204059634d
Also made lookup and lookup_only functions private to SymbolTable. External callers use new_symbol or probe. Reviewed-by: dholmes, gziemski
3260 lines
126 KiB
C++
3260 lines
126 KiB
C++
/*
|
|
* Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "code/debugInfoRec.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "gc/shared/gcLocker.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/compiledICHolder.hpp"
|
|
#include "runtime/safepointMechanism.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/vframeArray.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "vmreg_sparc.inline.hpp"
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#endif
|
|
#ifdef COMPILER2
|
|
#include "opto/runtime.hpp"
|
|
#endif
|
|
#if INCLUDE_JVMCI
|
|
#include "jvmci/jvmciJavaClasses.hpp"
|
|
#endif
|
|
|
|
#define __ masm->
|
|
|
|
|
|
class RegisterSaver {
|
|
|
|
// Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
|
|
// The Oregs are problematic. In the 32bit build the compiler can
|
|
// have O registers live with 64 bit quantities. A window save will
|
|
// cut the heads off of the registers. We have to do a very extensive
|
|
// stack dance to save and restore these properly.
|
|
|
|
// Note that the Oregs problem only exists if we block at either a polling
|
|
// page exception a compiled code safepoint that was not originally a call
|
|
// or deoptimize following one of these kinds of safepoints.
|
|
|
|
// Lots of registers to save. For all builds, a window save will preserve
|
|
// the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit
|
|
// builds a window-save will preserve the %o registers. In the LION build
|
|
// we need to save the 64-bit %o registers which requires we save them
|
|
// before the window-save (as then they become %i registers and get their
|
|
// heads chopped off on interrupt). We have to save some %g registers here
|
|
// as well.
|
|
enum {
|
|
// This frame's save area. Includes extra space for the native call:
|
|
// vararg's layout space and the like. Briefly holds the caller's
|
|
// register save area.
|
|
call_args_area = frame::register_save_words_sp_offset +
|
|
frame::memory_parameter_word_sp_offset*wordSize,
|
|
// Make sure save locations are always 8 byte aligned.
|
|
// can't use align_up because it doesn't produce compile time constant
|
|
start_of_extra_save_area = ((call_args_area + 7) & ~7),
|
|
g1_offset = start_of_extra_save_area, // g-regs needing saving
|
|
g3_offset = g1_offset+8,
|
|
g4_offset = g3_offset+8,
|
|
g5_offset = g4_offset+8,
|
|
o0_offset = g5_offset+8,
|
|
o1_offset = o0_offset+8,
|
|
o2_offset = o1_offset+8,
|
|
o3_offset = o2_offset+8,
|
|
o4_offset = o3_offset+8,
|
|
o5_offset = o4_offset+8,
|
|
start_of_flags_save_area = o5_offset+8,
|
|
ccr_offset = start_of_flags_save_area,
|
|
fsr_offset = ccr_offset + 8,
|
|
d00_offset = fsr_offset+8, // Start of float save area
|
|
register_save_size = d00_offset+8*32
|
|
};
|
|
|
|
|
|
public:
|
|
|
|
static int Oexception_offset() { return o0_offset; };
|
|
static int G3_offset() { return g3_offset; };
|
|
static int G5_offset() { return g5_offset; };
|
|
static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
|
|
static void restore_live_registers(MacroAssembler* masm);
|
|
|
|
// During deoptimization only the result register need to be restored
|
|
// all the other values have already been extracted.
|
|
|
|
static void restore_result_registers(MacroAssembler* masm);
|
|
};
|
|
|
|
OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
|
|
// Record volatile registers as callee-save values in an OopMap so their save locations will be
|
|
// propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
|
|
// deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
|
|
// are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
|
|
// (as the stub's I's) when the runtime routine called by the stub creates its frame.
|
|
int i;
|
|
// Always make the frame size 16 byte aligned.
|
|
int frame_size = align_up(additional_frame_words + register_save_size, 16);
|
|
// OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
|
|
int frame_size_in_slots = frame_size / sizeof(jint);
|
|
// CodeBlob frame size is in words.
|
|
*total_frame_words = frame_size / wordSize;
|
|
// OopMap* map = new OopMap(*total_frame_words, 0);
|
|
OopMap* map = new OopMap(frame_size_in_slots, 0);
|
|
|
|
__ save(SP, -frame_size, SP);
|
|
|
|
|
|
int debug_offset = 0;
|
|
// Save the G's
|
|
__ stx(G1, SP, g1_offset+STACK_BIAS);
|
|
map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
|
|
|
|
__ stx(G3, SP, g3_offset+STACK_BIAS);
|
|
map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
|
|
|
|
__ stx(G4, SP, g4_offset+STACK_BIAS);
|
|
map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
|
|
|
|
__ stx(G5, SP, g5_offset+STACK_BIAS);
|
|
map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
|
|
|
|
// This is really a waste but we'll keep things as they were for now
|
|
if (true) {
|
|
}
|
|
|
|
|
|
// Save the flags
|
|
__ rdccr( G5 );
|
|
__ stx(G5, SP, ccr_offset+STACK_BIAS);
|
|
__ stxfsr(SP, fsr_offset+STACK_BIAS);
|
|
|
|
// Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
|
|
int offset = d00_offset;
|
|
for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
|
|
FloatRegister f = as_FloatRegister(i);
|
|
__ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS);
|
|
// Record as callee saved both halves of double registers (2 float registers).
|
|
map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
|
|
map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
|
|
offset += sizeof(double);
|
|
}
|
|
|
|
// And we're done.
|
|
|
|
return map;
|
|
}
|
|
|
|
|
|
// Pop the current frame and restore all the registers that we
|
|
// saved.
|
|
void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
|
|
|
|
// Restore all the FP registers
|
|
for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
|
|
__ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
|
|
}
|
|
|
|
__ ldx(SP, ccr_offset+STACK_BIAS, G1);
|
|
__ wrccr (G1) ;
|
|
|
|
// Restore the G's
|
|
// Note that G2 (AKA GThread) must be saved and restored separately.
|
|
// TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
|
|
|
|
__ ldx(SP, g1_offset+STACK_BIAS, G1);
|
|
__ ldx(SP, g3_offset+STACK_BIAS, G3);
|
|
__ ldx(SP, g4_offset+STACK_BIAS, G4);
|
|
__ ldx(SP, g5_offset+STACK_BIAS, G5);
|
|
|
|
// Restore flags
|
|
|
|
__ ldxfsr(SP, fsr_offset+STACK_BIAS);
|
|
|
|
__ restore();
|
|
|
|
}
|
|
|
|
// Pop the current frame and restore the registers that might be holding
|
|
// a result.
|
|
void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
|
|
|
|
__ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
|
|
|
|
__ restore();
|
|
|
|
}
|
|
|
|
// Is vector's size (in bytes) bigger than a size saved by default?
|
|
// 8 bytes FP registers are saved by default on SPARC.
|
|
bool SharedRuntime::is_wide_vector(int size) {
|
|
// Note, MaxVectorSize == 8 on SPARC.
|
|
assert(size <= 8, "%d bytes vectors are not supported", size);
|
|
return size > 8;
|
|
}
|
|
|
|
size_t SharedRuntime::trampoline_size() {
|
|
return 40;
|
|
}
|
|
|
|
void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
|
|
__ set((intptr_t)destination, G3_scratch);
|
|
__ JMP(G3_scratch, 0);
|
|
__ delayed()->nop();
|
|
}
|
|
|
|
// The java_calling_convention describes stack locations as ideal slots on
|
|
// a frame with no abi restrictions. Since we must observe abi restrictions
|
|
// (like the placement of the register window) the slots must be biased by
|
|
// the following value.
|
|
static int reg2offset(VMReg r) {
|
|
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
|
|
}
|
|
|
|
static VMRegPair reg64_to_VMRegPair(Register r) {
|
|
VMRegPair ret;
|
|
if (wordSize == 8) {
|
|
ret.set2(r->as_VMReg());
|
|
} else {
|
|
ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Read the array of BasicTypes from a signature, and compute where the
|
|
// arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
|
|
// quantities. Values less than VMRegImpl::stack0 are registers, those above
|
|
// refer to 4-byte stack slots. All stack slots are based off of the window
|
|
// top. VMRegImpl::stack0 refers to the first slot past the 16-word window,
|
|
// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
|
|
// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
|
|
// integer registers. Values 64-95 are the (32-bit only) float registers.
|
|
// Each 32-bit quantity is given its own number, so the integer registers
|
|
// (in either 32- or 64-bit builds) use 2 numbers. For example, there is
|
|
// an O0-low and an O0-high. Essentially, all int register numbers are doubled.
|
|
|
|
// Register results are passed in O0-O5, for outgoing call arguments. To
|
|
// convert to incoming arguments, convert all O's to I's. The regs array
|
|
// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
|
|
// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
|
|
// 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was
|
|
// passed (used as a placeholder for the other half of longs and doubles in
|
|
// the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is
|
|
// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
|
|
// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
|
|
// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
|
|
// same VMRegPair.
|
|
|
|
// Note: the INPUTS in sig_bt are in units of Java argument words, which are
|
|
// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
|
|
// units regardless of build.
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// The compiled Java calling convention. The Java convention always passes
|
|
// 64-bit values in adjacent aligned locations (either registers or stack),
|
|
// floats in float registers and doubles in aligned float pairs. There is
|
|
// no backing varargs store for values in registers.
|
|
// In the 32-bit build, longs are passed on the stack (cannot be
|
|
// passed in I's, because longs in I's get their heads chopped off at
|
|
// interrupt).
|
|
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
|
|
VMRegPair *regs,
|
|
int total_args_passed,
|
|
int is_outgoing) {
|
|
assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
|
|
|
|
const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
|
|
const int flt_reg_max = 8;
|
|
|
|
int int_reg = 0;
|
|
int flt_reg = 0;
|
|
int slot = 0;
|
|
|
|
for (int i = 0; i < total_args_passed; i++) {
|
|
switch (sig_bt[i]) {
|
|
case T_INT:
|
|
case T_SHORT:
|
|
case T_CHAR:
|
|
case T_BYTE:
|
|
case T_BOOLEAN:
|
|
if (int_reg < int_reg_max) {
|
|
Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
|
|
regs[i].set1(r->as_VMReg());
|
|
} else {
|
|
regs[i].set1(VMRegImpl::stack2reg(slot++));
|
|
}
|
|
break;
|
|
|
|
case T_LONG:
|
|
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting VOID in other half");
|
|
// fall-through
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
|
|
if (int_reg < int_reg_max) {
|
|
Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
|
|
regs[i].set2(r->as_VMReg());
|
|
} else {
|
|
slot = align_up(slot, 2); // align
|
|
regs[i].set2(VMRegImpl::stack2reg(slot));
|
|
slot += 2;
|
|
}
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
if (flt_reg < flt_reg_max) {
|
|
FloatRegister r = as_FloatRegister(flt_reg++);
|
|
regs[i].set1(r->as_VMReg());
|
|
} else {
|
|
regs[i].set1(VMRegImpl::stack2reg(slot++));
|
|
}
|
|
break;
|
|
|
|
case T_DOUBLE:
|
|
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
|
|
if (align_up(flt_reg, 2) + 1 < flt_reg_max) {
|
|
flt_reg = align_up(flt_reg, 2); // align
|
|
FloatRegister r = as_FloatRegister(flt_reg);
|
|
regs[i].set2(r->as_VMReg());
|
|
flt_reg += 2;
|
|
} else {
|
|
slot = align_up(slot, 2); // align
|
|
regs[i].set2(VMRegImpl::stack2reg(slot));
|
|
slot += 2;
|
|
}
|
|
break;
|
|
|
|
case T_VOID:
|
|
regs[i].set_bad(); // Halves of longs & doubles
|
|
break;
|
|
|
|
default:
|
|
fatal("unknown basic type %d", sig_bt[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// retun the amount of stack space these arguments will need.
|
|
return slot;
|
|
}
|
|
|
|
// Helper class mostly to avoid passing masm everywhere, and handle
|
|
// store displacement overflow logic.
|
|
class AdapterGenerator {
|
|
MacroAssembler *masm;
|
|
Register Rdisp;
|
|
void set_Rdisp(Register r) { Rdisp = r; }
|
|
|
|
void patch_callers_callsite();
|
|
|
|
// base+st_off points to top of argument
|
|
int arg_offset(const int st_off) { return st_off; }
|
|
int next_arg_offset(const int st_off) {
|
|
return st_off - Interpreter::stackElementSize;
|
|
}
|
|
|
|
// Argument slot values may be loaded first into a register because
|
|
// they might not fit into displacement.
|
|
RegisterOrConstant arg_slot(const int st_off);
|
|
RegisterOrConstant next_arg_slot(const int st_off);
|
|
|
|
// Stores long into offset pointed to by base
|
|
void store_c2i_long(Register r, Register base,
|
|
const int st_off, bool is_stack);
|
|
void store_c2i_object(Register r, Register base,
|
|
const int st_off);
|
|
void store_c2i_int(Register r, Register base,
|
|
const int st_off);
|
|
void store_c2i_double(VMReg r_2,
|
|
VMReg r_1, Register base, const int st_off);
|
|
void store_c2i_float(FloatRegister f, Register base,
|
|
const int st_off);
|
|
|
|
public:
|
|
void gen_c2i_adapter(int total_args_passed,
|
|
// VMReg max_arg,
|
|
int comp_args_on_stack, // VMRegStackSlots
|
|
const BasicType *sig_bt,
|
|
const VMRegPair *regs,
|
|
Label& skip_fixup);
|
|
void gen_i2c_adapter(int total_args_passed,
|
|
// VMReg max_arg,
|
|
int comp_args_on_stack, // VMRegStackSlots
|
|
const BasicType *sig_bt,
|
|
const VMRegPair *regs);
|
|
|
|
AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
|
|
};
|
|
|
|
|
|
// Patch the callers callsite with entry to compiled code if it exists.
|
|
void AdapterGenerator::patch_callers_callsite() {
|
|
Label L;
|
|
__ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
|
|
__ br_null(G3_scratch, false, Assembler::pt, L);
|
|
__ delayed()->nop();
|
|
// Call into the VM to patch the caller, then jump to compiled callee
|
|
__ save_frame(4); // Args in compiled layout; do not blow them
|
|
|
|
// Must save all the live Gregs the list is:
|
|
// G1: 1st Long arg (32bit build)
|
|
// G2: global allocated to TLS
|
|
// G3: used in inline cache check (scratch)
|
|
// G4: 2nd Long arg (32bit build);
|
|
// G5: used in inline cache check (Method*)
|
|
|
|
// The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
|
|
|
|
// mov(s,d)
|
|
__ mov(G1, L1);
|
|
__ mov(G4, L4);
|
|
__ mov(G5_method, L5);
|
|
__ mov(G5_method, O0); // VM needs target method
|
|
__ mov(I7, O1); // VM needs caller's callsite
|
|
// Must be a leaf call...
