eb85b8da32
Reviewed-by: chagedorn, kvn
4699 lines
163 KiB
C++
4699 lines
163 KiB
C++
/*
|
|
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "ci/ciReplay.hpp"
|
|
#include "classfile/javaClasses.hpp"
|
|
#include "code/exceptionHandlerTable.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "compiler/oopMap.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/c2/barrierSetC2.hpp"
|
|
#include "jfr/jfrEvents.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/c2compiler.hpp"
|
|
#include "opto/callGenerator.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/castnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/divnode.hpp"
|
|
#include "opto/escape.hpp"
|
|
#include "opto/idealGraphPrinter.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/macro.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/mathexactnode.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/narrowptrnode.hpp"
|
|
#include "opto/node.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/output.hpp"
|
|
#include "opto/parse.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/stringopts.hpp"
|
|
#include "opto/type.hpp"
|
|
#include "opto/vector.hpp"
|
|
#include "opto/vectornode.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/signature.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/resourceHash.hpp"
|
|
|
|
|
|
// -------------------- Compile::mach_constant_base_node -----------------------
|
|
// Constant table base node singleton.
|
|
MachConstantBaseNode* Compile::mach_constant_base_node() {
|
|
if (_mach_constant_base_node == NULL) {
|
|
_mach_constant_base_node = new MachConstantBaseNode();
|
|
_mach_constant_base_node->add_req(C->root());
|
|
}
|
|
return _mach_constant_base_node;
|
|
}
|
|
|
|
|
|
/// Support for intrinsics.
|
|
|
|
// Return the index at which m must be inserted (or already exists).
|
|
// The sort order is by the address of the ciMethod, with is_virtual as minor key.
|
|
class IntrinsicDescPair {
|
|
private:
|
|
ciMethod* _m;
|
|
bool _is_virtual;
|
|
public:
|
|
IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
|
|
static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
|
|
ciMethod* m= elt->method();
|
|
ciMethod* key_m = key->_m;
|
|
if (key_m < m) return -1;
|
|
else if (key_m > m) return 1;
|
|
else {
|
|
bool is_virtual = elt->is_virtual();
|
|
bool key_virtual = key->_is_virtual;
|
|
if (key_virtual < is_virtual) return -1;
|
|
else if (key_virtual > is_virtual) return 1;
|
|
else return 0;
|
|
}
|
|
}
|
|
};
|
|
int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
|
|
#ifdef ASSERT
|
|
for (int i = 1; i < _intrinsics.length(); i++) {
|
|
CallGenerator* cg1 = _intrinsics.at(i-1);
|
|
CallGenerator* cg2 = _intrinsics.at(i);
|
|
assert(cg1->method() != cg2->method()
|
|
? cg1->method() < cg2->method()
|
|
: cg1->is_virtual() < cg2->is_virtual(),
|
|
"compiler intrinsics list must stay sorted");
|
|
}
|
|
#endif
|
|
IntrinsicDescPair pair(m, is_virtual);
|
|
return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
|
|
}
|
|
|
|
void Compile::register_intrinsic(CallGenerator* cg) {
|
|
bool found = false;
|
|
int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
|
|
assert(!found, "registering twice");
|
|
_intrinsics.insert_before(index, cg);
|
|
assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
|
|
}
|
|
|
|
CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
|
|
assert(m->is_loaded(), "don't try this on unloaded methods");
|
|
if (_intrinsics.length() > 0) {
|
|
bool found = false;
|
|
int index = intrinsic_insertion_index(m, is_virtual, found);
|
|
if (found) {
|
|
return _intrinsics.at(index);
|
|
}
|
|
}
|
|
// Lazily create intrinsics for intrinsic IDs well-known in the runtime.
|
|
if (m->intrinsic_id() != vmIntrinsics::_none &&
|
|
m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
|
|
CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
|
|
if (cg != NULL) {
|
|
// Save it for next time:
|
|
register_intrinsic(cg);
|
|
return cg;
|
|
} else {
|
|
gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Compile::make_vm_intrinsic is defined in library_call.cpp.
|
|
|
|
#ifndef PRODUCT
|
|
// statistics gathering...
|
|
|
|
juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
|
|
jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
|
|
|
|
bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
|
|
assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
|
|
int oflags = _intrinsic_hist_flags[id];
|
|
assert(flags != 0, "what happened?");
|
|
if (is_virtual) {
|
|
flags |= _intrinsic_virtual;
|
|
}
|
|
bool changed = (flags != oflags);
|
|
if ((flags & _intrinsic_worked) != 0) {
|
|
juint count = (_intrinsic_hist_count[id] += 1);
|
|
if (count == 1) {
|
|
changed = true; // first time
|
|
}
|
|
// increment the overall count also:
|
|
_intrinsic_hist_count[vmIntrinsics::_none] += 1;
|
|
}
|
|
if (changed) {
|
|
if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
|
|
// Something changed about the intrinsic's virtuality.
|
|
if ((flags & _intrinsic_virtual) != 0) {
|
|
// This is the first use of this intrinsic as a virtual call.
|
|
if (oflags != 0) {
|
|
// We already saw it as a non-virtual, so note both cases.
|
|
flags |= _intrinsic_both;
|
|
}
|
|
} else if ((oflags & _intrinsic_both) == 0) {
|
|
// This is the first use of this intrinsic as a non-virtual
|
|
flags |= _intrinsic_both;
|
|
}
|
|
}
|
|
_intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
|
|
}
|
|
// update the overall flags also:
|
|
_intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
|
|
return changed;
|
|
}
|
|
|
|
static char* format_flags(int flags, char* buf) {
|
|
buf[0] = 0;
|
|
if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
|
|
if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
|
|
if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
|
|
if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
|
|
if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
|
|
if (buf[0] == 0) strcat(buf, ",");
|
|
assert(buf[0] == ',', "must be");
|
|
return &buf[1];
|
|
}
|
|
|
|
void Compile::print_intrinsic_statistics() {
|
|
char flagsbuf[100];
|
|
ttyLocker ttyl;
|
|
if (xtty != NULL) xtty->head("statistics type='intrinsic'");
|
|
tty->print_cr("Compiler intrinsic usage:");
|
|
juint total = _intrinsic_hist_count[vmIntrinsics::_none];
|
|
if (total == 0) total = 1; // avoid div0 in case of no successes
|
|
#define PRINT_STAT_LINE(name, c, f) \
|
|
tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
|
|
for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
|
|
vmIntrinsics::ID id = (vmIntrinsics::ID) index;
|
|
int flags = _intrinsic_hist_flags[id];
|
|
juint count = _intrinsic_hist_count[id];
|
|
if ((flags | count) != 0) {
|
|
PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
|
|
}
|
|
}
|
|
PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
|
|
if (xtty != NULL) xtty->tail("statistics");
|
|
}
|
|
|
|
void Compile::print_statistics() {
|
|
{ ttyLocker ttyl;
|
|
if (xtty != NULL) xtty->head("statistics type='opto'");
|
|
Parse::print_statistics();
|
|
PhaseCCP::print_statistics();
|
|
PhaseRegAlloc::print_statistics();
|
|
PhaseOutput::print_statistics();
|
|
PhasePeephole::print_statistics();
|
|
PhaseIdealLoop::print_statistics();
|
|
if (xtty != NULL) xtty->tail("statistics");
|
|
}
|
|
if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
|
|
// put this under its own <statistics> element.
|
|
print_intrinsic_statistics();
|
|
}
|
|
}
|
|
#endif //PRODUCT
|
|
|
|
void Compile::gvn_replace_by(Node* n, Node* nn) {
|
|
for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
|
|
Node* use = n->last_out(i);
|
|
bool is_in_table = initial_gvn()->hash_delete(use);
|
|
uint uses_found = 0;
|
|
for (uint j = 0; j < use->len(); j++) {
|
|
if (use->in(j) == n) {
|
|
if (j < use->req())
|
|
use->set_req(j, nn);
|
|
else
|
|
use->set_prec(j, nn);
|
|
uses_found++;
|
|
}
|
|
}
|
|
if (is_in_table) {
|
|
// reinsert into table
|
|
initial_gvn()->hash_find_insert(use);
|
|
}
|
|
record_for_igvn(use);
|
|
i -= uses_found; // we deleted 1 or more copies of this edge
|
|
}
|
|
}
|
|
|
|
|
|
static inline bool not_a_node(const Node* n) {
|
|
if (n == NULL) return true;
|
|
if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
|
|
if (*(address*)n == badAddress) return true; // kill by Node::destruct
|
|
return false;
|
|
}
|
|
|
|
// Identify all nodes that are reachable from below, useful.
|
|
// Use breadth-first pass that records state in a Unique_Node_List,
|
|
// recursive traversal is slower.
|
|
void Compile::identify_useful_nodes(Unique_Node_List &useful) {
|
|
int estimated_worklist_size = live_nodes();
|
|
useful.map( estimated_worklist_size, NULL ); // preallocate space
|
|
|
|
// Initialize worklist
|
|
if (root() != NULL) { useful.push(root()); }
|
|
// If 'top' is cached, declare it useful to preserve cached node
|
|
if( cached_top_node() ) { useful.push(cached_top_node()); }
|
|
|
|
// Push all useful nodes onto the list, breadthfirst
|
|
for( uint next = 0; next < useful.size(); ++next ) {
|
|
assert( next < unique(), "Unique useful nodes < total nodes");
|
|
Node *n = useful.at(next);
|
|
uint max = n->len();
|
|
for( uint i = 0; i < max; ++i ) {
|
|
Node *m = n->in(i);
|
|
if (not_a_node(m)) continue;
|
|
useful.push(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update dead_node_list with any missing dead nodes using useful
|
|
// list. Consider all non-useful nodes to be useless i.e., dead nodes.
|
|
void Compile::update_dead_node_list(Unique_Node_List &useful) {
|
|
uint max_idx = unique();
|
|
VectorSet& useful_node_set = useful.member_set();
|
|
|
|
for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
|
|
// If node with index node_idx is not in useful set,
|
|
// mark it as dead in dead node list.
|
|
if (!useful_node_set.test(node_idx)) {
|
|
record_dead_node(node_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
|
|
int shift = 0;
|
|
for (int i = 0; i < inlines->length(); i++) {
|
|
CallGenerator* cg = inlines->at(i);
|
|
CallNode* call = cg->call_node();
|
|
if (shift > 0) {
|
|
inlines->at_put(i-shift, cg);
|
|
}
|
|
if (!useful.member(call)) {
|
|
shift++;
|
|
}
|
|
}
|
|
inlines->trunc_to(inlines->length()-shift);
|
|
}
|
|
|
|
void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) {
|
|
for (int i = node_list.length() - 1; i >= 0; i--) {
|
|
Node* n = node_list.at(i);
|
|
if (!useful.member(n)) {
|
|
node_list.remove_if_existing(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Disconnect all useless nodes by disconnecting those at the boundary.
|
|
void Compile::remove_useless_nodes(Unique_Node_List &useful) {
|
|
uint next = 0;
|
|
while (next < useful.size()) {
|
|
Node *n = useful.at(next++);
|
|
if (n->is_SafePoint()) {
|
|
// We're done with a parsing phase. Replaced nodes are not valid
|
|
// beyond that point.
