48639428ce
Reviewed-by: sla, mchung, dholmes
605 lines
20 KiB
C++
605 lines
20 KiB
C++
/*
|
|
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "nativeInst_x86.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/handles.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "utilities/ostream.hpp"
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#endif
|
|
|
|
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
|
|
|
|
void NativeInstruction::wrote(int offset) {
|
|
ICache::invalidate_word(addr_at(offset));
|
|
}
|
|
|
|
|
|
void NativeCall::verify() {
|
|
// Make sure code pattern is actually a call imm32 instruction.
|
|
int inst = ubyte_at(0);
|
|
if (inst != instruction_code) {
|
|
tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
|
|
inst);
|
|
fatal("not a call disp32");
|
|
}
|
|
}
|
|
|
|
address NativeCall::destination() const {
|
|
// Getting the destination of a call isn't safe because that call can
|
|
// be getting patched while you're calling this. There's only special
|
|
// places where this can be called but not automatically verifiable by
|
|
// checking which locks are held. The solution is true atomic patching
|
|
// on x86, nyi.
|
|
return return_address() + displacement();
|
|
}
|
|
|
|
void NativeCall::print() {
|
|
tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
|
|
instruction_address(), destination());
|
|
}
|
|
|
|
// Inserts a native call instruction at a given pc
|
|
void NativeCall::insert(address code_pos, address entry) {
|
|
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
|
|
#ifdef AMD64
|
|
guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
|
|
#endif // AMD64
|
|
*code_pos = instruction_code;
|
|
*((int32_t *)(code_pos+1)) = (int32_t) disp;
|
|
ICache::invalidate_range(code_pos, instruction_size);
|
|
}
|
|
|
|
// MT-safe patching of a call instruction.
|
|
// First patches first word of instruction to two jmp's that jmps to them
|
|
// selfs (spinlock). Then patches the last byte, and then atomicly replaces
|
|
// the jmp's with the first 4 byte of the new instruction.
|
|
void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
|
|
assert(Patching_lock->is_locked() ||
|
|
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
|
|
assert (instr_addr != NULL, "illegal address for code patching");
|
|
|
|
NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call
|
|
if (os::is_MP()) {
|
|
guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
|
|
}
|
|
|
|
// First patch dummy jmp in place
|
|
unsigned char patch[4];
|
|
assert(sizeof(patch)==sizeof(jint), "sanity check");
|
|
patch[0] = 0xEB; // jmp rel8
|
|
patch[1] = 0xFE; // jmp to self
|
|
patch[2] = 0xEB;
|
|
patch[3] = 0xFE;
|
|
|
|
// First patch dummy jmp in place
|
|
*(jint*)instr_addr = *(jint *)patch;
|
|
|
|
// Invalidate. Opteron requires a flush after every write.
|
|
n_call->wrote(0);
|
|
|
|
// Patch 4th byte
|
|
instr_addr[4] = code_buffer[4];
|
|
|
|
n_call->wrote(4);
|
|
|
|
// Patch bytes 0-3
|
|
*(jint*)instr_addr = *(jint *)code_buffer;
|
|
|
|
n_call->wrote(0);
|
|
|
|
#ifdef ASSERT
|
|
// verify patching
|
|
for ( int i = 0; i < instruction_size; i++) {
|
|
address ptr = (address)((intptr_t)code_buffer + i);
|
|
int a_byte = (*ptr) & 0xFF;
|
|
assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
// Similar to replace_mt_safe, but just changes the destination. The
|
|
// important thing is that free-running threads are able to execute this
|
|
// call instruction at all times. If the displacement field is aligned
|
|
// we can simply rely on atomicity of 32-bit writes to make sure other threads
|
|
// will see no intermediate states. Otherwise, the first two bytes of the
|
|
// call are guaranteed to be aligned, and can be atomically patched to a
|
|
// self-loop to guard the instruction while we change the other bytes.
|
|
|
|
// We cannot rely on locks here, since the free-running threads must run at
|
|
// full speed.
|
|
//
|
|
// Used in the runtime linkage of calls; see class CompiledIC.
|
|
// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
|
|
void NativeCall::set_destination_mt_safe(address dest) {
|
|
debug_only(verify());
|
|
// Make sure patching code is locked. No two threads can patch at the same
|
|
// time but one may be executing this code.