|
|
// can be very far once the blob has been relocated
|
|
AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
|
|
__ relocate(relocInfo::runtime_call_type);
|
|
__ jumpl_to(dest, O7, O7);
|
|
__ delayed()->mov(G2_thread, L7_thread_cache);
|
|
__ mov(L7_thread_cache, G2_thread);
|
|
__ mov(L1, G1);
|
|
__ mov(L4, G4);
|
|
__ mov(L5, G5_method);
|
|
|
|
__ restore(); // Restore args
|
|
__ bind(L);
|
|
}
|
|
|
|
|
|
RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
|
|
RegisterOrConstant roc(arg_offset(st_off));
|
|
return __ ensure_simm13_or_reg(roc, Rdisp);
|
|
}
|
|
|
|
RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
|
|
RegisterOrConstant roc(next_arg_offset(st_off));
|
|
return __ ensure_simm13_or_reg(roc, Rdisp);
|
|
}
|
|
|
|
|
|
// Stores long into offset pointed to by base
|
|
void AdapterGenerator::store_c2i_long(Register r, Register base,
|
|
const int st_off, bool is_stack) {
|
|
// In V9, longs are given 2 64-bit slots in the interpreter, but the
|
|
// data is passed in only 1 slot.
|
|
__ stx(r, base, next_arg_slot(st_off));
|
|
}
|
|
|
|
void AdapterGenerator::store_c2i_object(Register r, Register base,
|
|
const int st_off) {
|
|
__ st_ptr (r, base, arg_slot(st_off));
|
|
}
|
|
|
|
void AdapterGenerator::store_c2i_int(Register r, Register base,
|
|
const int st_off) {
|
|
__ st (r, base, arg_slot(st_off));
|
|
}
|
|
|
|
// Stores into offset pointed to by base
|
|
void AdapterGenerator::store_c2i_double(VMReg r_2,
|
|
VMReg r_1, Register base, const int st_off) {
|
|
// In V9, doubles are given 2 64-bit slots in the interpreter, but the
|
|
// data is passed in only 1 slot.
|
|
__ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
|
|
}
|
|
|
|
void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
|
|
const int st_off) {
|
|
__ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
|
|
}
|
|
|
|
void AdapterGenerator::gen_c2i_adapter(
|
|
int total_args_passed,
|
|
// VMReg max_arg,
|
|
int comp_args_on_stack, // VMRegStackSlots
|
|
const BasicType *sig_bt,
|
|
const VMRegPair *regs,
|
|
Label& L_skip_fixup) {
|
|
|
|
// Before we get into the guts of the C2I adapter, see if we should be here
|
|
// at all. We've come from compiled code and are attempting to jump to the
|
|
// interpreter, which means the caller made a static call to get here
|
|
// (vcalls always get a compiled target if there is one). Check for a
|
|
// compiled target. If there is one, we need to patch the caller's call.
|
|
// However we will run interpreted if we come thru here. The next pass
|
|
// thru the call site will run compiled. If we ran compiled here then
|
|
// we can (theorectically) do endless i2c->c2i->i2c transitions during
|
|
// deopt/uncommon trap cycles. If we always go interpreted here then
|
|
// we can have at most one and don't need to play any tricks to keep
|
|
// from endlessly growing the stack.
|
|
//
|
|
// Actually if we detected that we had an i2c->c2i transition here we
|
|
// ought to be able to reset the world back to the state of the interpreted
|
|
// call and not bother building another interpreter arg area. We don't
|
|
// do that at this point.
|
|
|
|
patch_callers_callsite();
|
|
|
|
__ bind(L_skip_fixup);
|
|
|
|
// Since all args are passed on the stack, total_args_passed*wordSize is the
|
|
// space we need. Add in varargs area needed by the interpreter. Round up
|
|
// to stack alignment.
|
|
const int arg_size = total_args_passed * Interpreter::stackElementSize;
|
|
const int varargs_area =
|
|
(frame::varargs_offset - frame::register_save_words)*wordSize;
|
|
const int extraspace = align_up(arg_size + varargs_area, 2*wordSize);
|
|
|
|
const int bias = STACK_BIAS;
|
|
const int interp_arg_offset = frame::varargs_offset*wordSize +
|
|
(total_args_passed-1)*Interpreter::stackElementSize;
|
|
|
|
const Register base = SP;
|
|
|
|
// Make some extra space on the stack.
|
|
__ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
|
|
set_Rdisp(G3_scratch);
|
|
|
|
// Write the args into the outgoing interpreter space.
|
|
for (int i = 0; i < total_args_passed; i++) {
|
|
const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
|
|
VMReg r_1 = regs[i].first();
|
|
VMReg r_2 = regs[i].second();
|
|
if (!r_1->is_valid()) {
|
|
assert(!r_2->is_valid(), "");
|
|
continue;
|
|
}
|
|
if (r_1->is_stack()) { // Pretend stack targets are loaded into G1
|
|
RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
|
|
ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
|
|
r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
|
|
if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
|
|
else __ ldx(base, ld_off, G1_scratch);
|
|
}
|
|
|
|
if (r_1->is_Register()) {
|
|
Register r = r_1->as_Register()->after_restore();
|
|
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
|
|
store_c2i_object(r, base, st_off);
|
|
} else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
|
|
store_c2i_long(r, base, st_off, r_2->is_stack());
|
|
} else {
|
|
store_c2i_int(r, base, st_off);
|
|
}
|
|
} else {
|
|
assert(r_1->is_FloatRegister(), "");
|
|
if (sig_bt[i] == T_FLOAT) {
|
|
store_c2i_float(r_1->as_FloatRegister(), base, st_off);
|
|
} else {
|
|
assert(sig_bt[i] == T_DOUBLE, "wrong type");
|
|
store_c2i_double(r_2, r_1, base, st_off);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load the interpreter entry point.
|
|
__ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
|
|
|
|
// Pass O5_savedSP as an argument to the interpreter.
|
|
// The interpreter will restore SP to this value before returning.
|
|
__ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
|
|
|
|
__ mov((frame::varargs_offset)*wordSize -
|
|
1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
|
|
// Jump to the interpreter just as if interpreter was doing it.
|
|
__ jmpl(G3_scratch, 0, G0);
|
|
// Setup Lesp for the call. Cannot actually set Lesp as the current Lesp
|
|
// (really L0) is in use by the compiled frame as a generic temp. However,
|
|
// the interpreter does not know where its args are without some kind of
|
|
// arg pointer being passed in. Pass it in Gargs.
|
|
__ delayed()->add(SP, G1, Gargs);
|
|
}
|
|
|
|
static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
|
|
address code_start, address code_end,
|
|
Label& L_ok) {
|
|
Label L_fail;
|
|
__ set(ExternalAddress(code_start), temp_reg);
|
|
__ set(pointer_delta(code_end, code_start, 1), temp2_reg);
|
|
__ cmp(pc_reg, temp_reg);
|
|
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
|
|
__ delayed()->add(temp_reg, temp2_reg, temp_reg);
|
|
__ cmp(pc_reg, temp_reg);
|
|
__ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
|
|
__ bind(L_fail);
|
|
}
|
|
|
|
void AdapterGenerator::gen_i2c_adapter(int total_args_passed,
|
|
// VMReg max_arg,
|
|
int comp_args_on_stack, // VMRegStackSlots
|
|
const BasicType *sig_bt,
|
|
const VMRegPair *regs) {
|
|
// Generate an I2C adapter: adjust the I-frame to make space for the C-frame
|
|
// layout. Lesp was saved by the calling I-frame and will be restored on
|
|
// return. Meanwhile, outgoing arg space is all owned by the callee
|
|
// C-frame, so we can mangle it at will. After adjusting the frame size,
|
|
// hoist register arguments and repack other args according to the compiled
|
|
// code convention. Finally, end in a jump to the compiled code. The entry
|
|
// point address is the start of the buffer.
|
|
|
|
// We will only enter here from an interpreted frame and never from after
|
|
// passing thru a c2i. Azul allowed this but we do not. If we lose the
|
|
// race and use a c2i we will remain interpreted for the race loser(s).
|
|
// This removes all sorts of headaches on the x86 side and also eliminates
|
|
// the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
|
|
|
|
// More detail:
|
|
// Adapters can be frameless because they do not require the caller
|
|
// to perform additional cleanup work, such as correcting the stack pointer.
|
|
// An i2c adapter is frameless because the *caller* frame, which is interpreted,
|
|
// routinely repairs its own stack pointer (from interpreter_frame_last_sp),
|
|
// even if a callee has modified the stack pointer.
|
|
// A c2i adapter is frameless because the *callee* frame, which is interpreted,
|
|
// routinely repairs its caller's stack pointer (from sender_sp, which is set
|
|
// up via the senderSP register).
|
|
// In other words, if *either* the caller or callee is interpreted, we can
|
|
// get the stack pointer repaired after a call.
|
|
// This is why c2i and i2c adapters cannot be indefinitely composed.
|
|
// In particular, if a c2i adapter were to somehow call an i2c adapter,
|
|
// both caller and callee would be compiled methods, and neither would
|
|
// clean up the stack pointer changes performed by the two adapters.
|
|
// If this happens, control eventually transfers back to the compiled
|
|
// caller, but with an uncorrected stack, causing delayed havoc.
|
|
|
|
if (VerifyAdapterCalls &&
|
|
(Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
|
|
// So, let's test for cascading c2i/i2c adapters right now.
|
|
// assert(Interpreter::contains($return_addr) ||
|
|
// StubRoutines::contains($return_addr),
|
|
// "i2c adapter must return to an interpreter frame");
|
|
__ block_comment("verify_i2c { ");
|
|
Label L_ok;
|
|
if (Interpreter::code() != NULL)
|
|
range_check(masm, O7, O0, O1,
|
|
Interpreter::code()->code_start(), Interpreter::code()->code_end(),
|
|
L_ok);
|
|
if (StubRoutines::code1() != NULL)
|
|
range_check(masm, O7, O0, O1,
|
|
StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
|
|
L_ok);
|
|
if (StubRoutines::code2() != NULL)
|
|
range_check(masm, O7, O0, O1,
|
|
StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
|
|
L_ok);
|
|
const char* msg = "i2c adapter must return to an interpreter frame";
|
|
__ block_comment(msg);
|
|
__ stop(msg);
|
|
__ bind(L_ok);
|
|
__ block_comment("} verify_i2ce ");
|
|
}
|
|
|
|
// As you can see from the list of inputs & outputs there are not a lot
|
|
// of temp registers to work with: mostly G1, G3 & G4.
|
|
|
|
// Inputs:
|
|
// G2_thread - TLS
|
|
// G5_method - Method oop
|
|
// G4 (Gargs) - Pointer to interpreter's args
|
|
// O0..O4 - free for scratch
|
|
// O5_savedSP - Caller's saved SP, to be restored if needed
|
|
// O6 - Current SP!
|
|
// O7 - Valid return address
|
|
// L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
|
|
|
|
// Outputs:
|
|
// G2_thread - TLS
|
|
// O0-O5 - Outgoing args in compiled layout
|
|
// O6 - Adjusted or restored SP
|
|
// O7 - Valid return address
|
|
// L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
|
|
// F0-F7 - more outgoing args
|
|
|
|
|
|
// Gargs is the incoming argument base, and also an outgoing argument.
|
|
__ sub(Gargs, BytesPerWord, Gargs);
|
|
|
|
// ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
|
|
// WITH O7 HOLDING A VALID RETURN PC
|
|
//
|
|
// | |
|
|
// : java stack :
|
|
// | |
|
|
// +--------------+ <--- start of outgoing args
|
|
// | receiver | |
|
|
// : rest of args : |---size is java-arg-words
|
|
// | | |
|
|
// +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
|
|
// | | |
|
|
// : unused : |---Space for max Java stack, plus stack alignment
|
|
// | | |
|
|
// +--------------+ <--- SP + 16*wordsize
|
|
// | |
|
|
// : window :
|
|
// | |
|
|
// +--------------+ <--- SP
|
|
|
|
// WE REPACK THE STACK. We use the common calling convention layout as
|
|
// discovered by calling SharedRuntime::calling_convention. We assume it
|
|
// causes an arbitrary shuffle of memory, which may require some register
|
|
// temps to do the shuffle. We hope for (and optimize for) the case where
|
|
// temps are not needed. We may have to resize the stack slightly, in case
|
|
// we need alignment padding (32-bit interpreter can pass longs & doubles
|
|
// misaligned, but the compilers expect them aligned).
|
|
//
|
|
// | |
|
|
// : java stack :
|
|
// | |
|
|
// +--------------+ <--- start of outgoing args
|
|
// | pad, align | |
|
|
// +--------------+ |
|
|
// | ints, longs, | |
|
|
// | floats, | |---Outgoing stack args.
|
|
// : doubles : | First few args in registers.
|
|
// | | |
|
|
// +--------------+ <--- SP' + 16*wordsize
|
|
// | |
|
|
// : window :
|
|
// | |
|
|
// +--------------+ <--- SP'
|
|
|
|
// ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
|
|
// WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
|
|
// FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
|
|
|
|
// Cut-out for having no stack args. Since up to 6 args are passed
|
|
// in registers, we will commonly have no stack args.
|
|
if (comp_args_on_stack > 0) {
|
|
// Convert VMReg stack slots to words.
|
|
int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
|
|
// Round up to miminum stack alignment, in wordSize
|
|
comp_words_on_stack = align_up(comp_words_on_stack, 2);
|
|
// Now compute the distance from Lesp to SP. This calculation does not
|
|
// include the space for total_args_passed because Lesp has not yet popped
|
|
// the arguments.
|
|
__ sub(SP, (comp_words_on_stack)*wordSize, SP);
|
|
}
|
|
|
|
// Now generate the shuffle code. Pick up all register args and move the
|
|
// rest through G1_scratch.
|
|
for (int i = 0; i < total_args_passed; i++) {
|
|
if (sig_bt[i] == T_VOID) {
|
|
// Longs and doubles are passed in native word order, but misaligned
|
|
// in the 32-bit build.
|
|
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
|
|
continue;
|
|
}
|
|
|
|
// Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the
|
|
// 32-bit build and aligned in the 64-bit build. Look for the obvious
|
|
// ldx/lddf optimizations.
|
|
|
|
// Load in argument order going down.
|
|
const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
|
|
set_Rdisp(G1_scratch);
|
|
|
|
VMReg r_1 = regs[i].first();
|
|
VMReg r_2 = regs[i].second();
|
|
if (!r_1->is_valid()) {
|
|
assert(!r_2->is_valid(), "");
|
|
continue;
|
|
}
|
|
if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9
|
|
r_1 = F8->as_VMReg(); // as part of the load/store shuffle
|
|
if (r_2->is_valid()) r_2 = r_1->next();
|
|
}
|
|
if (r_1->is_Register()) { // Register argument
|
|
Register r = r_1->as_Register()->after_restore();
|
|
if (!r_2->is_valid()) {
|
|
__ ld(Gargs, arg_slot(ld_off), r);
|
|
} else {
|
|
// In V9, longs are given 2 64-bit slots in the interpreter, but the
|
|
// data is passed in only 1 slot.