|
|
n->as_SafePoint()->delete_replaced_nodes();
|
|
}
|
|
// Use raw traversal of out edges since this code removes out edges
|
|
int max = n->outcnt();
|
|
for (int j = 0; j < max; ++j) {
|
|
Node* child = n->raw_out(j);
|
|
if (!useful.member(child)) {
|
|
assert(!child->is_top() || child != top(),
|
|
"If top is cached in Compile object it is in useful list");
|
|
// Only need to remove this out-edge to the useless node
|
|
n->raw_del_out(j);
|
|
--j;
|
|
--max;
|
|
}
|
|
}
|
|
if (n->outcnt() == 1 && n->has_special_unique_user()) {
|
|
record_for_igvn(n->unique_out());
|
|
}
|
|
}
|
|
|
|
remove_useless_nodes(_macro_nodes, useful); // remove useless macro and predicate opaq nodes
|
|
remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes
|
|
remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
|
|
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
bs->eliminate_useless_gc_barriers(useful, this);
|
|
// clean up the late inline lists
|
|
remove_useless_late_inlines(&_string_late_inlines, useful);
|
|
remove_useless_late_inlines(&_boxing_late_inlines, useful);
|
|
remove_useless_late_inlines(&_late_inlines, useful);
|
|
remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
|
|
debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
|
|
}
|
|
|
|
// ============================================================================
|
|
//------------------------------CompileWrapper---------------------------------
|
|
class CompileWrapper : public StackObj {
|
|
Compile *const _compile;
|
|
public:
|
|
CompileWrapper(Compile* compile);
|
|
|
|
~CompileWrapper();
|
|
};
|
|
|
|
CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
|
|
// the Compile* pointer is stored in the current ciEnv:
|
|
ciEnv* env = compile->env();
|
|
assert(env == ciEnv::current(), "must already be a ciEnv active");
|
|
assert(env->compiler_data() == NULL, "compile already active?");
|
|
env->set_compiler_data(compile);
|
|
assert(compile == Compile::current(), "sanity");
|
|
|
|
compile->set_type_dict(NULL);
|
|
compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
|
|
compile->clone_map().set_clone_idx(0);
|
|
compile->set_type_last_size(0);
|
|
compile->set_last_tf(NULL, NULL);
|
|
compile->set_indexSet_arena(NULL);
|
|
compile->set_indexSet_free_block_list(NULL);
|
|
compile->init_type_arena();
|
|
Type::Initialize(compile);
|
|
_compile->begin_method();
|
|
_compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
|
|
}
|
|
CompileWrapper::~CompileWrapper() {
|
|
_compile->end_method();
|
|
_compile->env()->set_compiler_data(NULL);
|
|
}
|
|
|
|
|
|
//----------------------------print_compile_messages---------------------------
|
|
void Compile::print_compile_messages() {
|
|
#ifndef PRODUCT
|
|
// Check if recompiling
|
|
if (_subsume_loads == false && PrintOpto) {
|
|
// Recompiling without allowing machine instructions to subsume loads
|
|
tty->print_cr("*********************************************************");
|
|
tty->print_cr("** Bailout: Recompile without subsuming loads **");
|
|
tty->print_cr("*********************************************************");
|
|
}
|
|
if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
|
|
// Recompiling without escape analysis
|
|
tty->print_cr("*********************************************************");
|
|
tty->print_cr("** Bailout: Recompile without escape analysis **");
|
|
tty->print_cr("*********************************************************");
|
|
}
|
|
if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
|
|
// Recompiling without boxing elimination
|
|
tty->print_cr("*********************************************************");
|
|
tty->print_cr("** Bailout: Recompile without boxing elimination **");
|
|
tty->print_cr("*********************************************************");
|
|
}
|
|
if (C->directive()->BreakAtCompileOption) {
|
|
// Open the debugger when compiling this method.
|
|
tty->print("### Breaking when compiling: ");
|
|
method()->print_short_name();
|
|
tty->cr();
|
|
BREAKPOINT;
|
|
}
|
|
|
|
if( PrintOpto ) {
|
|
if (is_osr_compilation()) {
|
|
tty->print("[OSR]%3d", _compile_id);
|
|
} else {
|
|
tty->print("%3d", _compile_id);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// ============================================================================
|
|
//------------------------------Compile standard-------------------------------
|
|
debug_only( int Compile::_debug_idx = 100000; )
|
|
|
|
// Compile a method. entry_bci is -1 for normal compilations and indicates
|
|
// the continuation bci for on stack replacement.
|
|
|
|
|
|
Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
|
|
bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, bool install_code, DirectiveSet* directive)
|
|
: Phase(Compiler),
|
|
_compile_id(ci_env->compile_id()),
|
|
_save_argument_registers(false),
|
|
_subsume_loads(subsume_loads),
|
|
_do_escape_analysis(do_escape_analysis),
|
|
_install_code(install_code),
|
|
_eliminate_boxing(eliminate_boxing),
|
|
_method(target),
|
|
_entry_bci(osr_bci),
|
|
_stub_function(NULL),
|
|
_stub_name(NULL),
|
|
_stub_entry_point(NULL),
|
|
_max_node_limit(MaxNodeLimit),
|
|
_post_loop_opts_phase(false),
|
|
_inlining_progress(false),
|
|
_inlining_incrementally(false),
|
|
_do_cleanup(false),
|
|
_has_reserved_stack_access(target->has_reserved_stack_access()),
|
|
#ifndef PRODUCT
|
|
_trace_opto_output(directive->TraceOptoOutputOption),
|
|
_print_ideal(directive->PrintIdealOption),
|
|
#endif
|
|
_has_method_handle_invokes(false),
|
|
_clinit_barrier_on_entry(false),
|
|
_stress_seed(0),
|
|
_comp_arena(mtCompiler),
|
|
_barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
|
|
_env(ci_env),
|
|
_directive(directive),
|
|
_log(ci_env->log()),
|
|
_failure_reason(NULL),
|
|
_intrinsics (comp_arena(), 0, 0, NULL),
|
|
_macro_nodes (comp_arena(), 8, 0, NULL),
|
|
_predicate_opaqs (comp_arena(), 8, 0, NULL),
|
|
_expensive_nodes (comp_arena(), 8, 0, NULL),
|
|
_for_post_loop_igvn(comp_arena(), 8, 0, NULL),
|
|
_congraph(NULL),
|
|
NOT_PRODUCT(_printer(NULL) COMMA)
|
|
_dead_node_list(comp_arena()),
|
|
_dead_node_count(0),
|
|
_node_arena(mtCompiler),
|
|
_old_arena(mtCompiler),
|
|
_mach_constant_base_node(NULL),
|
|
_Compile_types(mtCompiler),
|
|
_initial_gvn(NULL),
|
|
_for_igvn(NULL),
|
|
_warm_calls(NULL),
|
|
_late_inlines(comp_arena(), 2, 0, NULL),
|
|
_string_late_inlines(comp_arena(), 2, 0, NULL),
|
|
_boxing_late_inlines(comp_arena(), 2, 0, NULL),
|
|
_vector_reboxing_late_inlines(comp_arena(), 2, 0, NULL),
|
|
_late_inlines_pos(0),
|
|
_number_of_mh_late_inlines(0),
|
|
_print_inlining_stream(NULL),
|
|
_print_inlining_list(NULL),
|
|
_print_inlining_idx(0),
|
|
_print_inlining_output(NULL),
|
|
_replay_inline_data(NULL),
|
|
_java_calls(0),
|
|
_inner_loops(0),
|
|
_interpreter_frame_size(0)
|
|
#ifndef PRODUCT
|
|
, _in_dump_cnt(0)
|
|
#endif
|
|
{
|
|
C = this;
|
|
CompileWrapper cw(this);
|
|
|
|
if (CITimeVerbose) {
|
|
tty->print(" ");
|
|
target->holder()->name()->print();
|
|
tty->print(".");
|
|
target->print_short_name();
|
|
tty->print(" ");
|
|
}
|
|
TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
|
|
TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
|
|
|
|
#if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
|
|
bool print_opto_assembly = directive->PrintOptoAssemblyOption;
|
|
// We can always print a disassembly, either abstract (hex dump) or
|
|
// with the help of a suitable hsdis library. Thus, we should not
|
|
// couple print_assembly and print_opto_assembly controls.
|
|
// But: always print opto and regular assembly on compile command 'print'.
|
|
bool print_assembly = directive->PrintAssemblyOption;
|
|
set_print_assembly(print_opto_assembly || print_assembly);
|
|
#else
|
|
set_print_assembly(false); // must initialize.
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
set_parsed_irreducible_loop(false);
|
|
|
|
if (directive->ReplayInlineOption) {
|
|
_replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
|
|
}
|
|
#endif
|
|
set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
|
|
set_print_intrinsics(directive->PrintIntrinsicsOption);
|
|
set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
|
|
|
|
if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
|
|
// Make sure the method being compiled gets its own MDO,
|
|
// so we can at least track the decompile_count().
|
|
// Need MDO to record RTM code generation state.
|
|
method()->ensure_method_data();
|
|
}
|
|
|
|
Init(::AliasLevel);
|
|
|
|
|
|
print_compile_messages();
|
|
|
|
_ilt = InlineTree::build_inline_tree_root();
|
|
|
|
// Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
|
|
assert(num_alias_types() >= AliasIdxRaw, "");
|
|
|
|
#define MINIMUM_NODE_HASH 1023
|
|
// Node list that Iterative GVN will start with
|
|
Unique_Node_List for_igvn(comp_arena());
|
|
set_for_igvn(&for_igvn);
|
|
|
|
// GVN that will be run immediately on new nodes
|
|
uint estimated_size = method()->code_size()*4+64;
|
|
estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
|
|
PhaseGVN gvn(node_arena(), estimated_size);
|
|
set_initial_gvn(&gvn);
|
|
|
|
print_inlining_init();
|
|
{ // Scope for timing the parser
|
|
TracePhase tp("parse", &timers[_t_parser]);
|
|
|
|
// Put top into the hash table ASAP.
|
|
initial_gvn()->transform_no_reclaim(top());
|
|
|
|
// Set up tf(), start(), and find a CallGenerator.
|
|
CallGenerator* cg = NULL;
|
|
if (is_osr_compilation()) {
|
|
const TypeTuple *domain = StartOSRNode::osr_domain();
|
|
const TypeTuple *range = TypeTuple::make_range(method()->signature());
|
|
init_tf(TypeFunc::make(domain, range));
|
|
StartNode* s = new StartOSRNode(root(), domain);
|
|
initial_gvn()->set_type_bottom(s);
|
|
init_start(s);
|
|
cg = CallGenerator::for_osr(method(), entry_bci());
|
|
} else {
|
|
// Normal case.
|
|
init_tf(TypeFunc::make(method()));
|
|
StartNode* s = new StartNode(root(), tf()->domain());
|
|
initial_gvn()->set_type_bottom(s);
|
|
init_start(s);
|
|
if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
|
|
// With java.lang.ref.reference.get() we must go through the
|
|
// intrinsic - even when get() is the root
|
|
// method of the compile - so that, if necessary, the value in
|
|
// the referent field of the reference object gets recorded by
|
|
// the pre-barrier code.
|
|
cg = find_intrinsic(method(), false);
|
|
}
|
|
if (cg == NULL) {
|
|
float past_uses = method()->interpreter_invocation_count();
|
|
float expected_uses = past_uses;
|
|
cg = CallGenerator::for_inline(method(), expected_uses);
|
|
}
|
|
}
|
|
if (failing()) return;
|
|
if (cg == NULL) {
|
|
record_method_not_compilable("cannot parse method");
|
|
return;
|
|
}
|
|
JVMState* jvms = build_start_state(start(), tf());
|
|
if ((jvms = cg->generate(jvms)) == NULL) {
|
|
if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
|
|
record_method_not_compilable("method parse failed");
|
|
}
|
|
return;
|
|
}
|
|
GraphKit kit(jvms);
|
|
|
|
if (!kit.stopped()) {
|
|
// Accept return values, and transfer control we know not where.
|
|
// This is done by a special, unique ReturnNode bound to root.
|
|
return_values(kit.jvms());
|
|
}
|
|
|
|
if (kit.has_exceptions()) {
|
|
// Any exceptions that escape from this call must be rethrown
|
|
// to whatever caller is dynamically above us on the stack.
|
|
// This is done by a special, unique RethrowNode bound to root.
|
|
rethrow_exceptions(kit.transfer_exceptions_into_jvms());
|
|
}
|
|
|
|
assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
|
|
|
|
if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
|
|
inline_string_calls(true);
|
|
}
|
|
|
|
if (failing()) return;
|
|
|
|
print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
|
|
|
|
// Remove clutter produced by parsing.
|
|
if (!failing()) {
|
|
ResourceMark rm;
|
|
PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
|
|
}
|
|
}
|
|
|
|
// Note: Large methods are capped off in do_one_bytecode().
|
|
if (failing()) return;
|
|
|
|
// After parsing, node notes are no longer automagic.
|
|
// They must be propagated by register_new_node_with_optimizer(),
|
|
// clone(), or the like.
|
|
set_default_node_notes(NULL);
|
|
|
|
for (;;) {
|
|
int successes = Inline_Warm();
|
|
if (failing()) return;
|
|
if (successes == 0) break;
|
|
}
|
|
|
|
// Drain the list.
|
|
Finish_Warm();
|
|
#ifndef PRODUCT
|
|
if (should_print(1)) {
|
|
_printer->print_inlining();
|
|
}
|
|
#endif
|
|
|
|
if (failing()) return;
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
|
|
// If LCM, GCM, or IGVN are randomized for stress testing, seed
|
|
// random number generation and log the seed for repeatability.
|
|
if (StressLCM || StressGCM || StressIGVN) {
|
|
_stress_seed = FLAG_IS_DEFAULT(StressSeed) ?
|
|
static_cast<uint>(Ticks::now().nanoseconds()) : StressSeed;
|
|
if (_log != NULL) {
|
|
_log->elem("stress_test seed='%u'", _stress_seed);
|
|
} else if (FLAG_IS_DEFAULT(StressSeed)) {
|
|
tty->print_cr("Warning: set +LogCompilation to log the seed.");
|
|
}
|
|
}
|
|
|
|
// Now optimize
|
|
Optimize();
|
|
if (failing()) return;
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
|
|
#ifndef PRODUCT
|
|
if (print_ideal()) {
|
|
ttyLocker ttyl; // keep the following output all in one block
|
|
// This output goes directly to the tty, not the compiler log.
|
|
// To enable tools to match it up with the compilation activity,
|
|
// be sure to tag this tty output with the compile ID.
|
|
if (xtty != NULL) {
|
|
xtty->head("ideal compile_id='%d'%s", compile_id(),
|
|
is_osr_compilation() ? " compile_kind='osr'" :
|
|
"");
|
|
}
|
|
root()->dump(9999);
|
|
if (xtty != NULL) {
|
|
xtty->tail("ideal");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
|
|
#endif
|
|
|
|
// Dump compilation data to replay it.
