RESOURCE_OBJ(struct StackInfoNode);
jvmtiStackInfo *infop = &(node->info);
node->next = head();
set_head(node);
infop->frame_count = 0;
infop->thread = jt;
if (thread_oop != NULL) {
// get most state bits
state = (jint)java_lang_Thread::get_thread_status(thread_oop);
}
if (thr != NULL) { // add more state bits if there is a JavaThead to query
// same as is_being_ext_suspended() but without locking
if (thr->is_ext_suspended() || thr->is_external_suspend()) {
state |= JVMTI_THREAD_STATE_SUSPENDED;
}
JavaThreadState jts = thr->thread_state();
if (jts == _thread_in_native) {
state |= JVMTI_THREAD_STATE_IN_NATIVE;
}
OSThread* osThread = thr->osthread();
if (osThread != NULL && osThread->interrupted()) {
state |= JVMTI_THREAD_STATE_INTERRUPTED;
}
}
infop->state = state;
if (thr != NULL || (state & JVMTI_THREAD_STATE_ALIVE) != 0) {
infop->frame_buffer = NEW_RESOURCE_ARRAY(jvmtiFrameInfo, max_frame_count());
env()->get_stack_trace(thr, 0, max_frame_count(),
infop->frame_buffer, &(infop->frame_count));
} else {
infop->frame_buffer = NULL;
infop->frame_count = 0;
}
_frame_count_total += infop->frame_count;
}
// Based on the stack information in the linked list, allocate memory
// block to return and fill it from the info in the linked list.
void
VM_GetMultipleStackTraces::allocate_and_fill_stacks(jint thread_count) {
// do I need to worry about alignment issues?
jlong alloc_size = thread_count * sizeof(jvmtiStackInfo)
+ _frame_count_total * sizeof(jvmtiFrameInfo);
env()->allocate(alloc_size, (unsigned char **)&_stack_info);
// pointers to move through the newly allocated space as it is filled in
jvmtiStackInfo *si = _stack_info + thread_count; // bottom of stack info
jvmtiFrameInfo *fi = (jvmtiFrameInfo *)si; // is the top of frame info
// copy information in resource area into allocated buffer
// insert stack info backwards since linked list is backwards
// insert frame info forwards
// walk the StackInfoNodes
for (struct StackInfoNode *sin = head(); sin != NULL; sin = sin->next) {
jint frame_count = sin->info.frame_count;
size_t frames_size = frame_count * sizeof(jvmtiFrameInfo);
--si;
memcpy(si, &(sin->info), sizeof(jvmtiStackInfo));
if (frames_size == 0) {
si->frame_buffer = NULL;
} else {
memcpy(fi, sin->info.frame_buffer, frames_size);
si->frame_buffer = fi; // point to the new allocated copy of the frames
fi += frame_count;
}
}
assert(si == _stack_info, "the last copied stack info must be the first record");
assert((unsigned char *)fi == ((unsigned char *)_stack_info) + alloc_size,
"the last copied frame info must be the last record");
}
void
VM_GetThreadListStackTraces::doit() {
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
ResourceMark rm;
for (int i = 0; i < _thread_count; ++i) {
jthread jt = _thread_list[i];
oop thread_oop = JNIHandles::resolve_external_guard(jt);
if (thread_oop == NULL || !thread_oop->is_a(SystemDictionary::Thread_klass())) {
set_result(JVMTI_ERROR_INVALID_THREAD);
return;
}
fill_frames(jt, java_lang_Thread::thread(thread_oop), thread_oop);
}
allocate_and_fill_stacks(_thread_count);
}
void
VM_GetAllStackTraces::doit() {
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
ResourceMark rm;
_final_thread_count = 0;
for (JavaThread *jt = Threads::first(); jt != NULL; jt = jt->next()) {
oop thread_oop = jt->threadObj();
if (thread_oop != NULL &&
!jt->is_exiting() &&
java_lang_Thread::is_alive(thread_oop) &&
!jt->is_hidden_from_external_view()) {
++_final_thread_count;
// Handle block of the calling thread is used to create local refs.
fill_frames((jthread)JNIHandles::make_local(_calling_thread, thread_oop),
jt, thread_oop);
}
}
allocate_and_fill_stacks(_final_thread_count);
}
// Verifies that the top frame is a java frame in an expected state.
