jdk-24/src/hotspot/share/gc/z/zReferenceProcessor.cpp
Coleen Phillimore fbafef11c0 8222811: Consolidate MutexLockerEx and MutexLocker
Make MutexLocker be MutexLockerEx implementation, remove MutexLockerEx calls.

Reviewed-by: dcubed, dholmes, pliden, rehn
2019-04-25 10:56:31 -04:00

466 lines
15 KiB
C++

/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "gc/shared/referencePolicy.hpp"
#include "gc/shared/referenceProcessorStats.hpp"
#include "gc/z/zHeap.inline.hpp"
#include "gc/z/zOopClosures.inline.hpp"
#include "gc/z/zReferenceProcessor.hpp"
#include "gc/z/zStat.hpp"
#include "gc/z/zTask.hpp"
#include "gc/z/zTracer.inline.hpp"
#include "gc/z/zUtils.inline.hpp"
#include "memory/universe.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.hpp"
static const ZStatSubPhase ZSubPhaseConcurrentReferencesProcess("Concurrent References Process");
static const ZStatSubPhase ZSubPhaseConcurrentReferencesEnqueue("Concurrent References Enqueue");
static ReferenceType reference_type(oop reference) {
return InstanceKlass::cast(reference->klass())->reference_type();
}
static const char* reference_type_name(ReferenceType type) {
switch (type) {
case REF_SOFT:
return "Soft";
case REF_WEAK:
return "Weak";
case REF_FINAL:
return "Final";
case REF_PHANTOM:
return "Phantom";
default:
ShouldNotReachHere();
return NULL;
}
}
static volatile oop* reference_referent_addr(oop reference) {
return (volatile oop*)java_lang_ref_Reference::referent_addr_raw(reference);
}
static oop reference_referent(oop reference) {
return *reference_referent_addr(reference);
}
static void reference_set_referent(oop reference, oop referent) {
java_lang_ref_Reference::set_referent_raw(reference, referent);
}
static oop* reference_discovered_addr(oop reference) {
return (oop*)java_lang_ref_Reference::discovered_addr_raw(reference);
}
static oop reference_discovered(oop reference) {
return *reference_discovered_addr(reference);
}
static void reference_set_discovered(oop reference, oop discovered) {
java_lang_ref_Reference::set_discovered_raw(reference, discovered);
}
static oop* reference_next_addr(oop reference) {
return (oop*)java_lang_ref_Reference::next_addr_raw(reference);
}
static oop reference_next(oop reference) {
return *reference_next_addr(reference);
}
static void reference_set_next(oop reference, oop next) {
java_lang_ref_Reference::set_next_raw(reference, next);
}
static void soft_reference_update_clock() {
const jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
java_lang_ref_SoftReference::set_clock(now);
}
ZReferenceProcessor::ZReferenceProcessor(ZWorkers* workers) :
_workers(workers),
_soft_reference_policy(NULL),
_encountered_count(),
_discovered_count(),
_enqueued_count(),
_discovered_list(NULL),
_pending_list(NULL),
_pending_list_tail(_pending_list.addr()) {}
void ZReferenceProcessor::set_soft_reference_policy(bool clear) {
static AlwaysClearPolicy always_clear_policy;
static LRUMaxHeapPolicy lru_max_heap_policy;
if (clear) {
log_info(gc, ref)("Clearing All SoftReferences");
_soft_reference_policy = &always_clear_policy;
} else {
_soft_reference_policy = &lru_max_heap_policy;
}
_soft_reference_policy->setup();
}
bool ZReferenceProcessor::is_inactive(oop reference, oop referent, ReferenceType type) const {
if (type == REF_FINAL) {
// A FinalReference is inactive if its next field is non-null. An application can't
// call enqueue() or clear() on a FinalReference.
return reference_next(reference) != NULL;
} else {
// A non-FinalReference is inactive if the referent is null. The referent can only
// be null if the application called Reference.enqueue() or Reference.clear().