|
|
assert(Patching_lock->is_locked() ||
|
|
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
|
|
// Both C1 and C2 should now be generating code which aligns the patched address
|
|
// to be within a single cache line except that C1 does not do the alignment on
|
|
// uniprocessor systems.
|
|
bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
|
|
((uintptr_t)displacement_address() + 3) / cache_line_size;
|
|
|
|
guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
|
|
|
|
if (is_aligned) {
|
|
// Simple case: The destination lies within a single cache line.
|
|
set_destination(dest);
|
|
} else if ((uintptr_t)instruction_address() / cache_line_size ==
|
|
((uintptr_t)instruction_address()+1) / cache_line_size) {
|
|
// Tricky case: The instruction prefix lies within a single cache line.
|
|
intptr_t disp = dest - return_address();
|
|
#ifdef AMD64
|
|
guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
|
|
#endif // AMD64
|
|
|
|
int call_opcode = instruction_address()[0];
|
|
|
|
// First patch dummy jump in place:
|
|
{
|
|
u_char patch_jump[2];
|
|
patch_jump[0] = 0xEB; // jmp rel8
|
|
patch_jump[1] = 0xFE; // jmp to self
|
|
|
|
assert(sizeof(patch_jump)==sizeof(short), "sanity check");
|
|
*(short*)instruction_address() = *(short*)patch_jump;
|
|
}
|
|
// Invalidate. Opteron requires a flush after every write.
|
|
wrote(0);
|
|
|
|
// (Note: We assume any reader which has already started to read
|
|
// the unpatched call will completely read the whole unpatched call
|
|
// without seeing the next writes we are about to make.)
|
|
|
|
// Next, patch the last three bytes:
|
|
u_char patch_disp[5];
|
|
patch_disp[0] = call_opcode;
|
|
*(int32_t*)&patch_disp[1] = (int32_t)disp;
|
|
assert(sizeof(patch_disp)==instruction_size, "sanity check");
|
|
for (int i = sizeof(short); i < instruction_size; i++)
|
|
instruction_address()[i] = patch_disp[i];
|
|
|
|
// Invalidate. Opteron requires a flush after every write.
|
|
wrote(sizeof(short));
|
|
|
|
// (Note: We assume that any reader which reads the opcode we are
|
|
// about to repatch will also read the writes we just made.)
|
|
|
|
// Finally, overwrite the jump:
|
|
*(short*)instruction_address() = *(short*)patch_disp;
|
|
// Invalidate. Opteron requires a flush after every write.
|
|
wrote(0);
|
|
|
|
debug_only(verify());
|
|
guarantee(destination() == dest, "patch succeeded");
|
|
} else {
|
|
// Impossible: One or the other must be atomically writable.
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
void NativeMovConstReg::verify() {
|
|
#ifdef AMD64
|
|
// make sure code pattern is actually a mov reg64, imm64 instruction
|
|
if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
|
|
(ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
|
|
print();
|
|
fatal("not a REX.W[B] mov reg64, imm64");
|
|
}
|
|
#else
|
|
// make sure code pattern is actually a mov reg, imm32 instruction
|
|
u_char test_byte = *(u_char*)instruction_address();
|
|
u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
|
|
if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
|
|
#endif // AMD64
|
|
}
|
|
|
|
|
|
void NativeMovConstReg::print() {
|
|
tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
|
|
instruction_address(), data());
|
|
}
|
|
|
|
//-------------------------------------------------------------------
|
|
|
|
int NativeMovRegMem::instruction_start() const {
|
|
int off = 0;
|
|
u_char instr_0 = ubyte_at(off);
|
|
|
|
// See comment in Assembler::locate_operand() about VEX prefixes.
|
|
if (instr_0 == instruction_VEX_prefix_2bytes) {
|
|
assert((UseAVX > 0), "shouldn't have VEX prefix");
|
|
NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
|
|
return 2;
|
|
}
|
|
if (instr_0 == instruction_VEX_prefix_3bytes) {
|
|
assert((UseAVX > 0), "shouldn't have VEX prefix");
|
|
NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
|
|
return 3;
|
|
}
|
|
|
|
// First check to see if we have a (prefixed or not) xor
|
|
if (instr_0 >= instruction_prefix_wide_lo && // 0x40
|
|
instr_0 <= instruction_prefix_wide_hi) { // 0x4f
|
|
off++;
|
|
instr_0 = ubyte_at(off);
|
|
}
|
|
|
|
if (instr_0 == instruction_code_xor) {
|
|
off += 2;
|
|
instr_0 = ubyte_at(off);
|
|
}
|
|
|
|
// Now look for the real instruction and the many prefix/size specifiers.