|
|
RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
|
|
next_arg_slot(ld_off) : arg_slot(ld_off);
|
|
__ ldx(Gargs, slot, r);
|
|
}
|
|
} else {
|
|
assert(r_1->is_FloatRegister(), "");
|
|
if (!r_2->is_valid()) {
|
|
__ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
|
|
} else {
|
|
// In V9, doubles are given 2 64-bit slots in the interpreter, but the
|
|
// data is passed in only 1 slot. This code also handles longs that
|
|
// are passed on the stack, but need a stack-to-stack move through a
|
|
// spare float register.
|
|
RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
|
|
next_arg_slot(ld_off) : arg_slot(ld_off);
|
|
__ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
|
|
}
|
|
}
|
|
// Was the argument really intended to be on the stack, but was loaded
|
|
// into F8/F9?
|
|
if (regs[i].first()->is_stack()) {
|
|
assert(r_1->as_FloatRegister() == F8, "fix this code");
|
|
// Convert stack slot to an SP offset
|
|
int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
|
|
// Store down the shuffled stack word. Target address _is_ aligned.
|
|
RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
|
|
if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
|
|
else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
|
|
}
|
|
}
|
|
|
|
// Jump to the compiled code just as if compiled code was doing it.
|
|
__ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
|
|
#if INCLUDE_JVMCI
|
|
if (EnableJVMCI) {
|
|
// check if this call should be routed towards a specific entry point
|
|
__ ld(Address(G2_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), G1);
|
|
__ cmp(G0, G1);
|
|
Label no_alternative_target;
|
|
__ br(Assembler::equal, false, Assembler::pn, no_alternative_target);
|
|
__ delayed()->nop();
|
|
|
|
__ ld_ptr(G2_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()), G3);
|
|
__ st_ptr(G0, Address(G2_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
|
|
|
|
__ bind(no_alternative_target);
|
|
}
|
|
#endif // INCLUDE_JVMCI
|
|
|
|
// 6243940 We might end up in handle_wrong_method if
|
|
// the callee is deoptimized as we race thru here. If that
|
|
// happens we don't want to take a safepoint because the
|
|
// caller frame will look interpreted and arguments are now
|
|
// "compiled" so it is much better to make this transition
|
|
// invisible to the stack walking code. Unfortunately if
|
|
// we try and find the callee by normal means a safepoint
|
|
// is possible. So we stash the desired callee in the thread
|
|
// and the vm will find there should this case occur.
|
|
Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
|
|
__ st_ptr(G5_method, callee_target_addr);
|
|
__ jmpl(G3, 0, G0);
|
|
__ delayed()->nop();
|
|
}
|
|
|
|
void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
|
|
int total_args_passed,
|
|
int comp_args_on_stack,
|
|
const BasicType *sig_bt,
|
|
const VMRegPair *regs) {
|
|
AdapterGenerator agen(masm);
|
|
agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
|
|
}
|
|
|
|
// ---------------------------------------------------------------
|
|
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
|
|
int total_args_passed,
|
|
// VMReg max_arg,
|
|
int comp_args_on_stack, // VMRegStackSlots
|
|
const BasicType *sig_bt,
|
|
const VMRegPair *regs,
|
|
AdapterFingerPrint* fingerprint) {
|
|
address i2c_entry = __ pc();
|
|
|
|
gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Generate a C2I adapter. On entry we know G5 holds the Method*. The
|
|
// args start out packed in the compiled layout. They need to be unpacked
|
|
// into the interpreter layout. This will almost always require some stack
|
|
// space. We grow the current (compiled) stack, then repack the args. We
|
|
// finally end in a jump to the generic interpreter entry point. On exit
|
|
// from the interpreter, the interpreter will restore our SP (lest the
|
|
// compiled code, which relys solely on SP and not FP, get sick).
|
|
|
|
address c2i_unverified_entry = __ pc();
|
|
Label L_skip_fixup;
|
|
{
|
|
Register R_temp = G1; // another scratch register
|
|
|
|
AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
|
|
|
|
__ verify_oop(O0);
|
|
__ load_klass(O0, G3_scratch);
|
|
|
|
__ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
|
|
__ cmp(G3_scratch, R_temp);
|
|
|
|
Label ok, ok2;
|
|
__ brx(Assembler::equal, false, Assembler::pt, ok);
|
|
__ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_metadata_offset(), G5_method);
|
|
__ jump_to(ic_miss, G3_scratch);
|
|
__ delayed()->nop();
|
|
|
|
__ bind(ok);
|
|
// Method might have been compiled since the call site was patched to
|
|
// interpreted if that is the case treat it as a miss so we can get
|
|
// the call site corrected.
|
|
__ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
|
|
__ bind(ok2);
|
|
__ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
|
|
__ delayed()->nop();
|
|
__ jump_to(ic_miss, G3_scratch);
|
|
__ delayed()->nop();
|
|
|
|
}
|
|
|
|
address c2i_entry = __ pc();
|
|
AdapterGenerator agen(masm);
|
|
agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
|
|
|
|
__ flush();
|
|
return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
|
|
|
|
}
|
|
|
|
// Helper function for native calling conventions
|
|
static VMReg int_stk_helper( int i ) {
|
|
// Bias any stack based VMReg we get by ignoring the window area
|
|
// but not the register parameter save area.
|
|
//
|
|
// This is strange for the following reasons. We'd normally expect
|
|
// the calling convention to return an VMReg for a stack slot
|
|
// completely ignoring any abi reserved area. C2 thinks of that
|
|
// abi area as only out_preserve_stack_slots. This does not include
|
|
// the area allocated by the C abi to store down integer arguments
|
|
// because the java calling convention does not use it. So
|
|
// since c2 assumes that there are only out_preserve_stack_slots
|
|
// to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
|
|
// location the c calling convention must add in this bias amount
|
|
// to make up for the fact that the out_preserve_stack_slots is
|
|
// insufficient for C calls. What a mess. I sure hope those 6
|
|
// stack words were worth it on every java call!
|
|
|
|
// Another way of cleaning this up would be for out_preserve_stack_slots
|
|
// to take a parameter to say whether it was C or java calling conventions.
|
|
// Then things might look a little better (but not much).
|
|
|
|
int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
|
|
if( mem_parm_offset < 0 ) {
|
|
return as_oRegister(i)->as_VMReg();
|
|
} else {
|
|
int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
|
|
// Now return a biased offset that will be correct when out_preserve_slots is added back in
|
|
return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
|
|
}
|
|
}
|
|
|
|
|
|
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
|
|
VMRegPair *regs,
|
|
VMRegPair *regs2,
|
|
int total_args_passed) {
|
|
assert(regs2 == NULL, "not needed on sparc");
|
|
|
|
// Return the number of VMReg stack_slots needed for the args.
|
|
// This value does not include an abi space (like register window
|
|
// save area).
|
|
|
|
// The native convention is V8 if !LP64
|
|
// The LP64 convention is the V9 convention which is slightly more sane.
|
|
|
|
// We return the amount of VMReg stack slots we need to reserve for all
|
|
// the arguments NOT counting out_preserve_stack_slots. Since we always
|
|
// have space for storing at least 6 registers to memory we start with that.
|
|
// See int_stk_helper for a further discussion.
|
|
int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
|
|
|
|
// V9 convention: All things "as-if" on double-wide stack slots.
|
|
// Hoist any int/ptr/long's in the first 6 to int regs.
|
|
// Hoist any flt/dbl's in the first 16 dbl regs.
|
|
int j = 0; // Count of actual args, not HALVES
|
|
VMRegPair param_array_reg; // location of the argument in the parameter array
|
|
for (int i = 0; i < total_args_passed; i++, j++) {
|
|
param_array_reg.set_bad();
|
|
switch (sig_bt[i]) {
|
|
case T_BOOLEAN:
|
|
case T_BYTE:
|
|
case T_CHAR:
|
|
case T_INT:
|
|
case T_SHORT:
|
|
regs[i].set1(int_stk_helper(j));
|
|
break;
|
|
case T_LONG:
|
|
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
|
|
case T_ADDRESS: // raw pointers, like current thread, for VM calls
|
|
case T_ARRAY:
|
|
case T_OBJECT:
|
|
case T_METADATA:
|
|
regs[i].set2(int_stk_helper(j));
|
|
break;
|
|
case T_FLOAT:
|
|
// Per SPARC Compliance Definition 2.4.1, page 3P-12 available here
|
|
// http://www.sparc.org/wp-content/uploads/2014/01/SCD.2.4.1.pdf.gz
|
|
//
|
|
// "When a callee prototype exists, and does not indicate variable arguments,
|
|
// floating-point values assigned to locations %sp+BIAS+128 through %sp+BIAS+248
|
|
// will be promoted to floating-point registers"
|
|
//
|
|
// By "promoted" it means that the argument is located in two places, an unused
|
|
// spill slot in the "parameter array" (starts at %sp+BIAS+128), and a live
|
|
// float register. In most cases, there are 6 or fewer arguments of any type,
|
|
// and the standard parameter array slots (%sp+BIAS+128 to %sp+BIAS+176 exclusive)
|
|
// serve as shadow slots. Per the spec floating point registers %d6 to %d16
|
|
// require slots beyond that (up to %sp+BIAS+248).
|
|
//
|
|
{
|
|
// V9ism: floats go in ODD registers and stack slots
|
|
int float_index = 1 + (j << 1);
|
|
param_array_reg.set1(VMRegImpl::stack2reg(float_index));
|
|
if (j < 16) {
|
|
regs[i].set1(as_FloatRegister(float_index)->as_VMReg());
|
|
} else {
|
|
regs[i] = param_array_reg;
|
|
}
|
|
}
|
|
break;
|
|
case T_DOUBLE:
|
|
{
|
|
assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
|
|
// V9ism: doubles go in EVEN/ODD regs and stack slots
|
|
int double_index = (j << 1);
|
|
param_array_reg.set2(VMRegImpl::stack2reg(double_index));
|
|
if (j < 16) {
|
|
regs[i].set2(as_FloatRegister(double_index)->as_VMReg());
|
|
} else {
|
|
// V9ism: doubles go in EVEN/ODD stack slots
|
|
regs[i] = param_array_reg;
|
|
}
|
|
}
|
|
break;
|
|
case T_VOID:
|
|
regs[i].set_bad();
|
|
j--;
|
|
break; // Do not count HALVES
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
// Keep track of the deepest parameter array slot.
|
|
if (!param_array_reg.first()->is_valid()) {
|
|
param_array_reg = regs[i];
|
|
}
|
|
if (param_array_reg.first()->is_stack()) {
|
|
int off = param_array_reg.first()->reg2stack();
|
|
if (off > max_stack_slots) max_stack_slots = off;
|
|
}
|
|
if (param_array_reg.second()->is_stack()) {
|
|
int off = param_array_reg.second()->reg2stack();
|
|
if (off > max_stack_slots) max_stack_slots = off;
|
|
}
|
|
}
|
|
return align_up(max_stack_slots + 1, 2);
|
|
|
|
}
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
|
|
switch (ret_type) {
|
|
case T_FLOAT:
|
|
__ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
|
|
break;
|
|
case T_DOUBLE:
|
|
__ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
|
|
switch (ret_type) {
|
|
case T_FLOAT:
|
|
__ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
|
|
break;
|
|
case T_DOUBLE:
|
|
__ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check and forward and pending exception. Thread is stored in
|
|
// L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there
|
|
// is no exception handler. We merely pop this frame off and throw the
|
|
// exception in the caller's frame.
|
|
static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
|
|
Label L;
|
|
__ br_null(Rex_oop, false, Assembler::pt, L);
|
|
__ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
|
|
// Since this is a native call, we *know* the proper exception handler
|
|
// without calling into the VM: it's the empty function. Just pop this
|
|
// frame and then jump to forward_exception_entry; O7 will contain the
|
|
// native caller's return PC.
|
|
AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
|
|
__ jump_to(exception_entry, G3_scratch);
|
|
__ delayed()->restore(); // Pop this frame off.
|
|
__ bind(L);
|
|
}
|
|
|
|
// A simple move of integer like type
|
|
static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
|
|
__ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
// stack to reg
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
__ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
__ mov(src.first()->as_Register(), dst.first()->as_Register());
|
|
}
|
|
}
|
|
|
|
// On 64 bit we will store integer like items to the stack as
|
|
// 64 bits items (sparc abi) even though java would only store
|
|
// 32bits for a parameter. On 32bit it will simply be 32 bits
|
|
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
|
|
static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
|
|
__ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
// stack to reg
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
// Some compilers (gcc) expect a clean 32 bit value on function entry
|
|
__ signx(src.first()->as_Register(), L5);
|
|
__ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
// Some compilers (gcc) expect a clean 32 bit value on function entry
|
|
__ signx(src.first()->as_Register(), dst.first()->as_Register());
|
|
}
|
|
}
|
|
|
|
|
|
static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack
|
|
__ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
|
|
__ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
// stack to reg
|
|
__ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
__ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
__ mov(src.first()->as_Register(), dst.first()->as_Register());
|
|
}
|
|
}
|
|
|
|
|
|
// An oop arg. Must pass a handle not the oop itself
|
|
static void object_move(MacroAssembler* masm,
|
|
OopMap* map,
|
|
int oop_handle_offset,
|
|
int framesize_in_slots,
|
|
VMRegPair src,
|
|
VMRegPair dst,
|
|
bool is_receiver,
|
|
int* receiver_offset) {
|
|
|
|
// must pass a handle. First figure out the location we use as a handle
|
|
|
|
if (src.first()->is_stack()) {
|
|
// Oop is already on the stack
|
|
Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
|
|
__ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
|
|
__ ld_ptr(rHandle, 0, L4);
|
|
__ movr( Assembler::rc_z, L4, G0, rHandle );
|
|
if (dst.first()->is_stack()) {
|
|
__ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
}
|
|
int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
|
|
if (is_receiver) {
|
|
*receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
|
|
}
|
|
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
|
|
} else {
|
|
// Oop is in an input register pass we must flush it to the stack
|
|
const Register rOop = src.first()->as_Register();
|
|
const Register rHandle = L5;
|
|
int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
|
|
int offset = oop_slot * VMRegImpl::stack_slot_size;
|
|
__ st_ptr(rOop, SP, offset + STACK_BIAS);
|
|
if (is_receiver) {
|
|
*receiver_offset = offset;
|
|
}
|
|
map->set_oop(VMRegImpl::stack2reg(oop_slot));
|
|
__ add(SP, offset + STACK_BIAS, rHandle);
|
|
__ movr( Assembler::rc_z, rOop, G0, rHandle );
|
|
|
|
if (dst.first()->is_stack()) {
|
|
__ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
__ mov(rHandle, dst.first()->as_Register());
|
|
}
|
|
}
|
|
}
|
|
|
|
// A float arg may have to do float reg int reg conversion
|
|
static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
|
|
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack the easiest of the bunch
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
|
|
__ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
// stack to reg
|
|
if (dst.first()->is_Register()) {
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
} else {
|
|
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
|
|
}
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
if (src.first()->is_Register()) {
|
|
__ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
} else {
|
|
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
}
|
|
} else {
|
|
// reg to reg
|
|
if (src.first()->is_Register()) {
|
|
if (dst.first()->is_Register()) {
|
|
// gpr -> gpr
|
|
__ mov(src.first()->as_Register(), dst.first()->as_Register());
|
|
} else {
|
|
// gpr -> fpr
|
|
__ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
|
|
__ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
|
|
}
|
|
} else if (dst.first()->is_Register()) {
|
|
// fpr -> gpr
|
|
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
|
|
__ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
|
|
} else {
|
|
// fpr -> fpr
|
|
// In theory these overlap but the ordering is such that this is likely a nop
|
|
if ( src.first() != dst.first()) {
|
|
__ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
VMRegPair src_lo(src.first());
|
|
VMRegPair src_hi(src.second());
|
|
VMRegPair dst_lo(dst.first());
|
|
VMRegPair dst_hi(dst.second());
|
|
simple_move32(masm, src_lo, dst_lo);
|
|
simple_move32(masm, src_hi, dst_hi);
|
|
}
|
|
|
|
// A long move
|
|
static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
|
|
// Do the simple ones here else do two int moves
|
|
if (src.is_single_phys_reg() ) {
|
|
if (dst.is_single_phys_reg()) {
|
|
__ mov(src.first()->as_Register(), dst.first()->as_Register());
|
|
} else {
|
|
// split src into two separate registers
|
|
// Remember hi means hi address or lsw on sparc
|
|
// Move msw to lsw
|
|
if (dst.second()->is_reg()) {
|
|
// MSW -> MSW
|
|
__ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
|
|
// Now LSW -> LSW
|
|
// this will only move lo -> lo and ignore hi
|
|
VMRegPair split(dst.second());
|
|
simple_move32(masm, src, split);
|
|
} else {
|
|
VMRegPair split(src.first(), L4->as_VMReg());
|
|
// MSW -> MSW (lo ie. first word)
|
|
__ srax(src.first()->as_Register(), 32, L4);
|
|
split_long_move(masm, split, dst);
|
|
}
|
|
}
|
|
} else if (dst.is_single_phys_reg()) {
|
|
if (src.is_adjacent_aligned_on_stack(2)) {
|
|
__ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
} else {
|
|
// dst is a single reg.