// Deoptimizes frame if needed.
// Checks that the frame method signature matches the return type (tos).
// HandleMark must be defined in the caller only.
// It is to keep a ret_ob_h handle alive after return to the caller.
jvmtiError
JvmtiEnvBase::check_top_frame(JavaThread* current_thread, JavaThread* java_thread,
jvalue value, TosState tos, Handle* ret_ob_h) {
ResourceMark rm(current_thread);
vframe *vf = vframeFor(java_thread, 0);
NULL_CHECK(vf, JVMTI_ERROR_NO_MORE_FRAMES);
javaVFrame *jvf = (javaVFrame*) vf;
if (!vf->is_java_frame() || jvf->method()->is_native()) {
return JVMTI_ERROR_OPAQUE_FRAME;
}
// If the frame is a compiled one, need to deoptimize it.
if (vf->is_compiled_frame()) {
if (!vf->fr().can_be_deoptimized()) {
return JVMTI_ERROR_OPAQUE_FRAME;
}
Deoptimization::deoptimize_frame(java_thread, jvf->fr().id());
}
// Get information about method return type
Symbol* signature = jvf->method()->signature();
ResultTypeFinder rtf(signature);
TosState fr_tos = as_TosState(rtf.type());
if (fr_tos != tos) {
if (tos != itos || (fr_tos != btos && fr_tos != ztos && fr_tos != ctos && fr_tos != stos)) {
return JVMTI_ERROR_TYPE_MISMATCH;
}
}
// Check that the jobject class matches the return type signature.
jobject jobj = value.l;
if (tos == atos && jobj != NULL) { // NULL reference is allowed
Handle ob_h = Handle(current_thread, JNIHandles::resolve_external_guard(jobj));
NULL_CHECK(ob_h, JVMTI_ERROR_INVALID_OBJECT);
KlassHandle ob_kh = KlassHandle(current_thread, ob_h()->klass());
NULL_CHECK(ob_kh, JVMTI_ERROR_INVALID_OBJECT);
// Method return type signature.
char* ty_sign = 1 + strchr(signature->as_C_string(), ')');
if (!VM_GetOrSetLocal::is_assignable(ty_sign, ob_kh(), current_thread)) {
return JVMTI_ERROR_TYPE_MISMATCH;
}
*ret_ob_h = ob_h;
}
return JVMTI_ERROR_NONE;
} /* end check_top_frame */
// ForceEarlyReturn<type> follows the PopFrame approach in many aspects.
// Main difference is on the last stage in the interpreter.
// The PopFrame stops method execution to continue execution
// from the same method call instruction.
// The ForceEarlyReturn forces return from method so the execution
// continues at the bytecode following the method call.
// Threads_lock NOT held, java_thread not protected by lock
// java_thread - pre-checked
jvmtiError
JvmtiEnvBase::force_early_return(JavaThread* java_thread, jvalue value, TosState tos) {
JavaThread* current_thread = JavaThread::current();
HandleMark hm(current_thread);
uint32_t debug_bits = 0;
// retrieve or create the state
JvmtiThreadState* state = JvmtiThreadState::state_for(java_thread);
if (state == NULL) {
return JVMTI_ERROR_THREAD_NOT_ALIVE;
}
// Check if java_thread is fully suspended
if (!is_thread_fully_suspended(java_thread,
true /* wait for suspend completion */,
&debug_bits)) {
return JVMTI_ERROR_THREAD_NOT_SUSPENDED;
}
// Check to see if a ForceEarlyReturn was already in progress
if (state->is_earlyret_pending()) {
// Probably possible for JVMTI clients to trigger this, but the
// JPDA backend shouldn't allow this to happen
return JVMTI_ERROR_INTERNAL;
}
{
// The same as for PopFrame. Workaround bug:
// 4812902: popFrame hangs if the method is waiting at a synchronize
// Catch this condition and return an error to avoid hanging.