|
|
|
|
if (instr_0 == instruction_operandsize_prefix ) { // 0x66
|
|
off++; // Not SSE instructions
|
|
instr_0 = ubyte_at(off);
|
|
}
|
|
|
|
if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
|
|
instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
|
|
off++;
|
|
instr_0 = ubyte_at(off);
|
|
}
|
|
|
|
if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
|
|
instr_0 <= instruction_prefix_wide_hi) { // 0x4f
|
|
off++;
|
|
instr_0 = ubyte_at(off);
|
|
}
|
|
|
|
|
|
if (instr_0 == instruction_extended_prefix ) { // 0x0f
|
|
off++;
|
|
}
|
|
|
|
return off;
|
|
}
|
|
|
|
address NativeMovRegMem::instruction_address() const {
|
|
return addr_at(instruction_start());
|
|
}
|
|
|
|
address NativeMovRegMem::next_instruction_address() const {
|
|
address ret = instruction_address() + instruction_size;
|
|
u_char instr_0 = *(u_char*) instruction_address();
|
|
switch (instr_0) {
|
|
case instruction_operandsize_prefix:
|
|
|
|
fatal("should have skipped instruction_operandsize_prefix");
|
|
break;
|
|
|
|
case instruction_extended_prefix:
|
|
fatal("should have skipped instruction_extended_prefix");
|
|
break;
|
|
|
|
case instruction_code_mem2reg_movslq: // 0x63
|
|
case instruction_code_mem2reg_movzxb: // 0xB6
|
|
case instruction_code_mem2reg_movsxb: // 0xBE
|
|
case instruction_code_mem2reg_movzxw: // 0xB7
|
|
case instruction_code_mem2reg_movsxw: // 0xBF
|
|
case instruction_code_reg2mem: // 0x89 (q/l)
|
|
case instruction_code_mem2reg: // 0x8B (q/l)
|
|
case instruction_code_reg2memb: // 0x88
|
|
case instruction_code_mem2regb: // 0x8a
|
|
|
|
case instruction_code_float_s: // 0xd9 fld_s a
|
|
case instruction_code_float_d: // 0xdd fld_d a
|
|
|
|
case instruction_code_xmm_load: // 0x10
|
|
case instruction_code_xmm_store: // 0x11
|
|
case instruction_code_xmm_lpd: // 0x12
|
|
{
|
|
// If there is an SIB then instruction is longer than expected
|
|
u_char mod_rm = *(u_char*)(instruction_address() + 1);
|
|
if ((mod_rm & 7) == 0x4) {
|
|
ret++;
|
|
}
|
|
}
|
|
case instruction_code_xor:
|
|
fatal("should have skipped xor lead in");
|
|
break;
|
|
|
|
default:
|
|
fatal("not a NativeMovRegMem");
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
int NativeMovRegMem::offset() const{
|
|
int off = data_offset + instruction_start();
|
|
u_char mod_rm = *(u_char*)(instruction_address() + 1);
|
|
// nnnn(r12|rsp) isn't coded as simple mod/rm since that is
|
|
// the encoding to use an SIB byte. Which will have the nnnn
|
|
// field off by one byte
|
|
if ((mod_rm & 7) == 0x4) {
|
|
off++;
|
|
}
|
|
return int_at(off);
|
|
}
|
|
|
|
void NativeMovRegMem::set_offset(int x) {
|
|
int off = data_offset + instruction_start();
|
|
u_char mod_rm = *(u_char*)(instruction_address() + 1);
|
|
// nnnn(r12|rsp) isn't coded as simple mod/rm since that is
|
|
// the encoding to use an SIB byte. Which will have the nnnn
|
|
// field off by one byte
|
|
if ((mod_rm & 7) == 0x4) {
|
|
off++;
|
|
}
|
|
set_int_at(off, x);
|
|
}
|
|
|
|
void NativeMovRegMem::verify() {
|
|
// make sure code pattern is actually a mov [reg+offset], reg instruction
|
|
u_char test_byte = *(u_char*)instruction_address();
|
|
switch (test_byte) {
|
|
case instruction_code_reg2memb: // 0x88 movb a, r
|
|
case instruction_code_reg2mem: // 0x89 movl a, r (can be movq in 64bit)
|
|
case instruction_code_mem2regb: // 0x8a movb r, a
|
|
case instruction_code_mem2reg: // 0x8b movl r, a (can be movq in 64bit)