|
|
// Remember lo is low address not msb for stack slots
|
|
// and lo is the "real" register for registers
|
|
// src is
|
|
|
|
VMRegPair split;
|
|
|
|
if (src.first()->is_reg()) {
|
|
// src.lo (msw) is a reg, src.hi is stk/reg
|
|
// we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
|
|
split.set_pair(dst.first(), src.first());
|
|
} else {
|
|
// msw is stack move to L5
|
|
// lsw is stack move to dst.lo (real reg)
|
|
// we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
|
|
split.set_pair(dst.first(), L5->as_VMReg());
|
|
}
|
|
|
|
// src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
|
|
// msw -> src.lo/L5, lsw -> dst.lo
|
|
split_long_move(masm, src, split);
|
|
|
|
// So dst now has the low order correct position the
|
|
// msw half
|
|
__ sllx(split.first()->as_Register(), 32, L5);
|
|
|
|
const Register d = dst.first()->as_Register();
|
|
__ or3(L5, d, d);
|
|
}
|
|
} else {
|
|
// For LP64 we can probably do better.
|
|
split_long_move(masm, src, dst);
|
|
}
|
|
}
|
|
|
|
// A double move
|
|
static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
|
|
|
|
// The painful thing here is that like long_move a VMRegPair might be
|
|
// 1: a single physical register
|
|
// 2: two physical registers (v8)
|
|
// 3: a physical reg [lo] and a stack slot [hi] (v8)
|
|
// 4: two stack slots
|
|
|
|
// Since src is always a java calling convention we know that the src pair
|
|
// is always either all registers or all stack (and aligned?)
|
|
|
|
// in a register [lo] and a stack slot [hi]
|
|
if (src.first()->is_stack()) {
|
|
if (dst.first()->is_stack()) {
|
|
// stack to stack the easiest of the bunch
|
|
// ought to be a way to do this where if alignment is ok we use ldd/std when possible
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
|
|
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
|
|
__ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
|
|
} else {
|
|
// stack to reg
|
|
if (dst.second()->is_stack()) {
|
|
// stack -> reg, stack -> stack
|
|
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
|
|
if (dst.first()->is_Register()) {
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
} else {
|
|
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
|
|
}
|
|
// This was missing. (very rare case)
|
|
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
|
|
} else {
|
|
// stack -> reg
|
|
// Eventually optimize for alignment QQQ
|
|
if (dst.first()->is_Register()) {
|
|
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
|
|
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
|
|
} else {
|
|
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
|
|
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
|
|
}
|
|
}
|
|
}
|
|
} else if (dst.first()->is_stack()) {
|
|
// reg to stack
|
|
if (src.first()->is_Register()) {
|
|
// Eventually optimize for alignment QQQ
|
|
__ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
if (src.second()->is_stack()) {
|
|
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
|
|
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
|
|
} else {
|
|
__ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
|
|
}
|
|
} else {
|
|
// fpr to stack
|
|
if (src.second()->is_stack()) {
|
|
ShouldNotReachHere();
|
|
} else {
|
|
// Is the stack aligned?
|
|
if (reg2offset(dst.first()) & 0x7) {
|
|
// No do as pairs
|
|
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
__ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
|
|
} else {
|
|
__ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// reg to reg
|
|
if (src.first()->is_Register()) {
|
|
if (dst.first()->is_Register()) {
|
|
// gpr -> gpr
|
|
__ mov(src.first()->as_Register(), dst.first()->as_Register());
|
|
__ mov(src.second()->as_Register(), dst.second()->as_Register());
|
|
} else {
|
|
// gpr -> fpr
|
|
// ought to be able to do a single store
|
|
__ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
|
|
__ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
|
|
// ought to be able to do a single load
|
|
__ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
|
|
__ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
|
|
}
|
|
} else if (dst.first()->is_Register()) {
|
|
// fpr -> gpr
|
|
// ought to be able to do a single store
|
|
__ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
|
|
// ought to be able to do a single load
|
|
// REMEMBER first() is low address not LSB
|
|
__ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
|
|
if (dst.second()->is_Register()) {
|
|
__ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
|
|
} else {
|
|
__ ld(FP, -4 + STACK_BIAS, L4);
|
|
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
|
|
}
|
|
} else {
|
|
// fpr -> fpr
|
|
// In theory these overlap but the ordering is such that this is likely a nop
|
|
if ( src.first() != dst.first()) {
|
|
__ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Creates an inner frame if one hasn't already been created, and
|
|
// saves a copy of the thread in L7_thread_cache
|
|
static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
|
|
if (!*already_created) {
|
|
__ save_frame(0);
|
|
// Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
|
|
// Don't use save_thread because it smashes G2 and we merely want to save a
|
|
// copy
|
|
__ mov(G2_thread, L7_thread_cache);
|
|
*already_created = true;
|
|
}
|
|
}
|
|
|
|
|
|
static void save_or_restore_arguments(MacroAssembler* masm,
|
|
const int stack_slots,
|
|
const int total_in_args,
|
|
const int arg_save_area,
|
|
OopMap* map,
|
|
VMRegPair* in_regs,
|
|
BasicType* in_sig_bt) {
|
|
// if map is non-NULL then the code should store the values,
|
|
// otherwise it should load them.
|
|
if (map != NULL) {
|
|
// Fill in the map
|
|
for (int i = 0; i < total_in_args; i++) {
|
|
if (in_sig_bt[i] == T_ARRAY) {
|
|
if (in_regs[i].first()->is_stack()) {
|
|
int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
|
|
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
|
|
} else if (in_regs[i].first()->is_Register()) {
|
|
map->set_oop(in_regs[i].first());
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Save or restore double word values
|
|
int handle_index = 0;
|
|
for (int i = 0; i < total_in_args; i++) {
|
|
int slot = handle_index + arg_save_area;
|
|
int offset = slot * VMRegImpl::stack_slot_size;
|
|
if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
|
|
const Register reg = in_regs[i].first()->as_Register();
|
|
if (reg->is_global()) {
|
|
handle_index += 2;
|
|
assert(handle_index <= stack_slots, "overflow");
|
|
if (map != NULL) {
|
|
__ stx(reg, SP, offset + STACK_BIAS);
|
|
} else {
|
|
__ ldx(SP, offset + STACK_BIAS, reg);
|
|
}
|
|
}
|
|
} else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
|
|
handle_index += 2;
|
|
assert(handle_index <= stack_slots, "overflow");
|
|
if (map != NULL) {
|
|
__ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
|
|
} else {
|
|
__ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
|
|
}
|
|
}
|
|
}
|
|
// Save floats
|
|
for (int i = 0; i < total_in_args; i++) {
|
|
int slot = handle_index + arg_save_area;
|
|
int offset = slot * VMRegImpl::stack_slot_size;
|
|
if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
|
|
handle_index++;
|
|
assert(handle_index <= stack_slots, "overflow");
|
|
if (map != NULL) {
|
|
__ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
|
|
} else {
|
|
__ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Check GCLocker::needs_gc and enter the runtime if it's true. This
|
|
// keeps a new JNI critical region from starting until a GC has been
|
|
// forced. Save down any oops in registers and describe them in an
|
|
// OopMap.
|
|
static void check_needs_gc_for_critical_native(MacroAssembler* masm,
|
|
const int stack_slots,
|
|
const int total_in_args,
|
|
const int arg_save_area,
|
|
OopMapSet* oop_maps,
|
|
VMRegPair* in_regs,
|
|
BasicType* in_sig_bt) {
|
|
__ block_comment("check GCLocker::needs_gc");
|
|
Label cont;
|
|
AddressLiteral sync_state(GCLocker::needs_gc_address());
|
|
__ load_bool_contents(sync_state, G3_scratch);
|
|
__ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
|
|
__ delayed()->nop();
|
|
|
|
// Save down any values that are live in registers and call into the
|
|
// runtime to halt for a GC
|
|
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
|
|
save_or_restore_arguments(masm, stack_slots, total_in_args,
|
|
arg_save_area, map, in_regs, in_sig_bt);
|
|
|
|
__ mov(G2_thread, L7_thread_cache);
|
|
|
|
__ set_last_Java_frame(SP, noreg);
|
|
|
|
__ block_comment("block_for_jni_critical");
|
|
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
|
|
__ delayed()->mov(L7_thread_cache, O0);
|
|
oop_maps->add_gc_map( __ offset(), map);
|
|
|
|
__ restore_thread(L7_thread_cache); // restore G2_thread
|
|
__ reset_last_Java_frame();
|
|
|
|
// Reload all the register arguments
|
|
save_or_restore_arguments(masm, stack_slots, total_in_args,
|
|
arg_save_area, NULL, in_regs, in_sig_bt);
|
|
|
|
__ bind(cont);
|
|
#ifdef ASSERT
|
|
if (StressCriticalJNINatives) {
|
|
// Stress register saving
|
|
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
|
|
save_or_restore_arguments(masm, stack_slots, total_in_args,
|
|
arg_save_area, map, in_regs, in_sig_bt);
|
|
// Destroy argument registers
|
|
for (int i = 0; i < total_in_args; i++) {
|
|
if (in_regs[i].first()->is_Register()) {
|
|
const Register reg = in_regs[i].first()->as_Register();
|
|
if (reg->is_global()) {
|
|
__ mov(G0, reg);
|
|
}
|
|
} else if (in_regs[i].first()->is_FloatRegister()) {
|
|
__ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
|
|
}
|
|
}
|
|
|
|
save_or_restore_arguments(masm, stack_slots, total_in_args,
|
|
arg_save_area, NULL, in_regs, in_sig_bt);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Unpack an array argument into a pointer to the body and the length
|
|
// if the array is non-null, otherwise pass 0 for both.
|
|
static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
|
|
// Pass the length, ptr pair
|
|
Label is_null, done;
|
|
if (reg.first()->is_stack()) {
|
|
VMRegPair tmp = reg64_to_VMRegPair(L2);
|
|
// Load the arg up from the stack
|
|
move_ptr(masm, reg, tmp);
|
|
reg = tmp;
|
|
}
|
|
__ cmp(reg.first()->as_Register(), G0);
|
|
__ brx(Assembler::equal, false, Assembler::pt, is_null);
|
|
__ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
|
|
move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
|
|
__ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
|
|
move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
|
|
__ ba_short(done);
|
|
__ bind(is_null);
|
|
// Pass zeros
|
|
move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
|
|
move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
|
|
__ bind(done);
|
|
}
|
|
|
|
static void verify_oop_args(MacroAssembler* masm,
|
|
const methodHandle& method,
|
|
const BasicType* sig_bt,
|
|
const VMRegPair* regs) {
|
|
Register temp_reg = G5_method; // not part of any compiled calling seq
|
|
if (VerifyOops) {
|
|
for (int i = 0; i < method->size_of_parameters(); i++) {
|
|
if (sig_bt[i] == T_OBJECT ||
|
|
sig_bt[i] == T_ARRAY) {
|
|
VMReg r = regs[i].first();
|
|
assert(r->is_valid(), "bad oop arg");
|
|
if (r->is_stack()) {
|
|
RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
|
|
ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
|
|
__ ld_ptr(SP, ld_off, temp_reg);
|
|
__ verify_oop(temp_reg);
|
|
} else {
|
|
__ verify_oop(r->as_Register());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen_special_dispatch(MacroAssembler* masm,
|
|
const methodHandle& method,
|
|
const BasicType* sig_bt,
|
|
const VMRegPair* regs) {
|
|
verify_oop_args(masm, method, sig_bt, regs);
|
|
vmIntrinsics::ID iid = method->intrinsic_id();
|
|
|
|
// Now write the args into the outgoing interpreter space
|
|
bool has_receiver = false;
|
|
Register receiver_reg = noreg;
|
|
int member_arg_pos = -1;
|
|
Register member_reg = noreg;
|
|
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
|
|
if (ref_kind != 0) {
|
|
member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
|
|
member_reg = G5_method; // known to be free at this point
|
|
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
|
|
} else if (iid == vmIntrinsics::_invokeBasic) {
|
|
has_receiver = true;
|
|
} else {
|
|
fatal("unexpected intrinsic id %d", iid);
|
|
}
|
|
|
|
if (member_reg != noreg) {
|
|
// Load the member_arg into register, if necessary.
|
|
SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
|
|
VMReg r = regs[member_arg_pos].first();
|
|
if (r->is_stack()) {
|
|
RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
|
|
ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
|
|
__ ld_ptr(SP, ld_off, member_reg);
|
|
} else {
|
|
// no data motion is needed
|
|
member_reg = r->as_Register();
|
|
}
|
|
}
|
|
|
|
if (has_receiver) {
|
|
// Make sure the receiver is loaded into a register.