// Now JVMTI spec allows an implementation to bail out with an opaque
// frame error.
OSThread* osThread = java_thread->osthread();
if (osThread->get_state() == MONITOR_WAIT) {
return JVMTI_ERROR_OPAQUE_FRAME;
}
}
Handle ret_ob_h = Handle();
jvmtiError err = check_top_frame(current_thread, java_thread, value, tos, &ret_ob_h);
if (err != JVMTI_ERROR_NONE) {
return err;
}
assert(tos != atos || value.l == NULL || ret_ob_h() != NULL,
"return object oop must not be NULL if jobject is not NULL");
// Update the thread state to reflect that the top frame must be
// forced to return.
// The current frame will be returned later when the suspended
// thread is resumed and right before returning from VM to Java.
// (see call_VM_base() in assembler_<cpu>.cpp).
state->set_earlyret_pending();
state->set_earlyret_oop(ret_ob_h());
state->set_earlyret_value(value, tos);
// Set pending step flag for this early return.
// It is cleared when next step event is posted.
state->set_pending_step_for_earlyret();
return JVMTI_ERROR_NONE;
} /* end force_early_return */
void
JvmtiMonitorClosure::do_monitor(ObjectMonitor* mon) {
if ( _error != JVMTI_ERROR_NONE) {
// Error occurred in previous iteration so no need to add
// to the list.
return;
}
if (mon->owner() == _java_thread ) {
// Filter out on stack monitors collected during stack walk.
oop obj = (oop)mon->object();
bool found = false;
for (int j = 0; j < _owned_monitors_list->length(); j++) {
jobject jobj = ((jvmtiMonitorStackDepthInfo*)_owned_monitors_list->at(j))->monitor;
oop check = JNIHandles::resolve(jobj);
if (check == obj) {
// On stack monitor already collected during the stack walk.
found = true;
break;
}
}
if (found == false) {
// This is off stack monitor (e.g. acquired via jni MonitorEnter).
jvmtiError err;
jvmtiMonitorStackDepthInfo *jmsdi;
err = _env->allocate(sizeof(jvmtiMonitorStackDepthInfo), (unsigned char **)&jmsdi);
if (err != JVMTI_ERROR_NONE) {
_error = err;
return;
}
Handle hobj(obj);
jmsdi->monitor = _env->jni_reference(_calling_thread, hobj);
// stack depth is unknown for this monitor.
jmsdi->stack_depth = -1;
_owned_monitors_list->append(jmsdi);
}
}
}
GrowableArray<jobject>* JvmtiModuleClosure::_tbl = NULL;
jvmtiError
JvmtiModuleClosure::get_all_modules(JvmtiEnv* env, jint* module_count_ptr, jobject** modules_ptr) {
ResourceMark rm;
MutexLocker ml(Module_lock);
_tbl = new GrowableArray<jobject>(77);
if (_tbl == NULL) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
// Iterate over all the modules loaded to the system.
ClassLoaderDataGraph::modules_do(&do_module);
jint len = _tbl->length();
guarantee(len > 0, "at least one module must be present");
jobject* array = (jobject*)env->jvmtiMalloc((jlong)(len * sizeof(jobject)));
if (array == NULL) {
return JVMTI_ERROR_OUT_OF_MEMORY;
}
for (jint idx = 0; idx < len; idx++) {
array[idx] = _tbl->at(idx);
}
_tbl = NULL;
*modules_ptr = array;
*module_count_ptr = len;
return JVMTI_ERROR_NONE;
}