jdk-24/test/jdk/java/util/Map/MapBinToFromTreeTest.java
2017-09-12 19:03:39 +02:00

241 lines
9.0 KiB
Java

/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.function.BiConsumer;
import java.util.stream.Collector;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import static org.testng.Assert.assertEquals;
/*
* @test
* @bug 8023463
* @summary Test the case where a bin is treeified and vice verser
* @run testng MapBinToFromTreeTest
*/
@Test
public class MapBinToFromTreeTest {
// Initial capacity of map
// Should be >= the map capacity for treeifiying, see HashMap/ConcurrentMap.MIN_TREEIFY_CAPACITY
static final int INITIAL_CAPACITY = 64;
// Maximum size of map
// Should be > the treeify threshold, see HashMap/ConcurrentMap.TREEIFY_THRESHOLD
// Should be > INITIAL_CAPACITY to ensure resize occurs
static final int SIZE = 256;
// Load factor of map
// A value 1.0 will ensure that a new threshold == capacity
static final float LOAD_FACTOR = 1.0f;
@DataProvider(name = "maps")
static Object[][] mapProvider() {
return new Object[][] {
// Pass in the class name as a description for test reporting
// purposes
{ HashMap.class.getName(), new HashMap(INITIAL_CAPACITY, LOAD_FACTOR) },
{ LinkedHashMap.class.getName(), new LinkedHashMap(INITIAL_CAPACITY, LOAD_FACTOR) },
{ ConcurrentHashMap.class.getName(), new ConcurrentHashMap(INITIAL_CAPACITY, LOAD_FACTOR) },
};
}
@Test(dataProvider = "maps")
public void testPutThenGet(String d, Map<HashCodeInteger, Integer> m) {
put(SIZE, m, (i, s) -> {
for (int j = 0; j < s; j++) {
assertEquals(m.get(new HashCodeInteger(j)).intValue(), j,
String.format("Map.get(%d)", j));
}
});
}
@Test(dataProvider = "maps")
public void testPutThenTraverse(String d, Map<HashCodeInteger, Integer> m) {
Collector<Integer, ?, ? extends Collection<Integer>> c = getCollector(m);
put(SIZE, m, (i, s) -> {
// Note that it is OK to collect to a Set (HashSet) as long as
// integer values are used since these tests only check for
// collisions and other tests will verify more general functionality
Collection<Integer> actual = m.keySet().stream().map(e -> e.value).collect(c);
Collection<Integer> expected = IntStream.range(0, s).boxed().collect(c);
assertEquals(actual, expected, "Map.keySet()");
});
}
@Test(dataProvider = "maps")
public void testRemoveThenGet(String d, Map<HashCodeInteger, Integer> m) {
put(SIZE, m, (i, s) -> { });
remove(m, (i, s) -> {
for (int j = i + 1; j < SIZE; j++) {
assertEquals(m.get(new HashCodeInteger(j)).intValue(), j,
String.format("Map.get(%d)", j));
}
});
}
@Test(dataProvider = "maps")
public void testRemoveThenTraverse(String d, Map<HashCodeInteger, Integer> m) {
put(SIZE, m, (i, s) -> { });
Collector<Integer, ?, ? extends Collection<Integer>> c = getCollector(m);
remove(m, (i, s) -> {
Collection<Integer> actual = m.keySet().stream().map(e -> e.value).collect(c);
Collection<Integer> expected = IntStream.range(i + 1, SIZE).boxed().collect(c);
assertEquals(actual, expected, "Map.keySet()");
});
}
@Test(dataProvider = "maps")
public void testUntreeifyOnResizeWithGet(String d, Map<HashCodeInteger, Integer> m) {
// Fill the map with 64 entries grouped into 4 buckets
put(INITIAL_CAPACITY, m, (i, s) -> { });
for (int i = INITIAL_CAPACITY; i < SIZE; i++) {
// Add further entries in the 0'th bucket so as not to disturb
// other buckets, entries of which may be distributed and/or
// the bucket untreeified on resize
m.put(new HashCodeInteger(i, 0), i);
for (int j = 0; j < INITIAL_CAPACITY; j++) {
assertEquals(m.get(new HashCodeInteger(j)).intValue(), j,
String.format("Map.get(%d) < INITIAL_CAPACITY", j));
}
for (int j = INITIAL_CAPACITY; j <= i; j++) {
assertEquals(m.get(new HashCodeInteger(j, 0)).intValue(), j,
String.format("Map.get(%d) >= INITIAL_CAPACITY", j));
}
}
}
@Test(dataProvider = "maps")
public void testUntreeifyOnResizeWithTraverse(String d, Map<HashCodeInteger, Integer> m) {
// Fill the map with 64 entries grouped into 4 buckets
put(INITIAL_CAPACITY, m, (i, s) -> { });
Collector<Integer, ?, ? extends Collection<Integer>> c = getCollector(m);
for (int i = INITIAL_CAPACITY; i < SIZE; i++) {
// Add further entries in the 0'th bucket so as not to disturb
// other buckets, entries of which may be distributed and/or
// the bucket untreeified on resize
m.put(new HashCodeInteger(i, 0), i);
Collection<Integer> actual = m.keySet().stream().map(e -> e.value).collect(c);
Collection<Integer> expected = IntStream.rangeClosed(0, i).boxed().collect(c);
assertEquals(actual, expected, "Key set");
}
}
Collector<Integer, ?, ? extends Collection<Integer>> getCollector(Map<?, ?> m) {
Collector<Integer, ?, ? extends Collection<Integer>> collector = m instanceof LinkedHashMap
? Collectors.toList()
: Collectors.toSet();
return collector;
}
void put(int size, Map<HashCodeInteger, Integer> m, BiConsumer<Integer, Integer> c) {
for (int i = 0; i < size; i++) {
m.put(new HashCodeInteger(i), i);
c.accept(i, m.size());
}
}
void remove(Map<HashCodeInteger, Integer> m, BiConsumer<Integer, Integer> c) {
int size = m.size();
// Remove all elements thus ensuring at some point trees will be
// converting back to bins
for (int i = 0; i < size; i++) {
m.remove(new HashCodeInteger(i));
c.accept(i, m.size());
}
}
static final class HashCodeInteger implements Comparable<HashCodeInteger> {
final int value;
final int hashcode;
HashCodeInteger(int value) {
this(value, hash(value));
}
HashCodeInteger(int value, int hashcode) {
this.value = value;
this.hashcode = hashcode;
}
static int hash(int i) {
// Assuming 64 entries with keys from 0 to 63 then a map:
// - of capacity 64 will have 4 buckets with 16 entries per-bucket
// - of capacity 128 will have 8 buckets with 8 entries per-bucket
// - of capacity 256 will have 16 buckets with 4 entries per-bucket
//
// Re-sizing will result in re-distribution, doubling the buckets
// and reducing the entries by half. This will result in
// untreeifying when the number of entries is less than untreeify
// threshold (see HashMap/ConcurrentMap.UNTREEIFY_THRESHOLD)
return (i % 4) + (i / 4) * INITIAL_CAPACITY;
}
@Override
public boolean equals(Object obj) {
if (obj instanceof HashCodeInteger) {
HashCodeInteger other = (HashCodeInteger) obj;
return other.value == value;
}
return false;
}
@Override
public int hashCode() {
return hashcode;
}
@Override
public int compareTo(HashCodeInteger o) {
return value - o.value;
}
@Override
public String toString() {
return Integer.toString(value);
}
}
}