|
|
assert(method->size_of_parameters() > 0, "oob");
|
|
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
|
|
VMReg r = regs[0].first();
|
|
assert(r->is_valid(), "bad receiver arg");
|
|
if (r->is_stack()) {
|
|
// Porting note: This assumes that compiled calling conventions always
|
|
// pass the receiver oop in a register. If this is not true on some
|
|
// platform, pick a temp and load the receiver from stack.
|
|
fatal("receiver always in a register");
|
|
receiver_reg = G3_scratch; // known to be free at this point
|
|
RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
|
|
ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
|
|
__ ld_ptr(SP, ld_off, receiver_reg);
|
|
} else {
|
|
// no data motion is needed
|
|
receiver_reg = r->as_Register();
|
|
}
|
|
}
|
|
|
|
// Figure out which address we are really jumping to:
|
|
MethodHandles::generate_method_handle_dispatch(masm, iid,
|
|
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Generate a native wrapper for a given method. The method takes arguments
|
|
// in the Java compiled code convention, marshals them to the native
|
|
// convention (handlizes oops, etc), transitions to native, makes the call,
|
|
// returns to java state (possibly blocking), unhandlizes any result and
|
|
// returns.
|
|
//
|
|
// Critical native functions are a shorthand for the use of
|
|
// GetPrimtiveArrayCritical and disallow the use of any other JNI
|
|
// functions. The wrapper is expected to unpack the arguments before
|
|
// passing them to the callee and perform checks before and after the
|
|
// native call to ensure that they GCLocker
|
|
// lock_critical/unlock_critical semantics are followed. Some other
|
|
// parts of JNI setup are skipped like the tear down of the JNI handle
|
|
// block and the check for pending exceptions it's impossible for them
|
|
// to be thrown.
|
|
//
|
|
// They are roughly structured like this:
|
|
// if (GCLocker::needs_gc())
|
|
// SharedRuntime::block_for_jni_critical();
|
|
// tranistion to thread_in_native
|
|
// unpack arrray arguments and call native entry point
|
|
// check for safepoint in progress
|
|
// check if any thread suspend flags are set
|
|
// call into JVM and possible unlock the JNI critical
|
|
// if a GC was suppressed while in the critical native.
|
|
// transition back to thread_in_Java
|
|
// return to caller
|
|
//
|
|
nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
|
|
const methodHandle& method,
|
|
int compile_id,
|
|
BasicType* in_sig_bt,
|
|
VMRegPair* in_regs,
|
|
BasicType ret_type) {
|
|
if (method->is_method_handle_intrinsic()) {
|
|
vmIntrinsics::ID iid = method->intrinsic_id();
|
|
intptr_t start = (intptr_t)__ pc();
|
|
int vep_offset = ((intptr_t)__ pc()) - start;
|
|
gen_special_dispatch(masm,
|
|
method,
|
|
in_sig_bt,
|
|
in_regs);
|
|
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
|
|
__ flush();
|
|
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
|
|
return nmethod::new_native_nmethod(method,
|
|
compile_id,
|
|
masm->code(),
|
|
vep_offset,
|
|
frame_complete,
|
|
stack_slots / VMRegImpl::slots_per_word,
|
|
in_ByteSize(-1),
|
|
in_ByteSize(-1),
|
|
(OopMapSet*)NULL);
|
|
}
|
|
bool is_critical_native = true;
|
|
address native_func = method->critical_native_function();
|
|
if (native_func == NULL) {
|
|
native_func = method->native_function();
|
|
is_critical_native = false;
|
|
}
|
|
assert(native_func != NULL, "must have function");
|
|
|
|
// Native nmethod wrappers never take possesion of the oop arguments.
|
|
// So the caller will gc the arguments. The only thing we need an
|
|
// oopMap for is if the call is static
|
|
//
|
|
// An OopMap for lock (and class if static), and one for the VM call itself
|
|
OopMapSet *oop_maps = new OopMapSet();
|
|
intptr_t start = (intptr_t)__ pc();
|
|
|
|
// First thing make an ic check to see if we should even be here
|
|
{
|
|
Label L;
|
|
const Register temp_reg = G3_scratch;
|
|
AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
|
|
__ verify_oop(O0);
|
|
__ load_klass(O0, temp_reg);
|
|
__ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
|
|
|
|
__ jump_to(ic_miss, temp_reg);
|
|
__ delayed()->nop();
|
|
__ align(CodeEntryAlignment);
|
|
__ bind(L);
|
|
}
|
|
|
|
int vep_offset = ((intptr_t)__ pc()) - start;
|
|
|
|
#ifdef COMPILER1
|
|
if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
|
|
// Object.hashCode, System.identityHashCode can pull the hashCode from the
|
|
// header word instead of doing a full VM transition once it's been computed.
|
|
// Since hashCode is usually polymorphic at call sites we can't do this
|
|
// optimization at the call site without a lot of work.
|
|
Label slowCase;
|
|
Label done;
|
|
Register obj_reg = O0;
|
|
Register result = O0;
|
|
Register header = G3_scratch;
|
|
Register hash = G3_scratch; // overwrite header value with hash value
|
|
Register mask = G1; // to get hash field from header
|
|
|
|
// Unlike for Object.hashCode, System.identityHashCode is static method and
|
|
// gets object as argument instead of the receiver.
|
|
if (method->intrinsic_id() == vmIntrinsics::_identityHashCode) {
|
|
assert(method->is_static(), "method should be static");
|
|
// return 0 for null reference input
|
|
__ br_null(obj_reg, false, Assembler::pn, done);
|
|
__ delayed()->mov(obj_reg, hash);
|
|
}
|
|
|
|
// Read the header and build a mask to get its hash field. Give up if the object is not unlocked.
|
|
// We depend on hash_mask being at most 32 bits and avoid the use of
|
|
// hash_mask_in_place because it could be larger than 32 bits in a 64-bit
|
|
// vm: see markOop.hpp.
|
|
__ ld_ptr(obj_reg, oopDesc::mark_offset_in_bytes(), header);
|
|
__ sethi(markOopDesc::hash_mask, mask);
|
|
__ btst(markOopDesc::unlocked_value, header);
|
|
__ br(Assembler::zero, false, Assembler::pn, slowCase);
|
|
if (UseBiasedLocking) {
|
|
// Check if biased and fall through to runtime if so
|
|
__ delayed()->nop();
|
|
__ btst(markOopDesc::biased_lock_bit_in_place, header);
|
|
__ br(Assembler::notZero, false, Assembler::pn, slowCase);
|
|
}
|
|
__ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
|
|
|
|
// Check for a valid (non-zero) hash code and get its value.
|
|
__ srlx(header, markOopDesc::hash_shift, hash);
|
|
__ andcc(hash, mask, hash);
|
|
__ br(Assembler::equal, false, Assembler::pn, slowCase);
|
|
__ delayed()->nop();
|
|
|
|
// leaf return.
|
|
__ bind(done);
|
|
__ retl();
|
|
__ delayed()->mov(hash, result);
|
|
__ bind(slowCase);
|
|
}
|
|
#endif // COMPILER1
|
|
|
|
|
|
// We have received a description of where all the java arg are located
|
|
// on entry to the wrapper. We need to convert these args to where
|
|
// the jni function will expect them. To figure out where they go
|
|
// we convert the java signature to a C signature by inserting
|
|
// the hidden arguments as arg[0] and possibly arg[1] (static method)
|
|
|
|
const int total_in_args = method->size_of_parameters();
|
|
int total_c_args = total_in_args;
|
|
int total_save_slots = 6 * VMRegImpl::slots_per_word;
|
|
if (!is_critical_native) {
|
|
total_c_args += 1;
|
|
if (method->is_static()) {
|
|
total_c_args++;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < total_in_args; i++) {
|
|
if (in_sig_bt[i] == T_ARRAY) {
|
|
// These have to be saved and restored across the safepoint
|
|
total_c_args++;
|
|
}
|
|
}
|
|
}
|
|
|
|
BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
|
|
VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
|
|
BasicType* in_elem_bt = NULL;
|
|
|
|
int argc = 0;
|
|
if (!is_critical_native) {
|
|
out_sig_bt[argc++] = T_ADDRESS;
|
|
if (method->is_static()) {
|
|
out_sig_bt[argc++] = T_OBJECT;
|
|
}
|
|
|
|
for (int i = 0; i < total_in_args ; i++ ) {
|
|
out_sig_bt[argc++] = in_sig_bt[i];
|
|
}
|
|
} else {
|
|
Thread* THREAD = Thread::current();
|
|
in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
|
|
SignatureStream ss(method->signature());
|
|
for (int i = 0; i < total_in_args ; i++ ) {
|
|
if (in_sig_bt[i] == T_ARRAY) {
|
|
// Arrays are passed as int, elem* pair
|
|
out_sig_bt[argc++] = T_INT;
|
|
out_sig_bt[argc++] = T_ADDRESS;
|
|
Symbol* atype = ss.as_symbol();
|
|
const char* at = atype->as_C_string();
|
|
if (strlen(at) == 2) {
|
|
assert(at[0] == '[', "must be");
|
|
switch (at[1]) {
|
|
case 'B': in_elem_bt[i] = T_BYTE; break;
|
|
case 'C': in_elem_bt[i] = T_CHAR; break;
|
|
case 'D': in_elem_bt[i] = T_DOUBLE; break;
|
|
case 'F': in_elem_bt[i] = T_FLOAT; break;
|
|
case 'I': in_elem_bt[i] = T_INT; break;
|
|
case 'J': in_elem_bt[i] = T_LONG; break;
|
|
case 'S': in_elem_bt[i] = T_SHORT; break;
|
|
case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
} else {
|
|
out_sig_bt[argc++] = in_sig_bt[i];
|
|
in_elem_bt[i] = T_VOID;
|
|
}
|
|
if (in_sig_bt[i] != T_VOID) {
|
|
assert(in_sig_bt[i] == ss.type(), "must match");
|
|
ss.next();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now figure out where the args must be stored and how much stack space
|
|
// they require (neglecting out_preserve_stack_slots but space for storing
|
|
// the 1st six register arguments). It's weird see int_stk_helper.
|
|
//
|
|
int out_arg_slots;
|
|
out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
|
|
|
|
if (is_critical_native) {
|
|
// Critical natives may have to call out so they need a save area
|
|
// for register arguments.
|
|
int double_slots = 0;
|
|
int single_slots = 0;
|
|
for ( int i = 0; i < total_in_args; i++) {
|
|
if (in_regs[i].first()->is_Register()) {
|
|
const Register reg = in_regs[i].first()->as_Register();
|
|
switch (in_sig_bt[i]) {
|
|
case T_ARRAY:
|
|
case T_BOOLEAN:
|
|
case T_BYTE:
|
|
case T_SHORT:
|
|
case T_CHAR:
|
|
case T_INT: assert(reg->is_in(), "don't need to save these"); break;
|
|
case T_LONG: if (reg->is_global()) double_slots++; break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
} else if (in_regs[i].first()->is_FloatRegister()) {
|
|
switch (in_sig_bt[i]) {
|
|
case T_FLOAT: single_slots++; break;
|
|
case T_DOUBLE: double_slots++; break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
total_save_slots = double_slots * 2 + single_slots;
|
|
}
|
|
|
|
// Compute framesize for the wrapper. We need to handlize all oops in
|
|
// registers. We must create space for them here that is disjoint from
|
|
// the windowed save area because we have no control over when we might
|
|
// flush the window again and overwrite values that gc has since modified.
|
|
// (The live window race)
|
|
//
|
|
// We always just allocate 6 word for storing down these object. This allow
|
|
// us to simply record the base and use the Ireg number to decide which
|
|
// slot to use. (Note that the reg number is the inbound number not the
|
|
// outbound number).
|
|
// We must shuffle args to match the native convention, and include var-args space.
|
|
|
|
// Calculate the total number of stack slots we will need.
|
|
|
|
// First count the abi requirement plus all of the outgoing args
|
|
int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
|
|
|
|
// Now the space for the inbound oop handle area
|
|
|
|
int oop_handle_offset = align_up(stack_slots, 2);
|
|
stack_slots += total_save_slots;
|
|
|
|
// Now any space we need for handlizing a klass if static method
|
|
|
|
int klass_slot_offset = 0;
|
|
int klass_offset = -1;
|
|
int lock_slot_offset = 0;
|
|
bool is_static = false;
|
|
|
|
if (method->is_static()) {
|
|
klass_slot_offset = stack_slots;
|
|
stack_slots += VMRegImpl::slots_per_word;
|
|
klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
|
|
is_static = true;
|
|
}
|
|
|
|
// Plus a lock if needed
|
|
|
|
if (method->is_synchronized()) {
|
|
lock_slot_offset = stack_slots;
|
|
stack_slots += VMRegImpl::slots_per_word;
|
|
}
|
|
|
|
// Now a place to save return value or as a temporary for any gpr -> fpr moves
|
|
stack_slots += 2;
|
|
|
|
// Ok The space we have allocated will look like:
|
|
//
|
|
//
|
|
// FP-> | |
|
|
// |---------------------|
|
|
// | 2 slots for moves |
|
|
// |---------------------|
|
|
// | lock box (if sync) |
|
|
// |---------------------| <- lock_slot_offset
|
|
// | klass (if static) |
|
|
// |---------------------| <- klass_slot_offset
|
|
// | oopHandle area |
|
|
// |---------------------| <- oop_handle_offset
|
|
// | outbound memory |
|
|
// | based arguments |
|
|
// | |
|
|
// |---------------------|
|
|
// | vararg area |
|
|
// |---------------------|
|
|
// | |
|
|
// SP-> | out_preserved_slots |
|
|
//
|
|
//
|
|
|
|
|
|
// Now compute actual number of stack words we need rounding to make
|
|
// stack properly aligned.
|
|
stack_slots = align_up(stack_slots, 2 * VMRegImpl::slots_per_word);
|
|
|
|
int stack_size = stack_slots * VMRegImpl::stack_slot_size;
|
|
|
|
// Generate stack overflow check before creating frame
|
|
__ generate_stack_overflow_check(stack_size);
|
|
|
|
// Generate a new frame for the wrapper.
|
|
__ save(SP, -stack_size, SP);
|
|
|
|
int frame_complete = ((intptr_t)__ pc()) - start;
|
|
|
|
__ verify_thread();
|
|
|
|
if (is_critical_native) {
|
|
check_needs_gc_for_critical_native(masm, stack_slots, total_in_args,
|
|
oop_handle_offset, oop_maps, in_regs, in_sig_bt);
|
|
}
|
|
|
|
//
|
|
// We immediately shuffle the arguments so that any vm call we have to
|
|
// make from here on out (sync slow path, jvmti, etc.) we will have
|
|
// captured the oops from our caller and have a valid oopMap for
|
|
// them.