|
|
if (directive->DumpReplayOption) {
|
|
env()->dump_replay_data(_compile_id);
|
|
}
|
|
if (directive->DumpInlineOption && (ilt() != NULL)) {
|
|
env()->dump_inline_data(_compile_id);
|
|
}
|
|
|
|
// Now that we know the size of all the monitors we can add a fixed slot
|
|
// for the original deopt pc.
|
|
int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
|
|
set_fixed_slots(next_slot);
|
|
|
|
// Compute when to use implicit null checks. Used by matching trap based
|
|
// nodes and NullCheck optimization.
|
|
set_allowed_deopt_reasons();
|
|
|
|
// Now generate code
|
|
Code_Gen();
|
|
}
|
|
|
|
//------------------------------Compile----------------------------------------
|
|
// Compile a runtime stub
|
|
Compile::Compile( ciEnv* ci_env,
|
|
TypeFunc_generator generator,
|
|
address stub_function,
|
|
const char *stub_name,
|
|
int is_fancy_jump,
|
|
bool pass_tls,
|
|
bool save_arg_registers,
|
|
bool return_pc,
|
|
DirectiveSet* directive)
|
|
: Phase(Compiler),
|
|
_compile_id(0),
|
|
_save_argument_registers(save_arg_registers),
|
|
_subsume_loads(true),
|
|
_do_escape_analysis(false),
|
|
_install_code(true),
|
|
_eliminate_boxing(false),
|
|
_method(NULL),
|
|
_entry_bci(InvocationEntryBci),
|
|
_stub_function(stub_function),
|
|
_stub_name(stub_name),
|
|
_stub_entry_point(NULL),
|
|
_max_node_limit(MaxNodeLimit),
|
|
_post_loop_opts_phase(false),
|
|
_inlining_progress(false),
|
|
_inlining_incrementally(false),
|
|
_has_reserved_stack_access(false),
|
|
#ifndef PRODUCT
|
|
_trace_opto_output(directive->TraceOptoOutputOption),
|
|
_print_ideal(directive->PrintIdealOption),
|
|
#endif
|
|
_has_method_handle_invokes(false),
|
|
_clinit_barrier_on_entry(false),
|
|
_stress_seed(0),
|
|
_comp_arena(mtCompiler),
|
|
_barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
|
|
_env(ci_env),
|
|
_directive(directive),
|
|
_log(ci_env->log()),
|
|
_failure_reason(NULL),
|
|
_congraph(NULL),
|
|
NOT_PRODUCT(_printer(NULL) COMMA)
|
|
_dead_node_list(comp_arena()),
|
|
_dead_node_count(0),
|
|
_node_arena(mtCompiler),
|
|
_old_arena(mtCompiler),
|
|
_mach_constant_base_node(NULL),
|
|
_Compile_types(mtCompiler),
|
|
_initial_gvn(NULL),
|
|
_for_igvn(NULL),
|
|
_warm_calls(NULL),
|
|
_number_of_mh_late_inlines(0),
|
|
_print_inlining_stream(NULL),
|
|
_print_inlining_list(NULL),
|
|
_print_inlining_idx(0),
|
|
_print_inlining_output(NULL),
|
|
_replay_inline_data(NULL),
|
|
_java_calls(0),
|
|
_inner_loops(0),
|
|
_interpreter_frame_size(0),
|
|
#ifndef PRODUCT
|
|
_in_dump_cnt(0),
|
|
#endif
|
|
_allowed_reasons(0) {
|
|
C = this;
|
|
|
|
TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
|
|
TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
|
|
|
|
#ifndef PRODUCT
|
|
set_print_assembly(PrintFrameConverterAssembly);
|
|
set_parsed_irreducible_loop(false);
|
|
#else
|
|
set_print_assembly(false); // Must initialize.
|
|
#endif
|
|
set_has_irreducible_loop(false); // no loops
|
|
|
|
CompileWrapper cw(this);
|
|
Init(/*AliasLevel=*/ 0);
|
|
init_tf((*generator)());
|
|
|
|
{
|
|
// The following is a dummy for the sake of GraphKit::gen_stub
|
|
Unique_Node_List for_igvn(comp_arena());
|
|
set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
|
|
PhaseGVN gvn(Thread::current()->resource_area(),255);
|
|
set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
|
|
gvn.transform_no_reclaim(top());
|
|
|
|
GraphKit kit;
|
|
kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
|
|
}
|
|
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
|
|
Code_Gen();
|
|
}
|
|
|
|
//------------------------------Init-------------------------------------------
|
|
// Prepare for a single compilation
|
|
void Compile::Init(int aliaslevel) {
|
|
_unique = 0;
|
|
_regalloc = NULL;
|
|
|
|
_tf = NULL; // filled in later
|
|
_top = NULL; // cached later
|
|
_matcher = NULL; // filled in later
|
|
_cfg = NULL; // filled in later
|
|
|
|
IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
|
|
|
|
_node_note_array = NULL;
|
|
_default_node_notes = NULL;
|
|
DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
|
|
|
|
_immutable_memory = NULL; // filled in at first inquiry
|
|
|
|
// Globally visible Nodes
|
|
// First set TOP to NULL to give safe behavior during creation of RootNode
|
|
set_cached_top_node(NULL);
|
|
set_root(new RootNode());
|
|
// Now that you have a Root to point to, create the real TOP
|
|
set_cached_top_node( new ConNode(Type::TOP) );
|
|
set_recent_alloc(NULL, NULL);
|
|
|
|
// Create Debug Information Recorder to record scopes, oopmaps, etc.
|
|
env()->set_oop_recorder(new OopRecorder(env()->arena()));
|
|
env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
|
|
env()->set_dependencies(new Dependencies(env()));
|
|
|
|
_fixed_slots = 0;
|
|
set_has_split_ifs(false);
|
|
set_has_loops(false); // first approximation
|
|
set_has_stringbuilder(false);
|
|
set_has_boxed_value(false);
|
|
_trap_can_recompile = false; // no traps emitted yet
|
|
_major_progress = true; // start out assuming good things will happen
|
|
set_has_unsafe_access(false);
|
|
set_max_vector_size(0);
|
|
set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers
|
|
Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
|
|
set_decompile_count(0);
|
|
|
|
set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
|
|
_loop_opts_cnt = LoopOptsCount;
|
|
set_do_inlining(Inline);
|
|
set_max_inline_size(MaxInlineSize);
|
|
set_freq_inline_size(FreqInlineSize);
|
|
set_do_scheduling(OptoScheduling);
|
|
|
|
set_do_vector_loop(false);
|
|
|
|
if (AllowVectorizeOnDemand) {
|
|
if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
|
|
set_do_vector_loop(true);
|
|
NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());})
|
|
} else if (has_method() && method()->name() != 0 &&
|
|
method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
|
|
set_do_vector_loop(true);
|
|
}
|
|
}
|
|
set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
|
|
NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());})
|
|
|
|
set_age_code(has_method() && method()->profile_aging());
|
|
set_rtm_state(NoRTM); // No RTM lock eliding by default
|
|
_max_node_limit = _directive->MaxNodeLimitOption;
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
|
|
int rtm_state = method()->method_data()->rtm_state();
|
|
if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
|
|
// Don't generate RTM lock eliding code.
|
|
set_rtm_state(NoRTM);
|
|
} else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
|
|
// Generate RTM lock eliding code without abort ratio calculation code.
|
|
set_rtm_state(UseRTM);
|
|
} else if (UseRTMDeopt) {
|
|
// Generate RTM lock eliding code and include abort ratio calculation
|
|
// code if UseRTMDeopt is on.
|
|
set_rtm_state(ProfileRTM);
|
|
}
|
|
}
|
|
#endif
|
|
if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
|
|
set_clinit_barrier_on_entry(true);
|
|
}
|
|
if (debug_info()->recording_non_safepoints()) {
|
|
set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
|
|
(comp_arena(), 8, 0, NULL));
|
|
set_default_node_notes(Node_Notes::make(this));
|
|
}
|
|
|
|
// // -- Initialize types before each compile --
|
|
// // Update cached type information
|
|
// if( _method && _method->constants() )
|
|
// Type::update_loaded_types(_method, _method->constants());
|
|
|
|
// Init alias_type map.
|
|
if (!_do_escape_analysis && aliaslevel == 3)
|
|
aliaslevel = 2; // No unique types without escape analysis
|
|
_AliasLevel = aliaslevel;
|
|
const int grow_ats = 16;
|
|
_max_alias_types = grow_ats;
|
|
_alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
|
|
AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
|
|
Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
|
|
{
|
|
for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
|
|
}
|
|
// Initialize the first few types.
|
|
_alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
|
|
_alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
|
|
_alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
|
|
_num_alias_types = AliasIdxRaw+1;
|
|
// Zero out the alias type cache.
|
|
Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
|
|
// A NULL adr_type hits in the cache right away. Preload the right answer.
|
|
probe_alias_cache(NULL)->_index = AliasIdxTop;
|
|
|
|
#ifdef ASSERT
|
|
_type_verify_symmetry = true;
|
|
_phase_optimize_finished = false;
|
|
_exception_backedge = false;
|
|
#endif
|
|
}
|
|
|
|
//---------------------------init_start----------------------------------------
|
|
// Install the StartNode on this compile object.
|
|
void Compile::init_start(StartNode* s) {
|
|
if (failing())
|
|
return; // already failing
|
|
assert(s == start(), "");
|
|
}
|
|
|
|
/**
|
|
* Return the 'StartNode'. We must not have a pending failure, since the ideal graph
|
|
* can be in an inconsistent state, i.e., we can get segmentation faults when traversing
|
|
* the ideal graph.
|
|
*/
|
|
StartNode* Compile::start() const {
|
|
assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
|
|
for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
|
|
Node* start = root()->fast_out(i);
|
|
if (start->is_Start()) {
|
|
return start->as_Start();
|
|
}
|
|
}
|
|
fatal("Did not find Start node!");
|
|
return NULL;
|
|
}
|
|
|
|
//-------------------------------immutable_memory-------------------------------------
|
|
// Access immutable memory
|
|
Node* Compile::immutable_memory() {
|
|
if (_immutable_memory != NULL) {
|
|
return _immutable_memory;
|
|
}
|
|
StartNode* s = start();
|
|
for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
|
|
Node *p = s->fast_out(i);
|
|
if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
|
|
_immutable_memory = p;
|
|
return _immutable_memory;
|
|
}
|
|
}
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
//----------------------set_cached_top_node------------------------------------
|
|
// Install the cached top node, and make sure Node::is_top works correctly.
|
|
void Compile::set_cached_top_node(Node* tn) {
|
|
if (tn != NULL) verify_top(tn);
|
|
Node* old_top = _top;
|
|
_top = tn;
|
|
// Calling Node::setup_is_top allows the nodes the chance to adjust
|
|
// their _out arrays.
|
|
if (_top != NULL) _top->setup_is_top();
|
|
if (old_top != NULL) old_top->setup_is_top();
|
|
assert(_top == NULL || top()->is_top(), "");
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
uint Compile::count_live_nodes_by_graph_walk() {
|
|
Unique_Node_List useful(comp_arena());
|
|
// Get useful node list by walking the graph.
|
|
identify_useful_nodes(useful);
|
|
return useful.size();
|
|
}
|
|
|
|
void Compile::print_missing_nodes() {
|
|
|
|
// Return if CompileLog is NULL and PrintIdealNodeCount is false.
|
|
if ((_log == NULL) && (! PrintIdealNodeCount)) {
|
|
return;
|
|
}
|
|
|
|
// This is an expensive function. It is executed only when the user
|
|
// specifies VerifyIdealNodeCount option or otherwise knows the
|
|
// additional work that needs to be done to identify reachable nodes
|
|
// by walking the flow graph and find the missing ones using
|
|
// _dead_node_list.
|
|
|
|
Unique_Node_List useful(comp_arena());
|
|
// Get useful node list by walking the graph.