return referent == NULL;
}
}
bool ZReferenceProcessor::is_strongly_live(oop referent) const {
return ZHeap::heap()->is_object_strongly_live(ZOop::to_address(referent));
}
bool ZReferenceProcessor::is_softly_live(oop reference, ReferenceType type) const {
if (type != REF_SOFT) {
// Not a SoftReference
return false;
}
// Ask SoftReference policy
const jlong clock = java_lang_ref_SoftReference::clock();
assert(clock != 0, "Clock not initialized");
assert(_soft_reference_policy != NULL, "Policy not initialized");
return !_soft_reference_policy->should_clear_reference(reference, clock);
}
bool ZReferenceProcessor::should_discover(oop reference, ReferenceType type) const {
volatile oop* const referent_addr = reference_referent_addr(reference);
const oop referent = ZBarrier::weak_load_barrier_on_oop_field(referent_addr);
if (is_inactive(reference, referent, type)) {
return false;
}
if (is_strongly_live(referent)) {
return false;
}
if (is_softly_live(reference, type)) {
return false;
}
// PhantomReferences with finalizable marked referents should technically not have
// to be discovered. However, InstanceRefKlass::oop_oop_iterate_ref_processing()
// does not know about the finalizable mark concept, and will therefore mark
// referents in non-discovered PhantomReferences as strongly live. To prevent
// this, we always discover PhantomReferences with finalizable marked referents.
// They will automatically be dropped during the reference processing phase.
return true;
}
bool ZReferenceProcessor::should_drop(oop reference, ReferenceType type) const {
// This check is racing with a call to Reference.clear() from the application.
// If the application clears the reference after this check it will still end
// up on the pending list, and there's nothing we can do about that without
// changing the Reference.clear() API. This check is also racing with a call
// to Reference.enqueue() from the application, which is unproblematic, since
// the application wants the reference to be enqueued anyway.
const oop referent = reference_referent(reference);
if (referent == NULL) {
// Reference has been cleared, by a call to Reference.enqueue()
// or Reference.clear() from the application, which means we
// should drop the reference.
return true;
}
// Check if the referent is still alive, in which case we should
// drop the reference.
if (type == REF_PHANTOM) {
return ZBarrier::is_alive_barrier_on_phantom_oop(referent);
} else {
return ZBarrier::is_alive_barrier_on_weak_oop(referent);
}
}
void ZReferenceProcessor::keep_alive(oop reference, ReferenceType type) const {
volatile oop* const p = reference_referent_addr(reference);
if (type == REF_PHANTOM) {
ZBarrier::keep_alive_barrier_on_phantom_oop_field(p);
} else {
ZBarrier::keep_alive_barrier_on_weak_oop_field(p);
}
}
void ZReferenceProcessor::make_inactive(oop reference, ReferenceType type) const {
if (type == REF_FINAL) {
// Don't clear referent. It is needed by the Finalizer thread to make the call
// to finalize(). A FinalReference is instead made inactive by self-looping the
// next field. An application can't call FinalReference.enqueue(), so there is
// no race to worry about when setting the next field.
assert(reference_next(reference) == NULL, "Already inactive");
reference_set_next(reference, reference);
} else {
// Clear referent
reference_set_referent(reference, NULL);
}
}
void ZReferenceProcessor::discover(oop reference, ReferenceType type) {
log_trace(gc, ref)("Discovered Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
// Update statistics
_discovered_count.get()[type]++;
if (type == REF_FINAL) {
// Mark referent (and its reachable subgraph) finalizable. This avoids
// the problem of later having to mark those objects if the referent is
// still final reachable during processing.
volatile oop* const referent_addr = reference_referent_addr(reference);
ZBarrier::mark_barrier_on_oop_field(referent_addr, true /* finalizable */);
}
// Add reference to discovered list
assert(reference_discovered(reference) == NULL, "Already discovered");
oop* const list = _discovered_list.addr();
reference_set_discovered(reference, *list);
*list = reference;
}
bool ZReferenceProcessor::discover_reference(oop reference, ReferenceType type) {
if (!RegisterReferences) {
// Reference processing disabled
return false;
}
log_trace(gc, ref)("Encountered Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
// Update statistics
_encountered_count.get()[type]++;
if (!should_discover(reference, type)) {
// Not discovered
return false;
}
discover(reference, type);
// Discovered
return true;
}
oop ZReferenceProcessor::drop(oop reference, ReferenceType type) {