|
|
|
|
// -----------------
|
|
// The Grand Shuffle
|
|
//
|
|
// Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
|
|
// (derived from JavaThread* which is in L7_thread_cache) and, if static,
|
|
// the class mirror instead of a receiver. This pretty much guarantees that
|
|
// register layout will not match. We ignore these extra arguments during
|
|
// the shuffle. The shuffle is described by the two calling convention
|
|
// vectors we have in our possession. We simply walk the java vector to
|
|
// get the source locations and the c vector to get the destinations.
|
|
// Because we have a new window and the argument registers are completely
|
|
// disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
|
|
// here.
|
|
|
|
// This is a trick. We double the stack slots so we can claim
|
|
// the oops in the caller's frame. Since we are sure to have
|
|
// more args than the caller doubling is enough to make
|
|
// sure we can capture all the incoming oop args from the
|
|
// caller.
|
|
//
|
|
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
|
|
// Record sp-based slot for receiver on stack for non-static methods
|
|
int receiver_offset = -1;
|
|
|
|
// We move the arguments backward because the floating point registers
|
|
// destination will always be to a register with a greater or equal register
|
|
// number or the stack.
|
|
|
|
#ifdef ASSERT
|
|
bool reg_destroyed[RegisterImpl::number_of_registers];
|
|
bool freg_destroyed[FloatRegisterImpl::number_of_registers];
|
|
for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
|
|
reg_destroyed[r] = false;
|
|
}
|
|
for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
|
|
freg_destroyed[f] = false;
|
|
}
|
|
|
|
#endif /* ASSERT */
|
|
|
|
for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
|
|
|
|
#ifdef ASSERT
|
|
if (in_regs[i].first()->is_Register()) {
|
|
assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
|
|
} else if (in_regs[i].first()->is_FloatRegister()) {
|
|
assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
|
|
}
|
|
if (out_regs[c_arg].first()->is_Register()) {
|
|
reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
|
|
} else if (out_regs[c_arg].first()->is_FloatRegister()) {
|
|
freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
|
|
}
|
|
#endif /* ASSERT */
|
|
|
|
switch (in_sig_bt[i]) {
|
|
case T_ARRAY:
|
|
if (is_critical_native) {
|
|
unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
|
|
c_arg--;
|
|
break;
|
|
}
|
|
case T_OBJECT:
|
|
assert(!is_critical_native, "no oop arguments");
|
|
object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
|
|
((i == 0) && (!is_static)),
|
|
&receiver_offset);
|
|
break;
|
|
case T_VOID:
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
float_move(masm, in_regs[i], out_regs[c_arg]);
|
|
break;
|
|
|
|
case T_DOUBLE:
|
|
assert( i + 1 < total_in_args &&
|
|
in_sig_bt[i + 1] == T_VOID &&
|
|
out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
|
|
double_move(masm, in_regs[i], out_regs[c_arg]);
|
|
break;
|
|
|
|
case T_LONG :
|
|
long_move(masm, in_regs[i], out_regs[c_arg]);
|
|
break;
|
|
|
|
case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
|
|
|
|
default:
|
|
move32_64(masm, in_regs[i], out_regs[c_arg]);
|
|
}
|
|
}
|
|
|
|
// Pre-load a static method's oop into O1. Used both by locking code and
|
|
// the normal JNI call code.
|
|
if (method->is_static() && !is_critical_native) {
|
|
__ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
|
|
|
|
// Now handlize the static class mirror in O1. It's known not-null.
|
|
__ st_ptr(O1, SP, klass_offset + STACK_BIAS);
|
|
map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
|
|
__ add(SP, klass_offset + STACK_BIAS, O1);
|
|
}
|
|
|
|
|
|
const Register L6_handle = L6;
|
|
|
|
if (method->is_synchronized()) {
|
|
assert(!is_critical_native, "unhandled");
|
|
__ mov(O1, L6_handle);
|
|
}
|
|
|
|
// We have all of the arguments setup at this point. We MUST NOT touch any Oregs
|
|
// except O6/O7. So if we must call out we must push a new frame. We immediately
|
|
// push a new frame and flush the windows.
|
|
intptr_t thepc = (intptr_t) __ pc();
|
|
{
|
|
address here = __ pc();
|
|
// Call the next instruction
|
|
__ call(here + 8, relocInfo::none);
|
|
__ delayed()->nop();
|
|
}
|
|
|
|
// We use the same pc/oopMap repeatedly when we call out
|
|
oop_maps->add_gc_map(thepc - start, map);
|
|
|
|
// O7 now has the pc loaded that we will use when we finally call to native.
|
|
|
|
// Save thread in L7; it crosses a bunch of VM calls below
|
|
// Don't use save_thread because it smashes G2 and we merely
|
|
// want to save a copy
|
|
__ mov(G2_thread, L7_thread_cache);
|
|
|
|
|
|
// If we create an inner frame once is plenty
|
|
// when we create it we must also save G2_thread
|
|
bool inner_frame_created = false;
|
|
|
|
// dtrace method entry support
|
|
{
|
|
SkipIfEqual skip_if(
|
|
masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
|
|
// create inner frame
|
|
__ save_frame(0);
|
|
__ mov(G2_thread, L7_thread_cache);
|
|
__ set_metadata_constant(method(), O1);
|
|
__ call_VM_leaf(L7_thread_cache,
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
|
|
G2_thread, O1);
|
|
__ restore();
|
|
}
|
|
|
|
// RedefineClasses() tracing support for obsolete method entry
|
|
if (log_is_enabled(Trace, redefine, class, obsolete)) {
|
|
// create inner frame
|
|
__ save_frame(0);
|
|
__ mov(G2_thread, L7_thread_cache);
|
|
__ set_metadata_constant(method(), O1);
|
|
__ call_VM_leaf(L7_thread_cache,
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
|
|
G2_thread, O1);
|
|
__ restore();
|
|
}
|
|
|
|
// We are in the jni frame unless saved_frame is true in which case
|
|
// we are in one frame deeper (the "inner" frame). If we are in the
|
|
// "inner" frames the args are in the Iregs and if the jni frame then
|
|
// they are in the Oregs.
|
|
// If we ever need to go to the VM (for locking, jvmti) then
|
|
// we will always be in the "inner" frame.
|
|
|
|
// Lock a synchronized method
|
|
int lock_offset = -1; // Set if locked
|
|
if (method->is_synchronized()) {
|
|
Register Roop = O1;
|
|
const Register L3_box = L3;
|
|
|
|
create_inner_frame(masm, &inner_frame_created);
|
|
|
|
__ ld_ptr(I1, 0, O1);
|
|
Label done;
|
|
|
|
lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
|
|
__ add(FP, lock_offset+STACK_BIAS, L3_box);
|
|
#ifdef ASSERT
|
|
if (UseBiasedLocking) {
|
|
// making the box point to itself will make it clear it went unused
|
|
// but also be obviously invalid
|
|
__ st_ptr(L3_box, L3_box, 0);
|
|
}
|
|
#endif // ASSERT
|
|
//
|
|
// Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
|
|
//
|
|
__ compiler_lock_object(Roop, L1, L3_box, L2);
|
|
__ br(Assembler::equal, false, Assembler::pt, done);
|
|
__ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
|
|
|
|
|
|
// None of the above fast optimizations worked so we have to get into the
|
|
// slow case of monitor enter. Inline a special case of call_VM that
|
|
// disallows any pending_exception.
|
|
__ mov(Roop, O0); // Need oop in O0
|
|
__ mov(L3_box, O1);
|
|
|
|
// Record last_Java_sp, in case the VM code releases the JVM lock.
|
|
|
|
__ set_last_Java_frame(FP, I7);
|
|
|
|
// do the call
|
|
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
|
|
__ delayed()->mov(L7_thread_cache, O2);
|
|
|
|
__ restore_thread(L7_thread_cache); // restore G2_thread
|
|
__ reset_last_Java_frame();
|
|
|
|
#ifdef ASSERT
|
|
{ Label L;
|
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
|
|
__ br_null_short(O0, Assembler::pt, L);
|
|
__ stop("no pending exception allowed on exit from IR::monitorenter");
|
|
__ bind(L);
|
|
}
|
|
#endif
|
|
__ bind(done);
|
|
}
|
|
|
|
|
|
// Finally just about ready to make the JNI call
|
|
|
|
__ flushw();
|
|
if (inner_frame_created) {
|
|
__ restore();
|
|
} else {
|
|
// Store only what we need from this frame
|
|
// QQQ I think that non-v9 (like we care) we don't need these saves
|
|
// either as the flush traps and the current window goes too.
|
|
__ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
|
|
__ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
|
|
}
|
|
|
|
// get JNIEnv* which is first argument to native
|
|
if (!is_critical_native) {
|
|
__ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
|
|
}
|
|
|
|
// Use that pc we placed in O7 a while back as the current frame anchor
|
|
__ set_last_Java_frame(SP, O7);
|
|
|
|
// We flushed the windows ages ago now mark them as flushed before transitioning.
|
|
__ set(JavaFrameAnchor::flushed, G3_scratch);
|
|
__ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
|
|
|
|
// Transition from _thread_in_Java to _thread_in_native.
|
|
__ set(_thread_in_native, G3_scratch);
|
|
|
|
AddressLiteral dest(native_func);
|
|
__ relocate(relocInfo::runtime_call_type);
|
|
__ jumpl_to(dest, O7, O7);
|
|
__ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
|
|
|
|
__ restore_thread(L7_thread_cache); // restore G2_thread
|
|
|
|
// Unpack native results. For int-types, we do any needed sign-extension
|
|
// and move things into I0. The return value there will survive any VM
|
|
// calls for blocking or unlocking. An FP or OOP result (handle) is done
|
|
// specially in the slow-path code.
|
|
switch (ret_type) {
|
|
case T_VOID: break; // Nothing to do!
|
|
case T_FLOAT: break; // Got it where we want it (unless slow-path)
|
|
case T_DOUBLE: break; // Got it where we want it (unless slow-path)
|
|
// In 64 bits build result is in O0, in O0, O1 in 32bit build
|
|
case T_LONG:
|
|
// Fall thru
|
|
case T_OBJECT: // Really a handle
|
|
case T_ARRAY:
|
|
case T_INT:
|
|
__ mov(O0, I0);
|
|
break;
|
|
case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
|
|
case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break;
|
|
case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value!
|
|
case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break;
|
|
break; // Cannot de-handlize until after reclaiming jvm_lock
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
Label after_transition;
|
|
// must we block?
|
|
|
|
// Block, if necessary, before resuming in _thread_in_Java state.
|
|
// In order for GC to work, don't clear the last_Java_sp until after blocking.
|
|
{ Label no_block;
|
|
|
|
// Switch thread to "native transition" state before reading the synchronization state.
|
|
// This additional state is necessary because reading and testing the synchronization
|
|
// state is not atomic w.r.t. GC, as this scenario demonstrates:
|
|
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
|
|
// VM thread changes sync state to synchronizing and suspends threads for GC.
|
|
// Thread A is resumed to finish this native method, but doesn't block here since it
|
|
// didn't see any synchronization is progress, and escapes.
|
|
__ set(_thread_in_native_trans, G3_scratch);
|
|
__ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
|
|
|
|
// Force this write out before the read below
|
|
__ membar(Assembler::StoreLoad);
|
|
|
|
Label L;
|
|
Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
|
|
__ safepoint_poll(L, false, G2_thread, G3_scratch);
|
|
__ delayed()->ld(suspend_state, G3_scratch);
|
|
__ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
|
|
__ bind(L);
|
|
|
|
// Block. Save any potential method result value before the operation and
|
|
// use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
|
|
// lets us share the oopMap we used when we went native rather the create
|
|
// a distinct one for this pc
|
|
//
|
|
save_native_result(masm, ret_type, stack_slots);
|
|
if (!is_critical_native) {
|
|
__ call_VM_leaf(L7_thread_cache,
|
|
CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
|
|
G2_thread);
|
|
} else {
|
|
__ call_VM_leaf(L7_thread_cache,
|
|
CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
|
|
G2_thread);
|
|
}
|
|
|
|
// Restore any method result value
|
|
restore_native_result(masm, ret_type, stack_slots);
|
|
|
|
if (is_critical_native) {
|
|
// The call above performed the transition to thread_in_Java so
|
|
// skip the transition logic below.
|
|
__ ba(after_transition);
|
|
__ delayed()->nop();
|
|
}
|
|
|
|
__ bind(no_block);
|
|
}
|
|
|
|
// thread state is thread_in_native_trans. Any safepoint blocking has already
|
|
// happened so we can now change state to _thread_in_Java.
|
|
__ set(_thread_in_Java, G3_scratch);
|
|
__ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
|
|
__ bind(after_transition);
|
|
|
|
Label no_reguard;
|
|
__ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
|
|
__ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_reserved_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
|
|
|
|
save_native_result(masm, ret_type, stack_slots);
|
|
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
|
|
__ delayed()->nop();
|
|
|
|
__ restore_thread(L7_thread_cache); // restore G2_thread
|
|
restore_native_result(masm, ret_type, stack_slots);
|
|
|
|
__ bind(no_reguard);
|
|
|
|
// Handle possible exception (will unlock if necessary)
|
|
|
|
// native result if any is live in freg or I0 (and I1 if long and 32bit vm)
|
|
|
|
// Unlock
|
|
if (method->is_synchronized()) {
|
|
Label done;
|
|
Register I2_ex_oop = I2;
|
|
const Register L3_box = L3;
|
|
// Get locked oop from the handle we passed to jni
|
|
__ ld_ptr(L6_handle, 0, L4);
|
|
__ add(SP, lock_offset+STACK_BIAS, L3_box);
|
|
// Must save pending exception around the slow-path VM call. Since it's a
|
|
// leaf call, the pending exception (if any) can be kept in a register.
|
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
|
|
// Now unlock
|
|
// (Roop, Rmark, Rbox, Rscratch)
|
|
__ compiler_unlock_object(L4, L1, L3_box, L2);
|
|
__ br(Assembler::equal, false, Assembler::pt, done);
|
|
__ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
|
|
|
|
// save and restore any potential method result value around the unlocking
|
|
// operation. Will save in I0 (or stack for FP returns).
|
|
save_native_result(masm, ret_type, stack_slots);
|
|
|
|
// Must clear pending-exception before re-entering the VM. Since this is
|
|
// a leaf call, pending-exception-oop can be safely kept in a register.
|
|
__ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
|
|
|
|
// slow case of monitor enter. Inline a special case of call_VM that
|
|
// disallows any pending_exception.