|
|
identify_useful_nodes(useful);
|
|
|
|
uint l_nodes = C->live_nodes();
|
|
uint l_nodes_by_walk = useful.size();
|
|
|
|
if (l_nodes != l_nodes_by_walk) {
|
|
if (_log != NULL) {
|
|
_log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
|
|
_log->stamp();
|
|
_log->end_head();
|
|
}
|
|
VectorSet& useful_member_set = useful.member_set();
|
|
int last_idx = l_nodes_by_walk;
|
|
for (int i = 0; i < last_idx; i++) {
|
|
if (useful_member_set.test(i)) {
|
|
if (_dead_node_list.test(i)) {
|
|
if (_log != NULL) {
|
|
_log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
|
|
}
|
|
if (PrintIdealNodeCount) {
|
|
// Print the log message to tty
|
|
tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
|
|
useful.at(i)->dump();
|
|
}
|
|
}
|
|
}
|
|
else if (! _dead_node_list.test(i)) {
|
|
if (_log != NULL) {
|
|
_log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
|
|
}
|
|
if (PrintIdealNodeCount) {
|
|
// Print the log message to tty
|
|
tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
|
|
}
|
|
}
|
|
}
|
|
if (_log != NULL) {
|
|
_log->tail("mismatched_nodes");
|
|
}
|
|
}
|
|
}
|
|
void Compile::record_modified_node(Node* n) {
|
|
if (_modified_nodes != NULL && !_inlining_incrementally && !n->is_Con()) {
|
|
_modified_nodes->push(n);
|
|
}
|
|
}
|
|
|
|
void Compile::remove_modified_node(Node* n) {
|
|
if (_modified_nodes != NULL) {
|
|
_modified_nodes->remove(n);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
void Compile::verify_top(Node* tn) const {
|
|
if (tn != NULL) {
|
|
assert(tn->is_Con(), "top node must be a constant");
|
|
assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
|
|
assert(tn->in(0) != NULL, "must have live top node");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
///-------------------Managing Per-Node Debug & Profile Info-------------------
|
|
|
|
void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
|
|
guarantee(arr != NULL, "");
|
|
int num_blocks = arr->length();
|
|
if (grow_by < num_blocks) grow_by = num_blocks;
|
|
int num_notes = grow_by * _node_notes_block_size;
|
|
Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
|
|
Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
|
|
while (num_notes > 0) {
|
|
arr->append(notes);
|
|
notes += _node_notes_block_size;
|
|
num_notes -= _node_notes_block_size;
|
|
}
|
|
assert(num_notes == 0, "exact multiple, please");
|
|
}
|
|
|
|
bool Compile::copy_node_notes_to(Node* dest, Node* source) {
|
|
if (source == NULL || dest == NULL) return false;
|
|
|
|
if (dest->is_Con())
|
|
return false; // Do not push debug info onto constants.
|
|
|
|
#ifdef ASSERT
|
|
// Leave a bread crumb trail pointing to the original node:
|
|
if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
|
|
dest->set_debug_orig(source);
|
|
}
|
|
#endif
|
|
|
|
if (node_note_array() == NULL)
|
|
return false; // Not collecting any notes now.
|
|
|
|
// This is a copy onto a pre-existing node, which may already have notes.
|
|
// If both nodes have notes, do not overwrite any pre-existing notes.
|
|
Node_Notes* source_notes = node_notes_at(source->_idx);
|
|
if (source_notes == NULL || source_notes->is_clear()) return false;
|
|
Node_Notes* dest_notes = node_notes_at(dest->_idx);
|
|
if (dest_notes == NULL || dest_notes->is_clear()) {
|
|
return set_node_notes_at(dest->_idx, source_notes);
|
|
}
|
|
|
|
Node_Notes merged_notes = (*source_notes);
|
|
// The order of operations here ensures that dest notes will win...
|
|
merged_notes.update_from(dest_notes);
|
|
return set_node_notes_at(dest->_idx, &merged_notes);
|
|
}
|
|
|
|
|
|
//--------------------------allow_range_check_smearing-------------------------
|
|
// Gating condition for coalescing similar range checks.
|
|
// Sometimes we try 'speculatively' replacing a series of a range checks by a
|
|
// single covering check that is at least as strong as any of them.
|
|
// If the optimization succeeds, the simplified (strengthened) range check
|
|
// will always succeed. If it fails, we will deopt, and then give up
|
|
// on the optimization.
|
|
bool Compile::allow_range_check_smearing() const {
|
|
// If this method has already thrown a range-check,
|
|
// assume it was because we already tried range smearing
|
|
// and it failed.
|
|
uint already_trapped = trap_count(Deoptimization::Reason_range_check);
|
|
return !already_trapped;
|
|
}
|
|
|
|
|
|
//------------------------------flatten_alias_type-----------------------------
|
|
const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
|
|
int offset = tj->offset();
|
|
TypePtr::PTR ptr = tj->ptr();
|
|
|
|
// Known instance (scalarizable allocation) alias only with itself.
|
|
bool is_known_inst = tj->isa_oopptr() != NULL &&
|
|
tj->is_oopptr()->is_known_instance();
|
|
|
|
// Process weird unsafe references.
|
|
if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
|
|
assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
|
|
assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
|
|
tj = TypeOopPtr::BOTTOM;
|
|
ptr = tj->ptr();
|
|
offset = tj->offset();
|
|
}
|
|
|
|
// Array pointers need some flattening
|
|
const TypeAryPtr *ta = tj->isa_aryptr();
|
|
if (ta && ta->is_stable()) {
|
|
// Erase stability property for alias analysis.
|
|
tj = ta = ta->cast_to_stable(false);
|
|
}
|
|
if( ta && is_known_inst ) {
|
|
if ( offset != Type::OffsetBot &&
|
|
offset > arrayOopDesc::length_offset_in_bytes() ) {
|
|
offset = Type::OffsetBot; // Flatten constant access into array body only
|
|
tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
|
|
}
|
|
} else if( ta && _AliasLevel >= 2 ) {
|
|
// For arrays indexed by constant indices, we flatten the alias
|
|
// space to include all of the array body. Only the header, klass
|
|
// and array length can be accessed un-aliased.
|
|
if( offset != Type::OffsetBot ) {
|
|
if( ta->const_oop() ) { // MethodData* or Method*
|
|
offset = Type::OffsetBot; // Flatten constant access into array body
|
|
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
|
|
} else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
|
|
// range is OK as-is.
|
|
tj = ta = TypeAryPtr::RANGE;
|
|
} else if( offset == oopDesc::klass_offset_in_bytes() ) {
|
|
tj = TypeInstPtr::KLASS; // all klass loads look alike
|
|
ta = TypeAryPtr::RANGE; // generic ignored junk
|
|
ptr = TypePtr::BotPTR;
|
|
} else if( offset == oopDesc::mark_offset_in_bytes() ) {
|
|
tj = TypeInstPtr::MARK;
|
|
ta = TypeAryPtr::RANGE; // generic ignored junk
|
|
ptr = TypePtr::BotPTR;
|
|
} else { // Random constant offset into array body
|
|
offset = Type::OffsetBot; // Flatten constant access into array body
|
|
tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
|
|
}
|
|
}
|
|
// Arrays of fixed size alias with arrays of unknown size.
|
|
if (ta->size() != TypeInt::POS) {
|
|
const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
|
|
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
|
|
}
|
|
// Arrays of known objects become arrays of unknown objects.
|
|
if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
|
|
const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
|
|
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
|
|
}
|
|
if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
|
|
const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
|
|
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
|
|
}
|
|
// Arrays of bytes and of booleans both use 'bastore' and 'baload' so
|
|
// cannot be distinguished by bytecode alone.
|
|
if (ta->elem() == TypeInt::BOOL) {
|
|
const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
|
|
ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
|
|
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
|
|
}
|
|
// During the 2nd round of IterGVN, NotNull castings are removed.
|
|
// Make sure the Bottom and NotNull variants alias the same.
|
|
// Also, make sure exact and non-exact variants alias the same.
|
|
if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
|
|
tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
|
|
}
|
|
}
|
|
|
|
// Oop pointers need some flattening
|
|
const TypeInstPtr *to = tj->isa_instptr();
|
|
if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
|
|
ciInstanceKlass *k = to->klass()->as_instance_klass();
|
|
if( ptr == TypePtr::Constant ) {
|
|
if (to->klass() != ciEnv::current()->Class_klass() ||
|
|
offset < k->size_helper() * wordSize) {
|
|
// No constant oop pointers (such as Strings); they alias with
|
|
// unknown strings.
|
|
assert(!is_known_inst, "not scalarizable allocation");
|
|
tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
|
|
}
|
|
} else if( is_known_inst ) {
|
|
tj = to; // Keep NotNull and klass_is_exact for instance type
|
|
} else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
|
|
// During the 2nd round of IterGVN, NotNull castings are removed.
|
|
// Make sure the Bottom and NotNull variants alias the same.
|
|
// Also, make sure exact and non-exact variants alias the same.
|
|
tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
|
|
}
|
|
if (to->speculative() != NULL) {
|
|
tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
|
|
}
|
|
// Canonicalize the holder of this field
|
|
if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
|
|
// First handle header references such as a LoadKlassNode, even if the
|
|
// object's klass is unloaded at compile time (4965979).
|
|
if (!is_known_inst) { // Do it only for non-instance types
|
|
tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
|
|
}
|
|
} else if (offset < 0 || offset >= k->size_helper() * wordSize) {
|
|
// Static fields are in the space above the normal instance
|
|
// fields in the java.lang.Class instance.
|
|
if (to->klass() != ciEnv::current()->Class_klass()) {
|
|
to = NULL;
|
|
tj = TypeOopPtr::BOTTOM;
|
|
offset = tj->offset();
|
|
}
|
|
} else {
|
|
ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
|
|
if (!k->equals(canonical_holder) || tj->offset() != offset) {
|
|
if( is_known_inst ) {
|
|
tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
|
|
} else {
|
|
tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Klass pointers to object array klasses need some flattening
|
|
const TypeKlassPtr *tk = tj->isa_klassptr();
|
|
if( tk ) {
|
|
// If we are referencing a field within a Klass, we need
|
|
// to assume the worst case of an Object. Both exact and
|
|
// inexact types must flatten to the same alias class so
|
|
// use NotNull as the PTR.
|
|
if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
|
|
|
|
tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
|
|
TypeKlassPtr::OBJECT->klass(),
|
|
offset);
|
|
}
|
|
|
|
ciKlass* klass = tk->klass();
|
|
if( klass->is_obj_array_klass() ) {
|
|
ciKlass* k = TypeAryPtr::OOPS->klass();
|
|
if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
|
|
k = TypeInstPtr::BOTTOM->klass();
|
|
tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
|
|
}
|
|
|
|
// Check for precise loads from the primary supertype array and force them
|
|
// to the supertype cache alias index. Check for generic array loads from
|
|
// the primary supertype array and also force them to the supertype cache
|
|
// alias index. Since the same load can reach both, we need to merge
|
|
// these 2 disparate memories into the same alias class. Since the
|
|
// primary supertype array is read-only, there's no chance of confusion
|
|
// where we bypass an array load and an array store.
|
|
int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
|
|
if (offset == Type::OffsetBot ||
|
|
(offset >= primary_supers_offset &&
|
|
offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
|
|
offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
|
|
offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
|
|
}
|
|
}
|
|
|
|
// Flatten all Raw pointers together.
|
|
if (tj->base() == Type::RawPtr)
|
|
tj = TypeRawPtr::BOTTOM;
|
|
|
|
if (tj->base() == Type::AnyPtr)
|
|
tj = TypePtr::BOTTOM; // An error, which the caller must check for.
|
|
|
|
// Flatten all to bottom for now
|
|
switch( _AliasLevel ) {
|
|
case 0:
|
|
tj = TypePtr::BOTTOM;
|
|
break;
|
|
case 1: // Flatten to: oop, static, field or array
|
|
switch (tj->base()) {
|
|
//case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
|
|
case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
|
|
case Type::AryPtr: // do not distinguish arrays at all
|
|
case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
|
|
case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
|
|
case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
|
|
default: ShouldNotReachHere();
|
|
}
|
|
break;
|
|
case 2: // No collapsing at level 2; keep all splits
|
|
case 3: // No collapsing at level 3; keep all splits
|
|
break;
|
|
default:
|
|
Unimplemented();
|
|
}
|
|
|
|
offset = tj->offset();
|
|
assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
|
|
|
|
assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
|
|
(offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
|
|
(offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
|
|
(offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
|
|
(offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
|
|
(offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
|
|
(offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
|
|
"For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
|
|
assert( tj->ptr() != TypePtr::TopPTR &&
|
|
tj->ptr() != TypePtr::AnyNull &&
|
|
tj->ptr() != TypePtr::Null, "No imprecise addresses" );
|
|
// assert( tj->ptr() != TypePtr::Constant ||
|
|
// tj->base() == Type::RawPtr ||
|
|
// tj->base() == Type::KlassPtr, "No constant oop addresses" );
|
|
|
|
return tj;
|
|
}
|
|
|
|
void Compile::AliasType::Init(int i, const TypePtr* at) {
|
|
assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
|
|
_index = i;
|
|
_adr_type = at;
|
|
_field = NULL;
|
|
_element = NULL;
|
|
_is_rewritable = true; // default
|
|
const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
|
|
if (atoop != NULL && atoop->is_known_instance()) {
|
|
const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
|
|
_general_index = Compile::current()->get_alias_index(gt);
|
|
} else {
|
|
_general_index = 0;
|
|
}
|
|
}
|
|
|
|
BasicType Compile::AliasType::basic_type() const {
|
|
if (element() != NULL) {
|
|
const Type* element = adr_type()->is_aryptr()->elem();
|
|
return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
|
|
} if (field() != NULL) {
|
|
return field()->layout_type();
|
|
} else {
|
|
return T_ILLEGAL; // unknown
|
|
}
|
|
}
|
|
|
|
//---------------------------------print_on------------------------------------
|
|
#ifndef PRODUCT
|
|
void Compile::AliasType::print_on(outputStream* st) {
|
|
if (index() < 10)
|
|
st->print("@ <%d> ", index());
|
|
else st->print("@ <%d>", index());
|
|
st->print(is_rewritable() ? " " : " RO");
|
|
int offset = adr_type()->offset();
|
|
if (offset == Type::OffsetBot)
|
|
st->print(" +any");
|
|
else st->print(" +%-3d", offset);
|
|
st->print(" in ");
|
|
adr_type()->dump_on(st);
|
|
const TypeOopPtr* tjp = adr_type()->isa_oopptr();
|
|
if (field() != NULL && tjp) {
|
|
if (tjp->klass() != field()->holder() ||
|
|
tjp->offset() != field()->offset_in_bytes()) {
|
|
st->print(" != ");
|
|
field()->print();
|
|
st->print(" ***");
|
|
}
|
|
}
|
|
}
|
|
|
|
void print_alias_types() {
|
|
Compile* C = Compile::current();
|
|
tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
|
|
for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
|
|
C->alias_type(idx)->print_on(tty);
|
|
tty->cr();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//----------------------------probe_alias_cache--------------------------------
|
|
Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
|
|
intptr_t key = (intptr_t) adr_type;
|
|
key ^= key >> logAliasCacheSize;
|
|
return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
|
|
}
|
|
|
|
|
|
//-----------------------------grow_alias_types--------------------------------
|
|
void Compile::grow_alias_types() {
|
|
const int old_ats = _max_alias_types; // how many before?