log_trace(gc, ref)("Dropped Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
// Keep referent alive
keep_alive(reference, type);
// Unlink and return next in list
const oop next = reference_discovered(reference);
reference_set_discovered(reference, NULL);
return next;
}
oop* ZReferenceProcessor::keep(oop reference, ReferenceType type) {
log_trace(gc, ref)("Enqueued Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
// Update statistics
_enqueued_count.get()[type]++;
// Make reference inactive
make_inactive(reference, type);
// Return next in list
return reference_discovered_addr(reference);
}
void ZReferenceProcessor::work() {
// Process discovered references
oop* const list = _discovered_list.addr();
oop* p = list;
while (*p != NULL) {
const oop reference = *p;
const ReferenceType type = reference_type(reference);
if (should_drop(reference, type)) {
*p = drop(reference, type);
} else {
p = keep(reference, type);
}
}
// Prepend discovered references to internal pending list
if (*list != NULL) {
*p = Atomic::xchg(*list, _pending_list.addr());
if (*p == NULL) {
// First to prepend to list, record tail
_pending_list_tail = p;
}
// Clear discovered list
*list = NULL;
}
}
bool ZReferenceProcessor::is_empty() const {
ZPerWorkerConstIterator<oop> iter(&_discovered_list);
for (const oop* list; iter.next(&list);) {
if (*list != NULL) {
return false;
}
}
if (_pending_list.get() != NULL) {
return false;
}
return true;
}
void ZReferenceProcessor::reset_statistics() {
assert(is_empty(), "Should be empty");
// Reset encountered
ZPerWorkerIterator<Counters> iter_encountered(&_encountered_count);
for (Counters* counters; iter_encountered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
(*counters)[i] = 0;
}
}
// Reset discovered
ZPerWorkerIterator<Counters> iter_discovered(&_discovered_count);
for (Counters* counters; iter_discovered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
(*counters)[i] = 0;
}
}
// Reset enqueued
ZPerWorkerIterator<Counters> iter_enqueued(&_enqueued_count);
for (Counters* counters; iter_enqueued.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
(*counters)[i] = 0;
}
}
}
void ZReferenceProcessor::collect_statistics() {
Counters encountered = {};
Counters discovered = {};
Counters enqueued = {};
// Sum encountered
ZPerWorkerConstIterator<Counters> iter_encountered(&_encountered_count);
for (const Counters* counters; iter_encountered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
encountered[i] += (*counters)[i];
}
}
// Sum discovered
ZPerWorkerConstIterator<Counters> iter_discovered(&_discovered_count);
for (const Counters* counters; iter_discovered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
discovered[i] += (*counters)[i];
}
}
// Sum enqueued
ZPerWorkerConstIterator<Counters> iter_enqueued(&_enqueued_count);
for (const Counters* counters; iter_enqueued.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
enqueued[i] += (*counters)[i];
}
}
// Update statistics
ZStatReferences::set_soft(encountered[REF_SOFT], discovered[REF_SOFT], enqueued[REF_SOFT]);
ZStatReferences::set_weak(encountered[REF_WEAK], discovered[REF_WEAK], enqueued[REF_WEAK]);
ZStatReferences::set_final(encountered[REF_FINAL], discovered[REF_FINAL], enqueued[REF_FINAL]);
ZStatReferences::set_phantom(encountered[REF_PHANTOM], discovered[REF_PHANTOM], enqueued[REF_PHANTOM]);
// Trace statistics
const ReferenceProcessorStats stats(discovered[REF_SOFT],
discovered[REF_WEAK],
discovered[REF_FINAL],
discovered[REF_PHANTOM]);
ZTracer::tracer()->report_gc_reference_stats(stats);
}
class ZReferenceProcessorTask : public ZTask {
private:
ZReferenceProcessor* const _reference_processor;
public:
ZReferenceProcessorTask(ZReferenceProcessor* reference_processor) :
ZTask("ZReferenceProcessorTask"),
_reference_processor(reference_processor) {}
virtual void work() {
_reference_processor->work();
}
};
void ZReferenceProcessor::process_references() {
ZStatTimer timer(ZSubPhaseConcurrentReferencesProcess);
// Process discovered lists
ZReferenceProcessorTask task(this);
_workers->run_concurrent(&task);
// Update SoftReference clock
soft_reference_update_clock();
// Collect, log and trace statistics
collect_statistics();
}
void ZReferenceProcessor::enqueue_references() {
ZStatTimer timer(ZSubPhaseConcurrentReferencesEnqueue);
if (_pending_list.get() == NULL) {
// Nothing to enqueue
return;
}
{
// Heap_lock protects external pending list
MonitorLocker ml(Heap_lock);
// Prepend internal pending list to external pending list
*_pending_list_tail = Universe::swap_reference_pending_list(_pending_list.get());
// Notify ReferenceHandler thread
ml.notify_all();
}
// Reset internal pending list
_pending_list.set(NULL);
_pending_list_tail = _pending_list.addr();
}