|
|
break;
|
|
|
|
case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
|
|
case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
|
|
case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
|
|
case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
|
|
case instruction_code_mem2reg_movsxw: // 0xbf movswl r, a (movsxw)
|
|
break;
|
|
|
|
case instruction_code_float_s: // 0xd9 fld_s a
|
|
case instruction_code_float_d: // 0xdd fld_d a
|
|
case instruction_code_xmm_load: // 0x10 movsd xmm, a
|
|
case instruction_code_xmm_store: // 0x11 movsd a, xmm
|
|
case instruction_code_xmm_lpd: // 0x12 movlpd xmm, a
|
|
break;
|
|
|
|
default:
|
|
fatal ("not a mov [reg+offs], reg instruction");
|
|
}
|
|
}
|
|
|
|
|
|
void NativeMovRegMem::print() {
|
|
tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
|
|
}
|
|
|
|
//-------------------------------------------------------------------
|
|
|
|
void NativeLoadAddress::verify() {
|
|
// make sure code pattern is actually a mov [reg+offset], reg instruction
|
|
u_char test_byte = *(u_char*)instruction_address();
|
|
#ifdef _LP64
|
|
if ( (test_byte == instruction_prefix_wide ||
|
|
test_byte == instruction_prefix_wide_extended) ) {
|
|
test_byte = *(u_char*)(instruction_address() + 1);
|
|
}
|
|
#endif // _LP64
|
|
if ( ! ((test_byte == lea_instruction_code)
|
|
LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
|
|
fatal ("not a lea reg, [reg+offs] instruction");
|
|
}
|
|
}
|
|
|
|
|
|
void NativeLoadAddress::print() {
|
|
tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
|
|
void NativeJump::verify() {
|
|
if (*(u_char*)instruction_address() != instruction_code) {
|
|
fatal("not a jump instruction");
|
|
}
|
|
}
|
|
|
|
|
|
void NativeJump::insert(address code_pos, address entry) {
|
|
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
|
|
#ifdef AMD64
|
|
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
|
|
#endif // AMD64
|
|
|
|
*code_pos = instruction_code;
|
|
*((int32_t*)(code_pos + 1)) = (int32_t)disp;
|
|
|
|
ICache::invalidate_range(code_pos, instruction_size);
|
|
}
|
|
|
|
void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
|
|
// Patching to not_entrant can happen while activations of the method are
|
|
// in use. The patching in that instance must happen only when certain
|
|
// alignment restrictions are true. These guarantees check those
|
|
// conditions.
|
|
#ifdef AMD64
|
|
const int linesize = 64;
|
|
#else
|
|
const int linesize = 32;
|
|
#endif // AMD64
|
|
|
|
// Must be wordSize aligned
|
|
guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
|
|
"illegal address for code patching 2");
|
|
// First 5 bytes must be within the same cache line - 4827828
|
|
guarantee((uintptr_t) verified_entry / linesize ==
|
|
((uintptr_t) verified_entry + 4) / linesize,
|
|
"illegal address for code patching 3");
|
|
}
|
|
|
|
|
|
// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
|
|
// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
|
|
// First patches the first word atomically to be a jump to itself.
|
|
// Then patches the last byte and then atomically patches the first word (4-bytes),
|
|
// thus inserting the desired jump
|
|
// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
|
|
// entry point is in same cache line as unverified entry point, and the instruction being
|
|
// patched is >= 5 byte (size of patch).