|
|
const int new_ats = old_ats; // how many more?
|
|
const int grow_ats = old_ats+new_ats; // how many now?
|
|
_max_alias_types = grow_ats;
|
|
_alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
|
|
AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
|
|
Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
|
|
for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
|
|
}
|
|
|
|
|
|
//--------------------------------find_alias_type------------------------------
|
|
Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
|
|
if (_AliasLevel == 0)
|
|
return alias_type(AliasIdxBot);
|
|
|
|
AliasCacheEntry* ace = probe_alias_cache(adr_type);
|
|
if (ace->_adr_type == adr_type) {
|
|
return alias_type(ace->_index);
|
|
}
|
|
|
|
// Handle special cases.
|
|
if (adr_type == NULL) return alias_type(AliasIdxTop);
|
|
if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
|
|
|
|
// Do it the slow way.
|
|
const TypePtr* flat = flatten_alias_type(adr_type);
|
|
|
|
#ifdef ASSERT
|
|
{
|
|
ResourceMark rm;
|
|
assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
|
|
Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
|
|
assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
|
|
Type::str(adr_type));
|
|
if (flat->isa_oopptr() && !flat->isa_klassptr()) {
|
|
const TypeOopPtr* foop = flat->is_oopptr();
|
|
// Scalarizable allocations have exact klass always.
|
|
bool exact = !foop->klass_is_exact() || foop->is_known_instance();
|
|
const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
|
|
assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
|
|
Type::str(foop), Type::str(xoop));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int idx = AliasIdxTop;
|
|
for (int i = 0; i < num_alias_types(); i++) {
|
|
if (alias_type(i)->adr_type() == flat) {
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (idx == AliasIdxTop) {
|
|
if (no_create) return NULL;
|
|
// Grow the array if necessary.
|
|
if (_num_alias_types == _max_alias_types) grow_alias_types();
|
|
// Add a new alias type.
|
|
idx = _num_alias_types++;
|
|
_alias_types[idx]->Init(idx, flat);
|
|
if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
|
|
if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
|
|
if (flat->isa_instptr()) {
|
|
if (flat->offset() == java_lang_Class::klass_offset()
|
|
&& flat->is_instptr()->klass() == env()->Class_klass())
|
|
alias_type(idx)->set_rewritable(false);
|
|
}
|
|
if (flat->isa_aryptr()) {
|
|
#ifdef ASSERT
|
|
const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
|
|
// (T_BYTE has the weakest alignment and size restrictions...)
|
|
assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
|
|
#endif
|
|
if (flat->offset() == TypePtr::OffsetBot) {
|
|
alias_type(idx)->set_element(flat->is_aryptr()->elem());
|
|
}
|
|
}
|
|
if (flat->isa_klassptr()) {
|
|
if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
|
|
alias_type(idx)->set_rewritable(false);
|
|
if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
|
|
alias_type(idx)->set_rewritable(false);
|
|
if (flat->offset() == in_bytes(Klass::access_flags_offset()))
|
|
alias_type(idx)->set_rewritable(false);
|
|
if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
|
|
alias_type(idx)->set_rewritable(false);
|
|
if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
|
|
alias_type(idx)->set_rewritable(false);
|
|
}
|
|
// %%% (We would like to finalize JavaThread::threadObj_offset(),
|
|
// but the base pointer type is not distinctive enough to identify
|
|
// references into JavaThread.)
|
|
|
|
// Check for final fields.
|
|
const TypeInstPtr* tinst = flat->isa_instptr();
|
|
if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
|
|
ciField* field;
|
|
if (tinst->const_oop() != NULL &&
|
|
tinst->klass() == ciEnv::current()->Class_klass() &&
|
|
tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
|
|
// static field
|
|
ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
|
|
field = k->get_field_by_offset(tinst->offset(), true);
|
|
} else {
|
|
ciInstanceKlass *k = tinst->klass()->as_instance_klass();
|
|
field = k->get_field_by_offset(tinst->offset(), false);
|
|
}
|
|
assert(field == NULL ||
|
|
original_field == NULL ||
|
|
(field->holder() == original_field->holder() &&
|
|
field->offset() == original_field->offset() &&
|
|
field->is_static() == original_field->is_static()), "wrong field?");
|
|
// Set field() and is_rewritable() attributes.
|
|
if (field != NULL) alias_type(idx)->set_field(field);
|
|
}
|
|
}
|
|
|
|
// Fill the cache for next time.
|
|
ace->_adr_type = adr_type;
|
|
ace->_index = idx;
|
|
assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
|
|
|
|
// Might as well try to fill the cache for the flattened version, too.
|
|
AliasCacheEntry* face = probe_alias_cache(flat);
|
|
if (face->_adr_type == NULL) {
|
|
face->_adr_type = flat;
|
|
face->_index = idx;
|
|
assert(alias_type(flat) == alias_type(idx), "flat type must work too");
|
|
}
|
|
|
|
return alias_type(idx);
|
|
}
|
|
|
|
|
|
Compile::AliasType* Compile::alias_type(ciField* field) {
|
|
const TypeOopPtr* t;
|
|
if (field->is_static())
|
|
t = TypeInstPtr::make(field->holder()->java_mirror());
|
|
else
|
|
t = TypeOopPtr::make_from_klass_raw(field->holder());
|
|
AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
|
|
assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
|
|
return atp;
|
|
}
|
|
|
|
|
|
//------------------------------have_alias_type--------------------------------
|
|
bool Compile::have_alias_type(const TypePtr* adr_type) {
|
|
AliasCacheEntry* ace = probe_alias_cache(adr_type);
|
|
if (ace->_adr_type == adr_type) {
|
|
return true;
|
|
}
|
|
|
|
// Handle special cases.
|
|
if (adr_type == NULL) return true;
|
|
if (adr_type == TypePtr::BOTTOM) return true;
|
|
|
|
return find_alias_type(adr_type, true, NULL) != NULL;
|
|
}
|
|
|
|
//-----------------------------must_alias--------------------------------------
|
|
// True if all values of the given address type are in the given alias category.
|
|
bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
|
|
if (alias_idx == AliasIdxBot) return true; // the universal category
|
|
if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
|
|
if (alias_idx == AliasIdxTop) return false; // the empty category
|
|
if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
|
|
|
|
// the only remaining possible overlap is identity
|
|
int adr_idx = get_alias_index(adr_type);
|
|
assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
|
|
assert(adr_idx == alias_idx ||
|
|
(alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
|
|
&& adr_type != TypeOopPtr::BOTTOM),
|
|
"should not be testing for overlap with an unsafe pointer");
|
|
return adr_idx == alias_idx;
|
|
}
|
|
|
|
//------------------------------can_alias--------------------------------------
|
|
// True if any values of the given address type are in the given alias category.
|
|
bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
|
|
if (alias_idx == AliasIdxTop) return false; // the empty category
|
|
if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
|
|
// Known instance doesn't alias with bottom memory
|
|
if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category
|
|
if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
|
|
|
|
// the only remaining possible overlap is identity
|
|
int adr_idx = get_alias_index(adr_type);
|
|
assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
|
|
return adr_idx == alias_idx;
|
|
}
|
|
|
|
|
|
|
|
//---------------------------pop_warm_call-------------------------------------
|
|
WarmCallInfo* Compile::pop_warm_call() {
|
|
WarmCallInfo* wci = _warm_calls;
|
|
if (wci != NULL) _warm_calls = wci->remove_from(wci);
|
|
return wci;
|
|
}
|
|
|
|
//----------------------------Inline_Warm--------------------------------------
|
|
int Compile::Inline_Warm() {
|
|
// If there is room, try to inline some more warm call sites.
|
|
// %%% Do a graph index compaction pass when we think we're out of space?
|
|
if (!InlineWarmCalls) return 0;
|
|
|
|
int calls_made_hot = 0;
|
|
int room_to_grow = NodeCountInliningCutoff - unique();
|
|
int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
|
|
int amount_grown = 0;
|
|
WarmCallInfo* call;
|
|
while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
|
|
int est_size = (int)call->size();
|
|
if (est_size > (room_to_grow - amount_grown)) {
|
|
// This one won't fit anyway. Get rid of it.
|
|
call->make_cold();
|
|
continue;
|
|
}
|
|
call->make_hot();
|
|
calls_made_hot++;
|
|
amount_grown += est_size;
|
|
amount_to_grow -= est_size;
|
|
}
|
|
|
|
if (calls_made_hot > 0) set_major_progress();
|
|
return calls_made_hot;
|
|
}
|
|
|
|
|
|
//----------------------------Finish_Warm--------------------------------------
|
|
void Compile::Finish_Warm() {
|
|
if (!InlineWarmCalls) return;
|
|
if (failing()) return;
|
|
if (warm_calls() == NULL) return;
|
|
|
|
// Clean up loose ends, if we are out of space for inlining.