|
|
__ mov(L3_box, O1);
|
|
|
|
// Pass in current thread pointer
|
|
__ mov(G2_thread, O2);
|
|
|
|
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
|
|
__ delayed()->mov(L4, O0); // Need oop in O0
|
|
|
|
__ restore_thread(L7_thread_cache); // restore G2_thread
|
|
|
|
#ifdef ASSERT
|
|
{ Label L;
|
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
|
|
__ br_null_short(O0, Assembler::pt, L);
|
|
__ stop("no pending exception allowed on exit from IR::monitorexit");
|
|
__ bind(L);
|
|
}
|
|
#endif
|
|
restore_native_result(masm, ret_type, stack_slots);
|
|
// check_forward_pending_exception jump to forward_exception if any pending
|
|
// exception is set. The forward_exception routine expects to see the
|
|
// exception in pending_exception and not in a register. Kind of clumsy,
|
|
// since all folks who branch to forward_exception must have tested
|
|
// pending_exception first and hence have it in a register already.
|
|
__ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
|
|
__ bind(done);
|
|
}
|
|
|
|
// Tell dtrace about this method exit
|
|
{
|
|
SkipIfEqual skip_if(
|
|
masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
|
|
save_native_result(masm, ret_type, stack_slots);
|
|
__ set_metadata_constant(method(), O1);
|
|
__ call_VM_leaf(L7_thread_cache,
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
|
|
G2_thread, O1);
|
|
restore_native_result(masm, ret_type, stack_slots);
|
|
}
|
|
|
|
// Clear "last Java frame" SP and PC.
|
|
__ verify_thread(); // G2_thread must be correct
|
|
__ reset_last_Java_frame();
|
|
|
|
// Unbox oop result, e.g. JNIHandles::resolve value in I0.
|
|
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
|
|
__ resolve_jobject(I0, G3_scratch);
|
|
}
|
|
|
|
if (CheckJNICalls) {
|
|
// clear_pending_jni_exception_check
|
|
__ st_ptr(G0, G2_thread, JavaThread::pending_jni_exception_check_fn_offset());
|
|
}
|
|
|
|
if (!is_critical_native) {
|
|
// reset handle block
|
|
__ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
|
|
__ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
|
|
|
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
|
|
check_forward_pending_exception(masm, G3_scratch);
|
|
}
|
|
|
|
|
|
// Return
|
|
|
|
__ ret();
|
|
__ delayed()->restore();
|
|
|
|
__ flush();
|
|
|
|
nmethod *nm = nmethod::new_native_nmethod(method,
|
|
compile_id,
|
|
masm->code(),
|
|
vep_offset,
|
|
frame_complete,
|
|
stack_slots / VMRegImpl::slots_per_word,
|
|
(is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
|
|
in_ByteSize(lock_offset),
|
|
oop_maps);
|
|
|
|
if (is_critical_native) {
|
|
nm->set_lazy_critical_native(true);
|
|
}
|
|
return nm;
|
|
|
|
}
|
|
|
|
// this function returns the adjust size (in number of words) to a c2i adapter
|
|
// activation for use during deoptimization
|
|
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
|
|
assert(callee_locals >= callee_parameters,
|
|
"test and remove; got more parms than locals");
|
|
if (callee_locals < callee_parameters)
|
|
return 0; // No adjustment for negative locals
|
|
int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
|
|
return align_up(diff, WordsPerLong);
|
|
}
|
|
|
|
// "Top of Stack" slots that may be unused by the calling convention but must
|
|
// otherwise be preserved.
|
|
// On Intel these are not necessary and the value can be zero.
|
|
// On Sparc this describes the words reserved for storing a register window
|
|
// when an interrupt occurs.
|
|
uint SharedRuntime::out_preserve_stack_slots() {
|
|
return frame::register_save_words * VMRegImpl::slots_per_word;
|
|
}
|
|
|
|
static void gen_new_frame(MacroAssembler* masm, bool deopt) {
|
|
//
|
|
// Common out the new frame generation for deopt and uncommon trap
|
|
//
|
|
Register G3pcs = G3_scratch; // Array of new pcs (input)
|
|
Register Oreturn0 = O0;
|
|
Register Oreturn1 = O1;
|
|
Register O2UnrollBlock = O2;
|
|
Register O3array = O3; // Array of frame sizes (input)
|
|
Register O4array_size = O4; // number of frames (input)
|
|
Register O7frame_size = O7; // number of frames (input)
|
|
|
|
__ ld_ptr(O3array, 0, O7frame_size);
|
|
__ sub(G0, O7frame_size, O7frame_size);
|
|
__ save(SP, O7frame_size, SP);
|
|
__ ld_ptr(G3pcs, 0, I7); // load frame's new pc
|
|
|
|
#ifdef ASSERT
|
|
// make sure that the frames are aligned properly
|
|
#endif
|
|
|
|
// Deopt needs to pass some extra live values from frame to frame
|
|
|
|
if (deopt) {
|
|
__ mov(Oreturn0->after_save(), Oreturn0);
|
|
__ mov(Oreturn1->after_save(), Oreturn1);
|
|
}
|
|
|
|
__ mov(O4array_size->after_save(), O4array_size);
|
|
__ sub(O4array_size, 1, O4array_size);
|
|
__ mov(O3array->after_save(), O3array);
|
|
__ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
|
|
__ add(G3pcs, wordSize, G3pcs); // point to next pc value
|
|
|
|
#ifdef ASSERT
|
|
// trash registers to show a clear pattern in backtraces
|
|
__ set(0xDEAD0000, I0);
|
|
__ add(I0, 2, I1);
|
|
__ add(I0, 4, I2);
|
|
__ add(I0, 6, I3);
|
|
__ add(I0, 8, I4);
|
|
// Don't touch I5 could have valuable savedSP
|
|
__ set(0xDEADBEEF, L0);
|
|
__ mov(L0, L1);
|
|
__ mov(L0, L2);
|
|
__ mov(L0, L3);
|
|
__ mov(L0, L4);
|
|
__ mov(L0, L5);
|
|
|
|
// trash the return value as there is nothing to return yet
|
|
__ set(0xDEAD0001, O7);
|
|
#endif
|
|
|
|
__ mov(SP, O5_savedSP);
|
|
}
|
|
|
|
|
|
static void make_new_frames(MacroAssembler* masm, bool deopt) {
|
|
//
|
|
// loop through the UnrollBlock info and create new frames
|
|
//
|
|
Register G3pcs = G3_scratch;
|
|
Register Oreturn0 = O0;
|
|
Register Oreturn1 = O1;
|
|
Register O2UnrollBlock = O2;
|
|
Register O3array = O3;
|
|
Register O4array_size = O4;
|
|
Label loop;
|
|
|
|
#ifdef ASSERT
|
|
// Compilers generate code that bang the stack by as much as the
|
|
// interpreter would need. So this stack banging should never
|
|
// trigger a fault. Verify that it does not on non product builds.
|
|
if (UseStackBanging) {
|
|
// Get total frame size for interpreted frames
|
|
__ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
|
|
__ bang_stack_size(O4, O3, G3_scratch);
|
|
}
|
|
#endif
|
|
|
|
__ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
|
|
__ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
|
|
__ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
|
|
|
|
// Adjust old interpreter frame to make space for new frame's extra java locals
|
|
//
|
|
// We capture the original sp for the transition frame only because it is needed in
|
|
// order to properly calculate interpreter_sp_adjustment. Even though in real life
|
|
// every interpreter frame captures a savedSP it is only needed at the transition
|
|
// (fortunately). If we had to have it correct everywhere then we would need to
|
|
// be told the sp_adjustment for each frame we create. If the frame size array
|
|
// were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
|
|
// for each frame we create and keep up the illusion every where.
|
|
//
|
|
|
|
__ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
|
|
__ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment
|
|
__ sub(SP, O7, SP);
|
|
|
|
#ifdef ASSERT
|
|
// make sure that there is at least one entry in the array
|
|
__ tst(O4array_size);
|
|
__ breakpoint_trap(Assembler::zero, Assembler::icc);
|
|
#endif
|
|
|
|
// Now push the new interpreter frames
|
|
__ bind(loop);
|
|
|
|
// allocate a new frame, filling the registers
|
|
|
|
gen_new_frame(masm, deopt); // allocate an interpreter frame
|
|
|
|
__ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
|
|
__ delayed()->add(O3array, wordSize, O3array);
|
|
__ ld_ptr(G3pcs, 0, O7); // load final frame new pc
|
|
|
|
}
|
|
|
|
//------------------------------generate_deopt_blob----------------------------
|
|
// Ought to generate an ideal graph & compile, but here's some SPARC ASM
|
|
// instead.
|
|
void SharedRuntime::generate_deopt_blob() {
|
|
// allocate space for the code
|
|
ResourceMark rm;
|
|
// setup code generation tools
|
|
int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
|
|
#ifdef ASSERT
|
|
if (UseStackBanging) {
|
|
pad += (JavaThread::stack_shadow_zone_size() / os::vm_page_size())*16 + 32;
|
|
}
|
|
#endif
|
|
#if INCLUDE_JVMCI
|
|
if (EnableJVMCI) {
|
|
pad += 1000; // Increase the buffer size when compiling for JVMCI
|
|
}
|
|
#endif
|
|
CodeBuffer buffer("deopt_blob", 2100+pad, 512);
|
|
MacroAssembler* masm = new MacroAssembler(&buffer);
|
|
FloatRegister Freturn0 = F0;
|
|
Register Greturn1 = G1;
|
|
Register Oreturn0 = O0;
|
|
Register Oreturn1 = O1;
|
|
Register O2UnrollBlock = O2;
|
|
Register L0deopt_mode = L0;
|
|
Register G4deopt_mode = G4_scratch;
|
|
int frame_size_words;
|
|
Address saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
|
|
Label cont;
|
|
|
|
OopMapSet *oop_maps = new OopMapSet();
|
|
|
|
//
|
|
// This is the entry point for code which is returning to a de-optimized
|
|
// frame.
|
|
// The steps taken by this frame are as follows:
|
|
// - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
|
|
// and all potentially live registers (at a pollpoint many registers can be live).
|
|
//
|
|
// - call the C routine: Deoptimization::fetch_unroll_info (this function
|
|
// returns information about the number and size of interpreter frames
|
|
// which are equivalent to the frame which is being deoptimized)
|
|
// - deallocate the unpack frame, restoring only results values. Other
|
|
// volatile registers will now be captured in the vframeArray as needed.
|
|
// - deallocate the deoptimization frame
|
|
// - in a loop using the information returned in the previous step
|
|
// push new interpreter frames (take care to propagate the return
|
|
// values through each new frame pushed)
|
|
// - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
|
|
// - call the C routine: Deoptimization::unpack_frames (this function
|
|
// lays out values on the interpreter frame which was just created)
|
|
// - deallocate the dummy unpack_frame
|
|
// - ensure that all the return values are correctly set and then do
|
|
// a return to the interpreter entry point
|
|
//
|
|
// Refer to the following methods for more information:
|
|
// - Deoptimization::fetch_unroll_info
|
|
// - Deoptimization::unpack_frames
|
|
|
|
OopMap* map = NULL;
|
|
|
|
int start = __ offset();
|
|
|
|
// restore G2, the trampoline destroyed it
|
|
__ get_thread();
|
|
|
|
// On entry we have been called by the deoptimized nmethod with a call that
|
|
// replaced the original call (or safepoint polling location) so the deoptimizing
|
|
// pc is now in O7. Return values are still in the expected places
|
|
|
|
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
|
|
__ ba(cont);
|
|
__ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
|
|
|
|
|
|
#if INCLUDE_JVMCI
|
|
Label after_fetch_unroll_info_call;
|
|
int implicit_exception_uncommon_trap_offset = 0;
|
|
int uncommon_trap_offset = 0;
|
|
|
|
if (EnableJVMCI) {
|
|
masm->block_comment("BEGIN implicit_exception_uncommon_trap");
|
|
implicit_exception_uncommon_trap_offset = __ offset() - start;
|
|
|
|
__ ld_ptr(G2_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()), O7);
|
|
__ st_ptr(G0, Address(G2_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
|
|
__ add(O7, -8, O7);
|
|
|
|
uncommon_trap_offset = __ offset() - start;
|
|
|
|
// Save everything in sight.
|
|
(void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
|
|
__ set_last_Java_frame(SP, NULL);
|
|
|
|
__ ld(G2_thread, in_bytes(JavaThread::pending_deoptimization_offset()), O1);
|
|
__ sub(G0, 1, L1);
|
|
__ st(L1, G2_thread, in_bytes(JavaThread::pending_deoptimization_offset()));
|
|
|
|
__ mov((int32_t)Deoptimization::Unpack_reexecute, L0deopt_mode);
|
|
__ mov(G2_thread, O0);
|
|
__ mov(L0deopt_mode, O2);
|
|
__ call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
|
|
__ delayed()->nop();
|
|
oop_maps->add_gc_map( __ offset()-start, map->deep_copy());
|
|
__ get_thread();
|
|
__ add(O7, 8, O7);
|
|
__ reset_last_Java_frame();
|
|
|
|
__ ba(after_fetch_unroll_info_call);
|
|
__ delayed()->nop(); // Delay slot
|
|
masm->block_comment("END implicit_exception_uncommon_trap");
|
|
} // EnableJVMCI
|
|
#endif // INCLUDE_JVMCI
|
|
|
|
int exception_offset = __ offset() - start;
|
|
|
|
// restore G2, the trampoline destroyed it
|
|
__ get_thread();
|
|
|
|
// On entry we have been jumped to by the exception handler (or exception_blob
|
|
// for server). O0 contains the exception oop and O7 contains the original
|
|
// exception pc. So if we push a frame here it will look to the
|
|
// stack walking code (fetch_unroll_info) just like a normal call so
|
|
// state will be extracted normally.
|
|
|
|
// save exception oop in JavaThread and fall through into the
|
|
// exception_in_tls case since they are handled in same way except
|
|
// for where the pending exception is kept.
