c0d4efff3c
Reviewed-by: darcy
250 lines
8.4 KiB
Java
250 lines
8.4 KiB
Java
/*
|
|
* Copyright (c) 2020, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
import java.util.concurrent.atomic.AtomicInteger;
|
|
import java.util.function.DoubleUnaryOperator;
|
|
import java.util.function.IntUnaryOperator;
|
|
import java.util.function.LongUnaryOperator;
|
|
import java.util.function.UnaryOperator;
|
|
import java.util.stream.DoubleStream;
|
|
import jdk.internal.math.DoubleConsts;
|
|
import jdk.internal.math.FloatConsts;
|
|
|
|
/*
|
|
* @test
|
|
* @bug 6506405 8241374
|
|
* @summary Test abs and absExact for Math and StrictMath
|
|
* @modules java.base/jdk.internal.math
|
|
*/
|
|
public class AbsTests {
|
|
private static final double GELFOND = Math.exp(Math.PI);
|
|
private static final double TAU = 2.0*Math.PI;
|
|
|
|
// Values for testing float and double abs
|
|
private static final double[] FLOATING_POINT_VALUES = new double[] {
|
|
0.0,
|
|
-0.0,
|
|
+0.0,
|
|
Double.MIN_VALUE,
|
|
Double.MIN_NORMAL,
|
|
Double.NEGATIVE_INFINITY,
|
|
Double.POSITIVE_INFINITY,
|
|
Double.NaN,
|
|
Float.MIN_VALUE,
|
|
Float.MIN_NORMAL,
|
|
Float.NEGATIVE_INFINITY,
|
|
Float.POSITIVE_INFINITY,
|
|
Float.NaN,
|
|
Double.longBitsToDouble((1 << DoubleConsts.SIGNIFICAND_WIDTH) |
|
|
((1 << DoubleConsts.SIGNIFICAND_WIDTH) - 1)),
|
|
DoubleConsts.MAG_BIT_MASK >>> 1,
|
|
Float.intBitsToFloat((1 << FloatConsts.SIGNIFICAND_WIDTH) |
|
|
((1 << FloatConsts.SIGNIFICAND_WIDTH) - 1)),
|
|
FloatConsts.MAG_BIT_MASK >>> 1,
|
|
Math.E,
|
|
GELFOND,
|
|
Math.PI,
|
|
TAU
|
|
};
|
|
|
|
private static int errors = 0;
|
|
|
|
public static void main(String... args) {
|
|
errors += testInRangeIntAbs();
|
|
errors += testIntMinValue();
|
|
errors += testInRangeLongAbs();
|
|
errors += testLongMinValue();
|
|
errors += testFloatAbs();
|
|
errors += testDoubleAbs();
|
|
|
|
if (errors > 0) {
|
|
throw new RuntimeException(errors + " errors found testing abs.");
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
|
|
private static int testInRangeIntAbs() {
|
|
int errors = 0;
|
|
int[][] testCases = {
|
|
// Argument to abs, expected result
|
|
{+0, 0},
|
|
{+1, 1},
|
|
{-1, 1},
|
|
{-2, 2},
|
|
{+2, 2},
|
|
{-Integer.MAX_VALUE, Integer.MAX_VALUE},
|
|
{+Integer.MAX_VALUE, Integer.MAX_VALUE}
|
|
};
|
|
|
|
for(var testCase : testCases) {
|
|
errors += testIntAbs(Math::abs, testCase[0], testCase[1]);
|
|
errors += testIntAbs(Math::absExact, testCase[0], testCase[1]);
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testIntMinValue() {
|
|
int errors = 0;
|
|
// Strange but true
|
|
errors += testIntAbs(Math::abs, Integer.MIN_VALUE, Integer.MIN_VALUE);
|
|
|
|
// Test exceptional behavior for absExact
|
|
try {
|
|
int result = Math.absExact(Integer.MIN_VALUE);
|
|
System.err.printf("Bad return value %d from Math.absExact(MIN_VALUE)%n",
|
|
result);
|
|
errors++;
|
|
} catch (ArithmeticException ae) {
|
|
; // Expected
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testIntAbs(IntUnaryOperator absFunc,
|
|
int argument, int expected) {
|
|
int result = absFunc.applyAsInt(argument);
|
|
if (result != expected) {
|
|
System.err.printf("Unexpected int abs result %d for argument %d%n",
|
|
result, argument);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
|
|