|
|
WarmCallInfo* call;
|
|
while ((call = pop_warm_call()) != NULL) {
|
|
call->make_cold();
|
|
}
|
|
}
|
|
|
|
//---------------------cleanup_loop_predicates-----------------------
|
|
// Remove the opaque nodes that protect the predicates so that all unused
|
|
// checks and uncommon_traps will be eliminated from the ideal graph
|
|
void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
|
|
if (predicate_count()==0) return;
|
|
for (int i = predicate_count(); i > 0; i--) {
|
|
Node * n = predicate_opaque1_node(i-1);
|
|
assert(n->Opcode() == Op_Opaque1, "must be");
|
|
igvn.replace_node(n, n->in(1));
|
|
}
|
|
assert(predicate_count()==0, "should be clean!");
|
|
}
|
|
|
|
void Compile::record_for_post_loop_opts_igvn(Node* n) {
|
|
if (!n->for_post_loop_opts_igvn()) {
|
|
assert(!_for_post_loop_igvn.contains(n), "duplicate");
|
|
n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
|
|
_for_post_loop_igvn.append(n);
|
|
}
|
|
}
|
|
|
|
void Compile::remove_from_post_loop_opts_igvn(Node* n) {
|
|
n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
|
|
_for_post_loop_igvn.remove(n);
|
|
}
|
|
|
|
void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
|
|
if (_for_post_loop_igvn.length() == 0) {
|
|
return; // no work to do
|
|
}
|
|
while (_for_post_loop_igvn.length() > 0) {
|
|
Node* n = _for_post_loop_igvn.pop();
|
|
n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
|
|
igvn._worklist.push(n);
|
|
}
|
|
igvn.optimize();
|
|
assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
|
|
}
|
|
|
|
// StringOpts and late inlining of string methods
|
|
void Compile::inline_string_calls(bool parse_time) {
|
|
{
|
|
// remove useless nodes to make the usage analysis simpler
|
|
ResourceMark rm;
|
|
PhaseRemoveUseless pru(initial_gvn(), for_igvn());
|
|
}
|
|
|
|
{
|
|
ResourceMark rm;
|
|
print_method(PHASE_BEFORE_STRINGOPTS, 3);
|
|
PhaseStringOpts pso(initial_gvn(), for_igvn());
|
|
print_method(PHASE_AFTER_STRINGOPTS, 3);
|
|
}
|
|
|
|
// now inline anything that we skipped the first time around
|
|
if (!parse_time) {
|
|
_late_inlines_pos = _late_inlines.length();
|
|
}
|
|
|
|
while (_string_late_inlines.length() > 0) {
|
|
CallGenerator* cg = _string_late_inlines.pop();
|
|
cg->do_late_inline();
|
|
if (failing()) return;
|
|
}
|
|
_string_late_inlines.trunc_to(0);
|
|
}
|
|
|
|
// Late inlining of boxing methods
|
|
void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
|
|
if (_boxing_late_inlines.length() > 0) {
|
|
assert(has_boxed_value(), "inconsistent");
|
|
|
|
PhaseGVN* gvn = initial_gvn();
|
|
set_inlining_incrementally(true);
|
|
|
|
assert( igvn._worklist.size() == 0, "should be done with igvn" );
|
|
for_igvn()->clear();
|
|
gvn->replace_with(&igvn);
|
|
|
|
_late_inlines_pos = _late_inlines.length();
|
|
|
|
while (_boxing_late_inlines.length() > 0) {
|
|
CallGenerator* cg = _boxing_late_inlines.pop();
|
|
cg->do_late_inline();
|
|
if (failing()) return;
|
|
}
|
|
_boxing_late_inlines.trunc_to(0);
|
|
|
|
inline_incrementally_cleanup(igvn);
|
|
|
|
set_inlining_incrementally(false);
|
|
}
|
|
}
|
|
|
|
bool Compile::inline_incrementally_one() {
|
|
assert(IncrementalInline, "incremental inlining should be on");
|
|
|
|
TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
|
|
set_inlining_progress(false);
|
|
set_do_cleanup(false);
|
|
int i = 0;
|
|
for (; i <_late_inlines.length() && !inlining_progress(); i++) {
|
|
CallGenerator* cg = _late_inlines.at(i);
|
|
_late_inlines_pos = i+1;
|
|
cg->do_late_inline();
|
|
if (failing()) return false;
|
|
}
|
|
int j = 0;
|
|
for (; i < _late_inlines.length(); i++, j++) {
|
|
_late_inlines.at_put(j, _late_inlines.at(i));
|
|
}
|
|
_late_inlines.trunc_to(j);
|
|
assert(inlining_progress() || _late_inlines.length() == 0, "");
|
|
|
|
bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
|
|
|
|
set_inlining_progress(false);
|
|
set_do_cleanup(false);
|
|
return (_late_inlines.length() > 0) && !needs_cleanup;
|
|
}
|
|
|
|
void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
|
|
{
|
|
TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
|
|
ResourceMark rm;
|
|
PhaseRemoveUseless pru(initial_gvn(), for_igvn());
|
|
}
|
|
{
|
|
TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
|
|
igvn = PhaseIterGVN(initial_gvn());
|
|
igvn.optimize();
|
|
}
|
|
}
|
|
|
|
// Perform incremental inlining until bound on number of live nodes is reached
|
|
void Compile::inline_incrementally(PhaseIterGVN& igvn) {
|
|
TracePhase tp("incrementalInline", &timers[_t_incrInline]);
|
|
|
|
set_inlining_incrementally(true);
|
|
uint low_live_nodes = 0;
|
|
|
|
while (_late_inlines.length() > 0) {
|
|
if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
|
|
if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
|
|
TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
|
|
// PhaseIdealLoop is expensive so we only try it once we are
|
|
// out of live nodes and we only try it again if the previous
|
|
// helped got the number of nodes down significantly
|
|
PhaseIdealLoop::optimize(igvn, LoopOptsNone);
|
|
if (failing()) return;
|
|
low_live_nodes = live_nodes();
|
|
_major_progress = true;
|
|
}
|
|
|
|
if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
|
|
break; // finish
|
|
}
|
|
}
|
|
|
|
for_igvn()->clear();
|
|
initial_gvn()->replace_with(&igvn);
|
|
|
|
while (inline_incrementally_one()) {
|
|
assert(!failing(), "inconsistent");
|
|
}
|
|
|
|
if (failing()) return;
|
|
|
|
inline_incrementally_cleanup(igvn);
|
|
|
|
print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
|
|
|
|
if (failing()) return;
|
|
}
|
|
assert( igvn._worklist.size() == 0, "should be done with igvn" );
|
|
|
|
if (_string_late_inlines.length() > 0) {
|
|
assert(has_stringbuilder(), "inconsistent");
|
|
for_igvn()->clear();
|
|
initial_gvn()->replace_with(&igvn);
|
|
|
|
inline_string_calls(false);
|
|
|
|
if (failing()) return;
|
|
|
|
inline_incrementally_cleanup(igvn);
|
|
}
|
|
|
|
set_inlining_incrementally(false);
|
|
}
|
|
|
|
|
|
bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
|
|
if (_loop_opts_cnt > 0) {
|
|
debug_only( int cnt = 0; );
|
|
while (major_progress() && (_loop_opts_cnt > 0)) {
|
|
TracePhase tp("idealLoop", &timers[_t_idealLoop]);
|
|
assert( cnt++ < 40, "infinite cycle in loop optimization" );
|
|
PhaseIdealLoop::optimize(igvn, mode);
|
|
_loop_opts_cnt--;
|
|
if (failing()) return false;
|
|
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Remove edges from "root" to each SafePoint at a backward branch.
|
|
// They were inserted during parsing (see add_safepoint()) to make
|
|
// infinite loops without calls or exceptions visible to root, i.e.,
|
|
// useful.
|
|
void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
|
|
Node *r = root();
|
|
if (r != NULL) {
|
|
for (uint i = r->req(); i < r->len(); ++i) {
|
|
Node *n = r->in(i);
|
|
if (n != NULL && n->is_SafePoint()) {
|
|
r->rm_prec(i);
|
|
if (n->outcnt() == 0) {
|
|
igvn.remove_dead_node(n);
|
|
}
|
|
--i;
|
|
}
|
|
}
|
|
// Parsing may have added top inputs to the root node (Path
|
|
// leading to the Halt node proven dead). Make sure we get a
|
|
// chance to clean them up.
|
|
igvn._worklist.push(r);
|
|
igvn.optimize();
|
|
}
|
|
}
|
|
|
|
//------------------------------Optimize---------------------------------------
|
|
// Given a graph, optimize it.
|
|
void Compile::Optimize() {
|
|
TracePhase tp("optimizer", &timers[_t_optimizer]);
|
|
|
|
#ifndef PRODUCT
|
|
if (_directive->BreakAtCompileOption) {
|
|
BREAKPOINT;
|
|
}
|
|
|
|
#endif
|
|
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
#ifdef ASSERT
|
|
bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
|
|
#endif
|
|
|
|
ResourceMark rm;
|
|
|
|
print_inlining_reinit();
|
|
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
|
|
print_method(PHASE_AFTER_PARSING);
|
|
|
|
{
|
|
// Iterative Global Value Numbering, including ideal transforms
|
|
// Initialize IterGVN with types and values from parse-time GVN
|
|
PhaseIterGVN igvn(initial_gvn());
|
|
#ifdef ASSERT
|
|
_modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
|
|
#endif
|
|
{
|
|
TracePhase tp("iterGVN", &timers[_t_iterGVN]);
|
|
igvn.optimize();
|
|
}
|
|
|
|
if (failing()) return;
|
|
|
|
print_method(PHASE_ITER_GVN1, 2);
|
|
|
|
inline_incrementally(igvn);
|
|
|
|
print_method(PHASE_INCREMENTAL_INLINE, 2);
|
|
|
|
if (failing()) return;
|
|
|
|
if (eliminate_boxing()) {
|
|
// Inline valueOf() methods now.
|
|
inline_boxing_calls(igvn);
|
|
|
|
if (AlwaysIncrementalInline) {
|
|
inline_incrementally(igvn);
|
|
}
|
|
|
|
print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
|
|
|
|
if (failing()) return;
|
|
}
|
|
|
|
// Now that all inlining is over, cut edge from root to loop
|
|
// safepoints
|
|
remove_root_to_sfpts_edges(igvn);
|
|
|
|
// Remove the speculative part of types and clean up the graph from
|
|
// the extra CastPP nodes whose only purpose is to carry them. Do
|
|
// that early so that optimizations are not disrupted by the extra
|
|
// CastPP nodes.
|
|
remove_speculative_types(igvn);
|
|
|
|
// No more new expensive nodes will be added to the list from here
|
|
// so keep only the actual candidates for optimizations.
|
|
cleanup_expensive_nodes(igvn);
|
|
|
|
assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
|
|
if (EnableVectorSupport && has_vbox_nodes()) {
|
|
TracePhase tp("", &timers[_t_vector]);
|
|
PhaseVector pv(igvn);
|
|
pv.optimize_vector_boxes();
|
|
|
|
print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
|
|
}
|
|
assert(!has_vbox_nodes(), "sanity");
|
|
|
|
if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
|
|
Compile::TracePhase tp("", &timers[_t_renumberLive]);
|
|
initial_gvn()->replace_with(&igvn);
|
|
for_igvn()->clear();
|
|
Unique_Node_List new_worklist(C->comp_arena());
|
|
{
|
|
ResourceMark rm;
|
|
PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
|
|
}
|
|
Unique_Node_List* save_for_igvn = for_igvn();
|
|
set_for_igvn(&new_worklist);
|
|
igvn = PhaseIterGVN(initial_gvn());
|
|
igvn.optimize();
|
|
set_for_igvn(save_for_igvn);
|
|
}
|
|
|
|
// Perform escape analysis
|
|
if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
|
|
if (has_loops()) {
|
|
// Cleanup graph (remove dead nodes).
|
|
TracePhase tp("idealLoop", &timers[_t_idealLoop]);
|
|
PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
|
|
if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
|
|
if (failing()) return;
|
|
}
|
|
ConnectionGraph::do_analysis(this, &igvn);
|
|
|
|
if (failing()) return;
|
|
|
|
// Optimize out fields loads from scalar replaceable allocations.
|
|
igvn.optimize();
|
|
print_method(PHASE_ITER_GVN_AFTER_EA, 2);
|
|
|
|
if (failing()) return;
|
|
|
|
if (congraph() != NULL && macro_count() > 0) {
|
|
TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
|
|
PhaseMacroExpand mexp(igvn);
|
|
mexp.eliminate_macro_nodes();
|
|
igvn.set_delay_transform(false);
|
|
|
|
igvn.optimize();
|
|
print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
|
|
|
|
if (failing()) return;
|
|
}
|
|
}
|
|
|
|
// Loop transforms on the ideal graph. Range Check Elimination,
|
|
// peeling, unrolling, etc.
|
|
|
|
// Set loop opts counter
|
|
if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
|
|
{
|
|
TracePhase tp("idealLoop", &timers[_t_idealLoop]);
|
|
PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
|
|
_loop_opts_cnt--;
|
|
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
|
|
if (failing()) return;
|
|
}
|
|
// Loop opts pass if partial peeling occurred in previous pass
|
|
if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
|
|
TracePhase tp("idealLoop", &timers[_t_idealLoop]);
|
|
PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
|
|
_loop_opts_cnt--;
|
|
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
|
|
if (failing()) return;
|
|
}
|
|
// Loop opts pass for loop-unrolling before CCP
|
|
if(major_progress() && (_loop_opts_cnt > 0)) {
|
|
TracePhase tp("idealLoop", &timers[_t_idealLoop]);
|
|
PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
|
|
_loop_opts_cnt--;
|
|
if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
|
|
}
|
|
if (!failing()) {
|
|
// Verify that last round of loop opts produced a valid graph
|
|
TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
|
|
PhaseIdealLoop::verify(igvn);
|
|
}
|
|
}
|
|
if (failing()) return;
|
|
|
|
// Conditional Constant Propagation;
|
|
PhaseCCP ccp( &igvn );
|
|
assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
|
|
{
|
|
TracePhase tp("ccp", &timers[_t_ccp]);
|
|
ccp.do_transform();
|
|
}
|
|
print_method(PHASE_CPP1, 2);
|
|
|
|
assert( true, "Break here to ccp.dump_old2new_map()");
|
|
|
|
// Iterative Global Value Numbering, including ideal transforms
|
|
{
|
|
TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
|
|
igvn = ccp;
|
|
igvn.optimize();
|
|
}
|
|
print_method(PHASE_ITER_GVN2, 2);
|
|
|
|
if (failing()) return;
|
|
|
|
// Loop transforms on the ideal graph. Range Check Elimination,
|
|
// peeling, unrolling, etc.
|
|
if (!optimize_loops(igvn, LoopOptsDefault)) {
|
|
return;
|
|
}
|
|
|
|
if (failing()) return;
|
|
|
|
// Ensure that major progress is now clear
|
|
C->clear_major_progress();
|
|
|
|
{
|
|
// Verify that all previous optimizations produced a valid graph
|
|
// at least to this point, even if no loop optimizations were done.