|
|
__ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
|
|
|
|
//
|
|
// Vanilla deoptimization with an exception pending in exception_oop
|
|
//
|
|
int exception_in_tls_offset = __ offset() - start;
|
|
|
|
// No need to update oop_map as each call to save_live_registers will produce identical oopmap
|
|
// Opens a new stack frame
|
|
(void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
|
|
|
|
// Restore G2_thread
|
|
__ get_thread();
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
// verify that there is really an exception oop in exception_oop
|
|
Label has_exception;
|
|
__ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
|
|
__ br_notnull_short(Oexception, Assembler::pt, has_exception);
|
|
__ stop("no exception in thread");
|
|
__ bind(has_exception);
|
|
|
|
// verify that there is no pending exception
|
|
Label no_pending_exception;
|
|
Address exception_addr(G2_thread, Thread::pending_exception_offset());
|
|
__ ld_ptr(exception_addr, Oexception);
|
|
__ br_null_short(Oexception, Assembler::pt, no_pending_exception);
|
|
__ stop("must not have pending exception here");
|
|
__ bind(no_pending_exception);
|
|
}
|
|
#endif
|
|
|
|
__ ba(cont);
|
|
__ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
|
|
|
|
//
|
|
// Reexecute entry, similar to c2 uncommon trap
|
|
//
|
|
int reexecute_offset = __ offset() - start;
|
|
#if INCLUDE_JVMCI && !defined(COMPILER1)
|
|
if (EnableJVMCI && UseJVMCICompiler) {
|
|
// JVMCI does not use this kind of deoptimization
|
|
__ should_not_reach_here();
|
|
}
|
|
#endif
|
|
// No need to update oop_map as each call to save_live_registers will produce identical oopmap
|
|
(void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
|
|
|
|
__ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
|
|
|
|
__ bind(cont);
|
|
|
|
__ set_last_Java_frame(SP, noreg);
|
|
|
|
// do the call by hand so we can get the oopmap
|
|
|
|
__ mov(G2_thread, L7_thread_cache);
|
|
__ mov(L0deopt_mode, O1);
|
|
__ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
|
|
__ delayed()->mov(G2_thread, O0);
|
|
|
|
// Set an oopmap for the call site this describes all our saved volatile registers
|
|
|
|
oop_maps->add_gc_map( __ offset()-start, map);
|
|
|
|
__ mov(L7_thread_cache, G2_thread);
|
|
|
|
__ reset_last_Java_frame();
|
|
|
|
#if INCLUDE_JVMCI
|
|
if (EnableJVMCI) {
|
|
__ bind(after_fetch_unroll_info_call);
|
|
}
|
|
#endif
|
|
// NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
|
|
// so this move will survive
|
|
|
|
__ mov(L0deopt_mode, G4deopt_mode);
|
|
|
|
__ mov(O0, O2UnrollBlock->after_save());
|
|
|
|
RegisterSaver::restore_result_registers(masm);
|
|
|
|
__ ld(O2UnrollBlock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes(), G4deopt_mode);
|
|
Label noException;
|
|
__ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
|
|
|
|
// Move the pending exception from exception_oop to Oexception so
|
|
// the pending exception will be picked up the interpreter.
|
|
__ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
|
|
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
|
|
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
|
|
__ bind(noException);
|
|
|
|
// deallocate the deoptimization frame taking care to preserve the return values
|
|
__ mov(Oreturn0, Oreturn0->after_save());
|
|
__ mov(Oreturn1, Oreturn1->after_save());
|
|
__ mov(O2UnrollBlock, O2UnrollBlock->after_save());
|
|
__ restore();
|
|
|
|
// Allocate new interpreter frame(s) and possible c2i adapter frame
|
|
|
|
make_new_frames(masm, true);
|
|
|
|
// push a dummy "unpack_frame" taking care of float return values and
|
|
// call Deoptimization::unpack_frames to have the unpacker layout
|
|
// information in the interpreter frames just created and then return
|
|
// to the interpreter entry point
|
|
__ save(SP, -frame_size_words*wordSize, SP);
|
|
__ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
|
|
// LP64 uses g4 in set_last_Java_frame
|
|
__ mov(G4deopt_mode, O1);
|
|
__ set_last_Java_frame(SP, G0);
|
|
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
|
|
__ reset_last_Java_frame();
|
|
__ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
|
|
|
|
__ ret();
|
|
__ delayed()->restore();
|
|
|
|
masm->flush();
|
|
_deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
|
|
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
|
|
#if INCLUDE_JVMCI
|
|
if (EnableJVMCI) {
|
|
_deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
|
|
_deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
|
|
//------------------------------generate_uncommon_trap_blob--------------------
|
|
// Ought to generate an ideal graph & compile, but here's some SPARC ASM
|
|
// instead.
|
|
void SharedRuntime::generate_uncommon_trap_blob() {
|
|
// allocate space for the code
|
|
ResourceMark rm;
|
|
// setup code generation tools
|
|
int pad = VerifyThread ? 512 : 0;
|
|
#ifdef ASSERT
|
|
if (UseStackBanging) {
|
|
pad += (JavaThread::stack_shadow_zone_size() / os::vm_page_size())*16 + 32;
|
|
}
|
|
#endif
|
|
CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
|
|
MacroAssembler* masm = new MacroAssembler(&buffer);
|
|
Register O2UnrollBlock = O2;
|
|
Register O2klass_index = O2;
|
|
|
|
//
|
|
// This is the entry point for all traps the compiler takes when it thinks
|
|
// it cannot handle further execution of compilation code. The frame is
|
|
// deoptimized in these cases and converted into interpreter frames for
|
|
// execution
|
|
// The steps taken by this frame are as follows:
|
|
// - push a fake "unpack_frame"
|
|
// - call the C routine Deoptimization::uncommon_trap (this function
|
|
// packs the current compiled frame into vframe arrays and returns
|
|
// information about the number and size of interpreter frames which
|
|
// are equivalent to the frame which is being deoptimized)
|
|
// - deallocate the "unpack_frame"
|
|
// - deallocate the deoptimization frame
|
|
// - in a loop using the information returned in the previous step
|
|
// push interpreter frames;
|
|
// - create a dummy "unpack_frame"
|
|
// - call the C routine: Deoptimization::unpack_frames (this function
|
|
// lays out values on the interpreter frame which was just created)
|
|
// - deallocate the dummy unpack_frame
|
|
// - return to the interpreter entry point
|
|
//
|
|
// Refer to the following methods for more information:
|
|
// - Deoptimization::uncommon_trap
|
|
// - Deoptimization::unpack_frame
|
|
|
|
// the unloaded class index is in O0 (first parameter to this blob)
|
|
|
|
// push a dummy "unpack_frame"
|
|
// and call Deoptimization::uncommon_trap to pack the compiled frame into
|
|
// vframe array and return the UnrollBlock information
|
|
__ save_frame(0);
|
|
__ set_last_Java_frame(SP, noreg);
|
|
__ mov(I0, O2klass_index);
|
|
__ mov(Deoptimization::Unpack_uncommon_trap, O3); // exec mode
|
|
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index, O3);
|
|
__ reset_last_Java_frame();
|
|
__ mov(O0, O2UnrollBlock->after_save());
|
|
__ restore();
|
|
|
|
// deallocate the deoptimized frame taking care to preserve the return values
|
|
__ mov(O2UnrollBlock, O2UnrollBlock->after_save());
|
|
__ restore();
|
|
|
|
#ifdef ASSERT
|
|
{ Label L;
|
|
__ ld(O2UnrollBlock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes(), O1);
|
|
__ cmp_and_br_short(O1, Deoptimization::Unpack_uncommon_trap, Assembler::equal, Assembler::pt, L);
|
|
__ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
|
|
__ bind(L);
|
|
}
|
|
#endif
|
|
|
|
// Allocate new interpreter frame(s) and possible c2i adapter frame
|
|
|
|
make_new_frames(masm, false);
|
|
|
|
// push a dummy "unpack_frame" taking care of float return values and
|
|
// call Deoptimization::unpack_frames to have the unpacker layout
|
|
// information in the interpreter frames just created and then return
|
|
// to the interpreter entry point
|
|
__ save_frame(0);
|
|
__ set_last_Java_frame(SP, noreg);
|
|
__ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
|
|
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
|
|
__ reset_last_Java_frame();
|
|
__ ret();
|
|
__ delayed()->restore();
|
|
|
|
masm->flush();
|
|
_uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
|
|
}
|
|
|
|
#endif // COMPILER2
|
|
|
|
//------------------------------generate_handler_blob-------------------
|
|
//
|
|
// Generate a special Compile2Runtime blob that saves all registers, and sets
|
|
// up an OopMap.
|
|
//
|
|
// This blob is jumped to (via a breakpoint and the signal handler) from a
|
|
// safepoint in compiled code. On entry to this blob, O7 contains the
|
|
// address in the original nmethod at which we should resume normal execution.
|
|
// Thus, this blob looks like a subroutine which must preserve lots of
|
|
// registers and return normally. Note that O7 is never register-allocated,
|
|
// so it is guaranteed to be free here.
|
|
//
|
|
|
|
// The hardest part of what this blob must do is to save the 64-bit %o
|
|
// registers in the 32-bit build. A simple 'save' turn the %o's to %i's and
|
|
// an interrupt will chop off their heads. Making space in the caller's frame
|
|
// first will let us save the 64-bit %o's before save'ing, but we cannot hand
|
|
// the adjusted FP off to the GC stack-crawler: this will modify the caller's
|
|
// SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save
|
|
// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
|
|
// Tricky, tricky, tricky...
|
|
|
|
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
|
|
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
|
|
|
|
// allocate space for the code
|
|
ResourceMark rm;
|
|
// setup code generation tools
|
|
// Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
|
|
// Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
|
|
CodeBuffer buffer("handler_blob", 1600, 512);
|
|
MacroAssembler* masm = new MacroAssembler(&buffer);
|
|
int frame_size_words;
|
|
OopMapSet *oop_maps = new OopMapSet();
|
|
OopMap* map = NULL;
|
|
|
|
int start = __ offset();
|
|
|
|
bool cause_return = (poll_type == POLL_AT_RETURN);
|
|
// If this causes a return before the processing, then do a "restore"
|
|
if (cause_return) {
|
|
__ restore();
|
|
} else {
|
|
// Make it look like we were called via the poll
|
|
// so that frame constructor always sees a valid return address
|
|
__ ld_ptr(Address(G2_thread, JavaThread::saved_exception_pc_offset()), O7);
|
|
__ sub(O7, frame::pc_return_offset, O7);
|
|
}
|
|
|
|
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
|
|
|
|
// setup last_Java_sp (blows G4)
|
|
__ set_last_Java_frame(SP, noreg);
|
|
|
|
Register saved_O7 = O7->after_save();
|
|
if (!cause_return && SafepointMechanism::uses_thread_local_poll()) {
|
|
// Keep a copy of the return pc in L0 to detect if it gets modified
|
|
__ mov(saved_O7, L0);
|
|
// Adjust and keep a copy of our npc saved by the signal handler
|
|
__ ld_ptr(Address(G2_thread, JavaThread::saved_exception_npc_offset()), L1);
|
|
__ sub(L1, frame::pc_return_offset, L1);
|
|
}
|
|
|
|
// call into the runtime to handle illegal instructions exception
|
|
// Do not use call_VM_leaf, because we need to make a GC map at this call site.
|
|
__ mov(G2_thread, O0);
|
|
__ save_thread(L7_thread_cache);
|
|
__ call(call_ptr);
|
|
__ delayed()->nop();
|
|
|
|
// Set an oopmap for the call site.
|
|
// We need this not only for callee-saved registers, but also for volatile
|
|
// registers that the compiler might be keeping live across a safepoint.
|
|
|
|
oop_maps->add_gc_map( __ offset() - start, map);
|
|
|
|
__ restore_thread(L7_thread_cache);
|
|
// clear last_Java_sp
|
|
__ reset_last_Java_frame();
|
|
|
|
// Check for exceptions
|
|
Label pending;
|
|
|
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
|
|
__ br_notnull_short(O1, Assembler::pn, pending);
|
|
|
|
if (!cause_return && SafepointMechanism::uses_thread_local_poll()) {
|
|
// If nobody modified our return pc then we must return to the npc which he saved in L1
|
|
__ cmp(saved_O7, L0);
|
|
__ movcc(Assembler::equal, false, Assembler::ptr_cc, L1, saved_O7);
|
|
}
|
|
|
|
RegisterSaver::restore_live_registers(masm);
|
|
|
|
// We are back the the original state on entry and ready to go.
|
|
|
|
__ retl();
|
|
__ delayed()->nop();
|
|
|
|
// Pending exception after the safepoint
|
|
|
|
__ bind(pending);
|
|
|
|
RegisterSaver::restore_live_registers(masm);
|
|
|
|
// We are back the the original state on entry.
|
|
|
|
// Tail-call forward_exception_entry, with the issuing PC in O7,
|
|
// so it looks like the original nmethod called forward_exception_entry.
|
|
__ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
|
|
__ JMP(O0, 0);
|
|
__ delayed()->nop();
|
|
|
|
// -------------
|
|
// make sure all code is generated
|
|
masm->flush();
|
|
|
|
// return exception blob
|
|
return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
|
|
}
|
|
|
|
//
|
|
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
|
|
//
|
|
// Generate a stub that calls into vm to find out the proper destination
|
|
// of a java call. All the argument registers are live at this point
|
|
// but since this is generic code we don't know what they are and the caller
|
|
// must do any gc of the args.
|
|
//
|
|
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
|
|
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
|
|
|
|
// allocate space for the code
|
|
ResourceMark rm;
|
|
// setup code generation tools
|
|
// Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
|
|
// Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
|
|
CodeBuffer buffer(name, 1600, 512);
|
|
MacroAssembler* masm = new MacroAssembler(&buffer);
|
|
int frame_size_words;
|
|
OopMapSet *oop_maps = new OopMapSet();
|
|
OopMap* map = NULL;
|
|
|
|
int start = __ offset();
|
|
|
|
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
|
|
|
|
int frame_complete = __ offset();
|
|
|
|
// setup last_Java_sp (blows G4)
|
|
__ set_last_Java_frame(SP, noreg);
|
|
|
|
// call into the runtime to handle illegal instructions exception
|
|
// Do not use call_VM_leaf, because we need to make a GC map at this call site.
|
|
__ mov(G2_thread, O0);
|
|
__ save_thread(L7_thread_cache);
|
|
__ call(destination, relocInfo::runtime_call_type);
|
|
__ delayed()->nop();
|
|
|
|
// O0 contains the address we are going to jump to assuming no exception got installed
|
|
|
|
// Set an oopmap for the call site.
|
|
// We need this not only for callee-saved registers, but also for volatile
|
|
// registers that the compiler might be keeping live across a safepoint.
|
|
|
|
oop_maps->add_gc_map( __ offset() - start, map);
|
|
|
|
__ restore_thread(L7_thread_cache);
|
|
// clear last_Java_sp
|
|
__ reset_last_Java_frame();
|
|
|
|
// Check for exceptions
|
|
Label pending;
|
|
|
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
|
|
__ br_notnull_short(O1, Assembler::pn, pending);
|
|
|
|
// get the returned Method*
|
|
|
|
__ get_vm_result_2(G5_method);
|
|
__ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
|
|
|
|
// O0 is where we want to jump, overwrite G3 which is saved and scratch
|
|
|
|
__ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
|
|
|
|
RegisterSaver::restore_live_registers(masm);
|
|
|
|
// We are back the the original state on entry and ready to go.
|
|
|
|
__ JMP(G3, 0);
|
|
__ delayed()->nop();
|
|
|
|
// Pending exception after the safepoint
|
|
|
|
__ bind(pending);
|
|
|
|
RegisterSaver::restore_live_registers(masm);
|
|
|
|
// We are back the the original state on entry.
|
|
|
|
// Tail-call forward_exception_entry, with the issuing PC in O7,
|
|
// so it looks like the original nmethod called forward_exception_entry.
|
|
__ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
|
|
__ JMP(O0, 0);
|
|
__ delayed()->nop();
|
|
|
|
// -------------
|
|
// make sure all code is generated
|
|
masm->flush();
|
|
|
|
// return the blob
|
|
// frame_size_words or bytes??
|
|
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
|
|
}
|