|
|
//
|
|
// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
|
|
// In C1 the restriction is enforced by CodeEmitter::method_entry
|
|
//
|
|
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
|
|
// complete jump instruction (to be inserted) is in code_buffer;
|
|
unsigned char code_buffer[5];
|
|
code_buffer[0] = instruction_code;
|
|
intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
|
|
#ifdef AMD64
|
|
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
|
|
#endif // AMD64
|
|
*(int32_t*)(code_buffer + 1) = (int32_t)disp;
|
|
|
|
check_verified_entry_alignment(entry, verified_entry);
|
|
|
|
// Can't call nativeJump_at() because it's asserts jump exists
|
|
NativeJump* n_jump = (NativeJump*) verified_entry;
|
|
|
|
//First patch dummy jmp in place
|
|
|
|
unsigned char patch[4];
|
|
assert(sizeof(patch)==sizeof(int32_t), "sanity check");
|
|
patch[0] = 0xEB; // jmp rel8
|
|
patch[1] = 0xFE; // jmp to self
|
|
patch[2] = 0xEB;
|
|
patch[3] = 0xFE;
|
|
|
|
// First patch dummy jmp in place
|
|
*(int32_t*)verified_entry = *(int32_t *)patch;
|
|
|
|
n_jump->wrote(0);
|
|
|
|
// Patch 5th byte (from jump instruction)
|
|
verified_entry[4] = code_buffer[4];
|
|
|
|
n_jump->wrote(4);
|
|
|
|
// Patch bytes 0-3 (from jump instruction)
|
|
*(int32_t*)verified_entry = *(int32_t *)code_buffer;
|
|
// Invalidate. Opteron requires a flush after every write.
|
|
n_jump->wrote(0);
|
|
|
|
}
|
|
|
|
void NativePopReg::insert(address code_pos, Register reg) {
|
|
assert(reg->encoding() < 8, "no space for REX");
|
|
assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
|
|
*code_pos = (u_char)(instruction_code | reg->encoding());
|
|
ICache::invalidate_range(code_pos, instruction_size);
|
|
}
|
|
|
|
|
|
void NativeIllegalInstruction::insert(address code_pos) {
|
|
assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
|
|
*(short *)code_pos = instruction_code;
|
|
ICache::invalidate_range(code_pos, instruction_size);
|
|
}
|
|
|
|
void NativeGeneralJump::verify() {
|
|
assert(((NativeInstruction *)this)->is_jump() ||
|
|
((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
|
|
}
|
|
|
|
|
|
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
|
|
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
|
|
#ifdef AMD64
|
|
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
|
|
#endif // AMD64
|
|
|
|
*code_pos = unconditional_long_jump;
|
|
*((int32_t *)(code_pos+1)) = (int32_t) disp;
|
|
ICache::invalidate_range(code_pos, instruction_size);
|
|
}
|
|
|
|
|
|
// MT-safe patching of a long jump instruction.
|
|
// First patches first word of instruction to two jmp's that jmps to them
|
|
// selfs (spinlock). Then patches the last byte, and then atomicly replaces
|
|
// the jmp's with the first 4 byte of the new instruction.
|
|
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
|
|
assert (instr_addr != NULL, "illegal address for code patching (4)");
|
|
NativeGeneralJump* n_jump = nativeGeneralJump_at (instr_addr); // checking that it is a jump
|
|
|
|
// Temporary code
|
|
unsigned char patch[4];
|
|
assert(sizeof(patch)==sizeof(int32_t), "sanity check");
|
|
patch[0] = 0xEB; // jmp rel8
|
|
patch[1] = 0xFE; // jmp to self
|
|
patch[2] = 0xEB;
|
|
patch[3] = 0xFE;
|
|
|
|
// First patch dummy jmp in place
|
|
*(int32_t*)instr_addr = *(int32_t *)patch;
|
|
n_jump->wrote(0);
|
|
|
|
// Patch 4th byte
|
|
instr_addr[4] = code_buffer[4];
|
|
|
|
n_jump->wrote(4);
|
|
|
|
// Patch bytes 0-3
|
|
*(jint*)instr_addr = *(jint *)code_buffer;
|
|
|
|
n_jump->wrote(0);
|
|
|
|
#ifdef ASSERT
|
|
// verify patching
|
|
for ( int i = 0; i < instruction_size; i++) {
|
|
address ptr = (address)((intptr_t)code_buffer + i);
|
|
int a_byte = (*ptr) & 0xFF;
|
|
assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
address NativeGeneralJump::jump_destination() const {
|
|
int op_code = ubyte_at(0);
|
|
bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
|
|
int offset = (op_code == 0x0F) ? 2 : 1;
|
|
int length = offset + ((is_rel32off) ? 4 : 1);
|
|
|
|
if (is_rel32off)
|
|
return addr_at(0) + length + int_at(offset);
|
|
else
|
|
return addr_at(0) + length + sbyte_at(offset);
|
|
}
|