|
|
TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
|
|
PhaseIdealLoop::verify(igvn);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
|
|
#endif
|
|
|
|
{
|
|
TracePhase tp("macroExpand", &timers[_t_macroExpand]);
|
|
PhaseMacroExpand mex(igvn);
|
|
if (mex.expand_macro_nodes()) {
|
|
assert(failing(), "must bail out w/ explicit message");
|
|
return;
|
|
}
|
|
print_method(PHASE_MACRO_EXPANSION, 2);
|
|
}
|
|
|
|
{
|
|
TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
|
|
if (bs->expand_barriers(this, igvn)) {
|
|
assert(failing(), "must bail out w/ explicit message");
|
|
return;
|
|
}
|
|
print_method(PHASE_BARRIER_EXPANSION, 2);
|
|
}
|
|
|
|
C->set_post_loop_opts_phase(); // no more loop opts allowed
|
|
|
|
process_for_post_loop_opts_igvn(igvn);
|
|
|
|
if (C->max_vector_size() > 0) {
|
|
C->optimize_logic_cones(igvn);
|
|
igvn.optimize();
|
|
}
|
|
|
|
DEBUG_ONLY( _modified_nodes = NULL; )
|
|
assert(igvn._worklist.size() == 0, "not empty");
|
|
} // (End scope of igvn; run destructor if necessary for asserts.)
|
|
|
|
process_print_inlining();
|
|
// A method with only infinite loops has no edges entering loops from root
|
|
{
|
|
TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
|
|
if (final_graph_reshaping()) {
|
|
assert(failing(), "must bail out w/ explicit message");
|
|
return;
|
|
}
|
|
}
|
|
|
|
print_method(PHASE_OPTIMIZE_FINISHED, 2);
|
|
DEBUG_ONLY(set_phase_optimize_finished();)
|
|
}
|
|
|
|
void Compile::inline_vector_reboxing_calls() {
|
|
if (C->_vector_reboxing_late_inlines.length() > 0) {
|
|
PhaseGVN* gvn = C->initial_gvn();
|
|
|
|
_late_inlines_pos = C->_late_inlines.length();
|
|
while (_vector_reboxing_late_inlines.length() > 0) {
|
|
CallGenerator* cg = _vector_reboxing_late_inlines.pop();
|
|
cg->do_late_inline();
|
|
if (failing()) return;
|
|
print_method(PHASE_INLINE_VECTOR_REBOX, cg->call_node());
|
|
}
|
|
_vector_reboxing_late_inlines.trunc_to(0);
|
|
}
|
|
}
|
|
|
|
bool Compile::has_vbox_nodes() {
|
|
if (C->_vector_reboxing_late_inlines.length() > 0) {
|
|
return true;
|
|
}
|
|
for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
|
|
Node * n = C->macro_node(macro_idx);
|
|
assert(n->is_macro(), "only macro nodes expected here");
|
|
if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//---------------------------- Bitwise operation packing optimization ---------------------------
|
|
|
|
static bool is_vector_unary_bitwise_op(Node* n) {
|
|
return n->Opcode() == Op_XorV &&
|
|
VectorNode::is_vector_bitwise_not_pattern(n);
|
|
}
|
|
|
|
static bool is_vector_binary_bitwise_op(Node* n) {
|
|
switch (n->Opcode()) {
|
|
case Op_AndV:
|
|
case Op_OrV:
|
|
return true;
|
|
|
|
case Op_XorV:
|
|
return !is_vector_unary_bitwise_op(n);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool is_vector_ternary_bitwise_op(Node* n) {
|
|
return n->Opcode() == Op_MacroLogicV;
|
|
}
|
|
|
|
static bool is_vector_bitwise_op(Node* n) {
|
|
return is_vector_unary_bitwise_op(n) ||
|
|
is_vector_binary_bitwise_op(n) ||
|
|
is_vector_ternary_bitwise_op(n);
|
|
}
|
|
|
|
static bool is_vector_bitwise_cone_root(Node* n) {
|
|
if (!is_vector_bitwise_op(n)) {
|
|
return false;
|
|
}
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
if (is_vector_bitwise_op(n->fast_out(i))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static uint collect_unique_inputs(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
|
|
uint cnt = 0;
|
|
if (is_vector_bitwise_op(n)) {
|
|
if (VectorNode::is_vector_bitwise_not_pattern(n)) {
|
|
for (uint i = 1; i < n->req(); i++) {
|
|
Node* in = n->in(i);
|
|
bool skip = VectorNode::is_all_ones_vector(in);
|
|
if (!skip && !inputs.member(in)) {
|
|
inputs.push(in);
|
|
cnt++;
|
|
}
|
|
}
|
|
assert(cnt <= 1, "not unary");
|
|
} else {
|
|
uint last_req = n->req();
|
|
if (is_vector_ternary_bitwise_op(n)) {
|
|
last_req = n->req() - 1; // skip last input
|
|
}
|
|
for (uint i = 1; i < last_req; i++) {
|
|
Node* def = n->in(i);
|
|
if (!inputs.member(def)) {
|
|
inputs.push(def);
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
partition.push(n);
|
|
} else { // not a bitwise operations
|
|
if (!inputs.member(n)) {
|
|
inputs.push(n);
|
|
cnt++;
|
|
}
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
|
|
Unique_Node_List useful_nodes;
|
|
C->identify_useful_nodes(useful_nodes);
|
|
|
|
for (uint i = 0; i < useful_nodes.size(); i++) {
|
|
Node* n = useful_nodes.at(i);
|
|
if (is_vector_bitwise_cone_root(n)) {
|
|
list.push(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
|
|
const TypeVect* vt,
|
|
Unique_Node_List& partition,
|
|
Unique_Node_List& inputs) {
|
|
assert(partition.size() == 2 || partition.size() == 3, "not supported");
|
|
assert(inputs.size() == 2 || inputs.size() == 3, "not supported");
|
|
assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
|
|
|
|
Node* in1 = inputs.at(0);
|
|
Node* in2 = inputs.at(1);
|
|
Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
|
|
|
|
uint func = compute_truth_table(partition, inputs);
|
|
return igvn.transform(MacroLogicVNode::make(igvn, in3, in2, in1, func, vt));
|
|
}
|
|
|
|
static uint extract_bit(uint func, uint pos) {
|
|
return (func & (1 << pos)) >> pos;
|
|
}
|
|
|
|
//
|
|
// A macro logic node represents a truth table. It has 4 inputs,
|
|
// First three inputs corresponds to 3 columns of a truth table
|
|
// and fourth input captures the logic function.
|
|
//
|
|
// eg. fn = (in1 AND in2) OR in3;
|
|
//
|
|
// MacroNode(in1,in2,in3,fn)
|
|
//
|
|
// -----------------
|
|
// in1 in2 in3 fn
|
|
// -----------------
|
|
// 0 0 0 0
|
|
// 0 0 1 1
|
|
// 0 1 0 0
|
|
// 0 1 1 1
|
|
// 1 0 0 0
|
|
// 1 0 1 1
|
|
// 1 1 0 1
|
|
// 1 1 1 1
|
|
//
|
|
|
|
uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
|
|
int res = 0;
|
|
for (int i = 0; i < 8; i++) {
|
|
int bit1 = extract_bit(in1, i);
|
|
int bit2 = extract_bit(in2, i);
|
|
int bit3 = extract_bit(in3, i);
|
|
|
|
int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
|
|
int func_bit = extract_bit(func, func_bit_pos);
|
|
|
|
res |= func_bit << i;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
|
|
assert(n != NULL, "");
|
|
assert(eval_map.contains(n), "absent");
|
|
return *(eval_map.get(n));
|
|
}
|
|
|
|
static void eval_operands(Node* n,
|
|
uint& func1, uint& func2, uint& func3,
|
|
ResourceHashtable<Node*,uint>& eval_map) {
|
|
assert(is_vector_bitwise_op(n), "");
|
|
|
|
if (is_vector_unary_bitwise_op(n)) {
|
|
Node* opnd = n->in(1);
|
|
if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
|
|
opnd = n->in(2);
|
|
}
|
|
func1 = eval_operand(opnd, eval_map);
|
|
} else if (is_vector_binary_bitwise_op(n)) {
|
|
func1 = eval_operand(n->in(1), eval_map);
|
|
func2 = eval_operand(n->in(2), eval_map);
|
|
} else {
|
|
assert(is_vector_ternary_bitwise_op(n), "unknown operation");
|
|
func1 = eval_operand(n->in(1), eval_map);
|
|
func2 = eval_operand(n->in(2), eval_map);
|
|
func3 = eval_operand(n->in(3), eval_map);
|
|
}
|
|
}
|
|
|
|
uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
|
|
assert(inputs.size() <= 3, "sanity");
|
|
ResourceMark rm;
|
|
uint res = 0;
|
|
ResourceHashtable<Node*,uint> eval_map;
|
|
|
|
// Populate precomputed functions for inputs.
|
|
// Each input corresponds to one column of 3 input truth-table.
|
|
uint input_funcs[] = { 0xAA, // (_, _, a) -> a
|
|
0xCC, // (_, b, _) -> b
|
|
0xF0 }; // (c, _, _) -> c
|
|
for (uint i = 0; i < inputs.size(); i++) {
|
|
eval_map.put(inputs.at(i), input_funcs[i]);
|
|
}
|
|
|
|
for (uint i = 0; i < partition.size(); i++) {
|
|
Node* n = partition.at(i);
|
|
|
|
uint func1 = 0, func2 = 0, func3 = 0;
|
|
eval_operands(n, func1, func2, func3, eval_map);
|
|
|
|
switch (n->Opcode()) {
|
|
case Op_OrV:
|
|
assert(func3 == 0, "not binary");
|
|
res = func1 | func2;
|
|
break;
|
|
case Op_AndV:
|
|
assert(func3 == 0, "not binary");
|
|
res = func1 & func2;
|
|
break;
|
|
case Op_XorV:
|
|
if (VectorNode::is_vector_bitwise_not_pattern(n)) {
|
|
assert(func2 == 0 && func3 == 0, "not unary");
|
|
res = (~func1) & 0xFF;
|
|
} else {
|
|
assert(func3 == 0, "not binary");
|
|
res = func1 ^ func2;
|
|
}
|
|
break;
|
|
case Op_MacroLogicV:
|
|
// Ordering of inputs may change during evaluation of sub-tree
|
|
// containing MacroLogic node as a child node, thus a re-evaluation
|
|
// makes sure that function is evaluated in context of current
|
|
// inputs.
|
|
res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
|
|
break;
|
|
|
|
default: assert(false, "not supported: %s", n->Name());
|
|
}
|
|
assert(res <= 0xFF, "invalid");
|
|
eval_map.put(n, res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
|
|
assert(partition.size() == 0, "not empty");
|
|
assert(inputs.size() == 0, "not empty");
|
|
if (is_vector_ternary_bitwise_op(n)) {
|
|
return false;
|
|
}
|
|
|
|
bool is_unary_op = is_vector_unary_bitwise_op(n);
|
|
if (is_unary_op) {
|
|
assert(collect_unique_inputs(n, partition, inputs) == 1, "not unary");
|
|
return false; // too few inputs
|
|
}
|
|
|
|
assert(is_vector_binary_bitwise_op(n), "not binary");
|
|
Node* in1 = n->in(1);
|
|
Node* in2 = n->in(2);
|
|
|
|
int in1_unique_inputs_cnt = collect_unique_inputs(in1, partition, inputs);
|
|
int in2_unique_inputs_cnt = collect_unique_inputs(in2, partition, inputs);
|
|
partition.push(n);
|
|
|
|
// Too many inputs?
|
|
if (inputs.size() > 3) {
|
|
partition.clear();
|
|
inputs.clear();
|
|
{ // Recompute in2 inputs
|
|
Unique_Node_List not_used;
|
|
in2_unique_inputs_cnt = collect_unique_inputs(in2, not_used, not_used);
|
|
}
|
|
// Pick the node with minimum number of inputs.
|
|
if (in1_unique_inputs_cnt >= 3 && in2_unique_inputs_cnt >= 3) {
|
|
return false; // still too many inputs
|
|
}
|
|
// Recompute partition & inputs.
|
|
Node* child = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in1 : in2);
|
|
collect_unique_inputs(child, partition, inputs);
|
|
|
|
Node* other_input = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in2 : in1);
|
|
inputs.push(other_input);
|
|
|
|
partition.push(n);
|
|
}
|
|
|
|
return (partition.size() == 2 || partition.size() == 3) &&
|
|
(inputs.size() == 2 || inputs.size() == 3);
|
|
}
|
|
|
|
|
|
void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
|
|
assert(is_vector_bitwise_op(n), "not a root");
|
|
|
|
visited.set(n->_idx);
|
|
|
|
// 1) Do a DFS walk over the logic cone.
|
|
for (uint i = 1; i < n->req(); i++) {
|
|
Node* in = n->in(i);
|
|
if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
|
|
process_logic_cone_root(igvn, in, visited);
|
|
}
|
|
}
|
|
|
|
// 2) Bottom up traversal: Merge node[s] with
|
|
// the parent to form macro logic node.
|
|
Unique_Node_List partition;
|
|
Unique_Node_List inputs;
|
|
if (compute_logic_cone(n, partition, inputs)) {
|
|
const TypeVect* vt = n->bottom_type()->is_vect();
|
|
Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
|
|
igvn.replace_node(n, macro_logic);
|
|
}
|
|
}
|
|
|
|
void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
|
|
ResourceMark rm;
|
|
if (Matcher::match_rule_supported(Op_MacroLogicV)) {
|
|
Unique_Node_List list;
|
|
collect_logic_cone_roots(list);
|
|
|
|
while (list.size() > 0) {
|
|
Node* n = list.pop();
|
|
const TypeVect* vt = n->bottom_type()->is_vect();
|
|
bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
|
|
if (supported) {
|
|
VectorSet visited(comp_arena());
|
|
process_logic_cone_root(igvn, n, visited);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------Code_Gen---------------------------------------
|
|
// Given a graph, generate code for it
|
|
void Compile::Code_Gen() {
|
|
if (failing()) {
|
|
return;
|
|
}
|
|
|
|
// Perform instruction selection. You might think we could reclaim Matcher
|
|
// memory PDQ, but actually the Matcher is used in generating spill code.
|
|
// Internals of the Matcher (including some VectorSets) must remain live
|
|
// for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
|
|
// set a bit in reclaimed memory.
|
|
|
|
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine
|
|
// nodes. Mapping is only valid at the root of each matched subtree.