private static long testInRangeLongAbs() {
|
|
int errors = 0;
|
|
long[][] testCases = {
|
|
// Argument to abs, expected result
|
|
{+0L, 0L},
|
|
{+1L, 1L},
|
|
{-1L, 1L},
|
|
{-2L, 2L},
|
|
{+2L, 2L},
|
|
{-Integer.MAX_VALUE, Integer.MAX_VALUE},
|
|
{+Integer.MAX_VALUE, Integer.MAX_VALUE},
|
|
{ Integer.MIN_VALUE, -((long)Integer.MIN_VALUE)},
|
|
{-Long.MAX_VALUE, Long.MAX_VALUE},
|
|
};
|
|
|
|
for(var testCase : testCases) {
|
|
errors += testLongAbs(Math::abs, testCase[0], testCase[1]);
|
|
errors += testLongAbs(Math::absExact, testCase[0], testCase[1]);
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testLongMinValue() {
|
|
int errors = 0;
|
|
// Strange but true
|
|
errors += testLongAbs(Math::abs, Long.MIN_VALUE, Long.MIN_VALUE);
|
|
|
|
// Test exceptional behavior for absExact
|
|
try {
|
|
long result = Math.absExact(Long.MIN_VALUE);
|
|
System.err.printf("Bad return value %d from Math.absExact(MIN_VALUE)%n",
|
|
result);
|
|
errors++;
|
|
} catch (ArithmeticException ae) {
|
|
; // Expected
|
|
}
|
|
return errors;
|
|
}
|
|
|
|
private static int testLongAbs(LongUnaryOperator absFunc,
|
|
long argument, long expected) {
|
|
long result = absFunc.applyAsLong(argument);
|
|
if (result != expected) {
|
|
System.err.printf("Unexpected long abs result %d for argument %d%n",
|
|
result, argument);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
|
|
private static int testFloatAbs() {
|
|
DoubleStream doubles = DoubleStream.of(FLOATING_POINT_VALUES);
|
|
|
|
final AtomicInteger errors = new AtomicInteger();
|
|
doubles.mapToObj(d -> (float)d).
|
|
forEach(f -> {errors.addAndGet(testFloatAbs(f));});
|
|
|
|
return errors.get();
|
|
}
|
|
|
|
private static int testFloatAbs(float f) {
|
|
int errors = testFloatAbs("Math.abs", Math::abs, f);
|
|
errors += testFloatAbs("Math.abs", Math::abs, -f);
|
|
errors += testFloatAbs("StrictMath.abs", StrictMath::abs, f);
|
|
errors += testFloatAbs("StrictMath.abs", StrictMath::abs, -f);
|
|
return errors;
|
|
}
|
|
|
|
private static int testFloatAbs(String testName,
|
|
UnaryOperator<Float> absFunc, float f) {
|
|
float result = absFunc.apply(-f);
|
|
if (Float.isNaN(f) && Float.isNaN(result)) {
|
|
return 0;
|
|
}
|
|
|
|
float expected = f == -0.0F ? 0.0F : (f < 0.0F ? -f : f);
|
|
return Tests.test(testName, f, result, expected);
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
|
|
private static int testDoubleAbs() {
|
|
DoubleStream doubles = DoubleStream.of(FLOATING_POINT_VALUES);
|
|
|
|
final AtomicInteger errors = new AtomicInteger();
|
|
doubles.forEach(d -> {errors.addAndGet(testDoubleAbs(d));});
|
|
|
|
return errors.get();
|
|
}
|
|
|
|
private static int testDoubleAbs(double d) {
|
|
int errors = testDoubleAbs("Math.abs", Math::abs, d);
|
|
errors += testDoubleAbs("Math.abs", Math::abs, -d);
|
|
errors += testDoubleAbs("StrictMath.abs", StrictMath::abs, d);
|
|
errors += testDoubleAbs("StrictMath.abs", StrictMath::abs, -d);
|
|
return errors;
|
|
}
|
|
|
|
private static int testDoubleAbs(String testName,
|
|
DoubleUnaryOperator absFunc, double d) {
|
|
double result = absFunc.applyAsDouble(-d);
|
|
if (Double.isNaN(d) && Double.isNaN(result)) {
|
|
return 0;
|
|
}
|
|
|
|
double expected = d == -0.0F ? 0.0F : (d < 0.0F ? -d : d);
|
|
return Tests.test(testName, d, result, expected);
|
|
}
|
|
}
|