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
|
|
Matcher matcher;
|
|
_matcher = &matcher;
|
|
{
|
|
TracePhase tp("matcher", &timers[_t_matcher]);
|
|
matcher.match();
|
|
if (failing()) {
|
|
return;
|
|
}
|
|
print_method(PHASE_AFTER_MATCHING, 3);
|
|
}
|
|
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine
|
|
// nodes. Mapping is only valid at the root of each matched subtree.
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
|
|
// If you have too many nodes, or if matching has failed, bail out
|
|
check_node_count(0, "out of nodes matching instructions");
|
|
if (failing()) {
|
|
return;
|
|
}
|
|
|
|
print_method(PHASE_MATCHING, 2);
|
|
|
|
// Build a proper-looking CFG
|
|
PhaseCFG cfg(node_arena(), root(), matcher);
|
|
_cfg = &cfg;
|
|
{
|
|
TracePhase tp("scheduler", &timers[_t_scheduler]);
|
|
bool success = cfg.do_global_code_motion();
|
|
if (!success) {
|
|
return;
|
|
}
|
|
|
|
print_method(PHASE_GLOBAL_CODE_MOTION, 2);
|
|
NOT_PRODUCT( verify_graph_edges(); )
|
|
debug_only( cfg.verify(); )
|
|
}
|
|
|
|
PhaseChaitin regalloc(unique(), cfg, matcher, false);
|
|
_regalloc = ®alloc;
|
|
{
|
|
TracePhase tp("regalloc", &timers[_t_registerAllocation]);
|
|
// Perform register allocation. After Chaitin, use-def chains are
|
|
// no longer accurate (at spill code) and so must be ignored.
|
|
// Node->LRG->reg mappings are still accurate.
|
|
_regalloc->Register_Allocate();
|
|
|
|
// Bail out if the allocator builds too many nodes
|
|
if (failing()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Prior to register allocation we kept empty basic blocks in case the
|
|
// the allocator needed a place to spill. After register allocation we
|
|
// are not adding any new instructions. If any basic block is empty, we
|
|
// can now safely remove it.
|
|
{
|
|
TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
|
|
cfg.remove_empty_blocks();
|
|
if (do_freq_based_layout()) {
|
|
PhaseBlockLayout layout(cfg);
|
|
} else {
|
|
cfg.set_loop_alignment();
|
|
}
|
|
cfg.fixup_flow();
|
|
}
|
|
|
|
// Apply peephole optimizations
|
|
if( OptoPeephole ) {
|
|
TracePhase tp("peephole", &timers[_t_peephole]);
|
|
PhasePeephole peep( _regalloc, cfg);
|
|
peep.do_transform();
|
|
}
|
|
|
|
// Do late expand if CPU requires this.
|
|
if (Matcher::require_postalloc_expand) {
|
|
TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
|
|
cfg.postalloc_expand(_regalloc);
|
|
}
|
|
|
|
// Convert Nodes to instruction bits in a buffer
|
|
{
|
|
TracePhase tp("output", &timers[_t_output]);
|
|
PhaseOutput output;
|
|
output.Output();
|
|
if (failing()) return;
|
|
output.install();
|
|
}
|
|
|
|
print_method(PHASE_FINAL_CODE);
|
|
|
|
// He's dead, Jim.
|
|
_cfg = (PhaseCFG*)((intptr_t)0xdeadbeef);
|
|
_regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
|
|
}
|
|
|
|
//------------------------------Final_Reshape_Counts---------------------------
|
|
// This class defines counters to help identify when a method
|
|
// may/must be executed using hardware with only 24-bit precision.
|
|
struct Final_Reshape_Counts : public StackObj {
|
|
int _call_count; // count non-inlined 'common' calls
|
|
int _float_count; // count float ops requiring 24-bit precision
|
|
int _double_count; // count double ops requiring more precision
|
|
int _java_call_count; // count non-inlined 'java' calls
|
|
int _inner_loop_count; // count loops which need alignment
|
|
VectorSet _visited; // Visitation flags
|
|
Node_List _tests; // Set of IfNodes & PCTableNodes
|
|
|
|
Final_Reshape_Counts() :
|
|
_call_count(0), _float_count(0), _double_count(0),
|
|
_java_call_count(0), _inner_loop_count(0) { }
|
|
|
|
void inc_call_count () { _call_count ++; }
|
|
void inc_float_count () { _float_count ++; }
|
|
void inc_double_count() { _double_count++; }
|
|
void inc_java_call_count() { _java_call_count++; }
|
|
void inc_inner_loop_count() { _inner_loop_count++; }
|
|
|
|
int get_call_count () const { return _call_count ; }
|
|
int get_float_count () const { return _float_count ; }
|
|
int get_double_count() const { return _double_count; }
|
|
int get_java_call_count() const { return _java_call_count; }
|
|
int get_inner_loop_count() const { return _inner_loop_count; }
|
|
};
|
|
|
|
// Eliminate trivially redundant StoreCMs and accumulate their
|
|
// precedence edges.
|
|
void Compile::eliminate_redundant_card_marks(Node* n) {
|
|
assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
|
|
if (n->in(MemNode::Address)->outcnt() > 1) {
|
|
// There are multiple users of the same address so it might be
|
|
// possible to eliminate some of the StoreCMs
|
|
Node* mem = n->in(MemNode::Memory);
|
|
Node* adr = n->in(MemNode::Address);
|
|
Node* val = n->in(MemNode::ValueIn);
|
|
Node* prev = n;
|
|
bool done = false;
|
|
// Walk the chain of StoreCMs eliminating ones that match. As
|
|
// long as it's a chain of single users then the optimization is
|
|
// safe. Eliminating partially redundant StoreCMs would require
|
|
// cloning copies down the other paths.
|
|
while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
|
|
if (adr == mem->in(MemNode::Address) &&
|
|
val == mem->in(MemNode::ValueIn)) {
|
|
// redundant StoreCM
|
|
if (mem->req() > MemNode::OopStore) {
|
|
// Hasn't been processed by this code yet.
|
|
n->add_prec(mem->in(MemNode::OopStore));
|
|
} else {
|
|
// Already converted to precedence edge
|
|
for (uint i = mem->req(); i < mem->len(); i++) {
|
|
// Accumulate any precedence edges
|
|
if (mem->in(i) != NULL) {
|
|
n->add_prec(mem->in(i));
|
|
}
|
|
}
|
|
// Everything above this point has been processed.
|
|
done = true;
|
|
}
|
|
// Eliminate the previous StoreCM
|
|
prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
|
|
assert(mem->outcnt() == 0, "should be dead");
|
|
mem->disconnect_inputs(this);
|
|
} else {
|
|
prev = mem;
|
|
}
|
|
mem = prev->in(MemNode::Memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------final_graph_reshaping_impl----------------------
|
|
// Implement items 1-5 from final_graph_reshaping below.
|
|
void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
|
|
|
|
if ( n->outcnt() == 0 ) return; // dead node
|
|
uint nop = n->Opcode();
|
|
|
|
// Check for 2-input instruction with "last use" on right input.
|
|
// Swap to left input. Implements item (2).
|
|
if( n->req() == 3 && // two-input instruction
|
|
n->in(1)->outcnt() > 1 && // left use is NOT a last use
|
|
(!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
|
|
n->in(2)->outcnt() == 1 &&// right use IS a last use
|
|
!n->in(2)->is_Con() ) { // right use is not a constant
|
|
// Check for commutative opcode
|
|
switch( nop ) {
|
|
case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
|
|
case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD:
|
|
case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD:
|
|
case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
|
|
case Op_AndL: case Op_XorL: case Op_OrL:
|
|
case Op_AndI: case Op_XorI: case Op_OrI: {
|
|
// Move "last use" input to left by swapping inputs
|
|
n->swap_edges(1, 2);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if( n->is_Mem() ) {
|
|
int alias_idx = get_alias_index(n->as_Mem()->adr_type());
|
|
assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
|
|
// oop will be recorded in oop map if load crosses safepoint
|
|
n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
|
|
LoadNode::is_immutable_value(n->in(MemNode::Address))),
|
|
"raw memory operations should have control edge");
|
|
}
|
|
if (n->is_MemBar()) {
|
|
MemBarNode* mb = n->as_MemBar();
|
|
if (mb->trailing_store() || mb->trailing_load_store()) {
|
|
assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
|
|
Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
|
|
assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
|
|
(mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
|
|
} else if (mb->leading()) {
|
|
assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
|
|
}
|
|
}
|
|
#endif
|
|
// Count FPU ops and common calls, implements item (3)
|
|
bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
|
|
if (!gc_handled) {
|
|
final_graph_reshaping_main_switch(n, frc, nop);
|
|
}
|
|
|
|
// Collect CFG split points
|
|
if (n->is_MultiBranch() && !n->is_RangeCheck()) {
|
|
frc._tests.push(n);
|
|
}
|
|
}
|
|
|
|
void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
|
|
switch( nop ) {
|
|
// Count all float operations that may use FPU
|
|
case Op_AddF:
|
|
case Op_SubF:
|
|
case Op_MulF:
|
|
case Op_DivF:
|
|
case Op_NegF:
|
|
case Op_ModF:
|
|
case Op_ConvI2F:
|
|
case Op_ConF:
|
|
case Op_CmpF:
|
|
case Op_CmpF3:
|
|
case Op_StoreF:
|
|
case Op_LoadF:
|
|
// case Op_ConvL2F: // longs are split into 32-bit halves
|
|
frc.inc_float_count();
|
|
break;
|
|
|
|
case Op_ConvF2D:
|
|
case Op_ConvD2F:
|
|
frc.inc_float_count();
|
|
frc.inc_double_count();
|
|
break;
|
|
|
|
// Count all double operations that may use FPU
|
|
case Op_AddD:
|
|
case Op_SubD:
|
|
case Op_MulD:
|
|
case Op_DivD:
|
|
case Op_NegD:
|
|
case Op_ModD:
|
|
case Op_ConvI2D:
|
|
case Op_ConvD2I:
|
|
// case Op_ConvL2D: // handled by leaf call
|
|
// case Op_ConvD2L: // handled by leaf call
|
|
case Op_ConD:
|
|
case Op_CmpD:
|
|
case Op_CmpD3:
|
|
case Op_StoreD:
|
|
case Op_LoadD:
|
|
case Op_LoadD_unaligned:
|
|
frc.inc_double_count();
|
|
break;
|
|
case Op_Opaque1: // Remove Opaque Nodes before matching
|
|
case Op_Opaque2: // Remove Opaque Nodes before matching
|
|
case Op_Opaque3:
|
|
n->subsume_by(n->in(1), this);
|
|
break;
|
|
case Op_CallStaticJava:
|
|
case Op_CallJava:
|
|
case Op_CallDynamicJava:
|
|
frc.inc_java_call_count(); // Count java call site;
|
|
case Op_CallRuntime:
|
|
case Op_CallLeaf:
|
|
case Op_CallLeafNoFP: {
|
|
assert (n->is_Call(), "");
|
|
CallNode *call = n->as_Call();
|
|
// Count call sites where the FP mode bit would have to be flipped.
|
|
// Do not count uncommon runtime calls:
|
|
// uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
|
|
// _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
|
|
if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
|
|
frc.inc_call_count(); // Count the call site
|
|
} else { // See if uncommon argument is shared
|
|
Node *n = call->in(TypeFunc::Parms);
|
|
int nop = n->Opcode();
|
|
// Clone shared simple arguments to uncommon calls, item (1).
|
|
if (n->outcnt() > 1 &&
|
|
!n->is_Proj() &&
|
|
nop != Op_CreateEx &&
|
|
nop != Op_CheckCastPP &&
|
|
nop != Op_DecodeN &&
|
|
nop != Op_DecodeNKlass &&
|
|
!n->is_Mem() &&
|
|
!n->is_Phi()) {
|
|
Node *x = n->clone();
|
|
call->set_req(TypeFunc::Parms, x);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Op_StoreCM:
|
|
{
|
|
// Convert OopStore dependence into precedence edge
|
|
Node* prec = n->in(MemNode::OopStore);
|
|
n->del_req(MemNode::OopStore);
|
|
n->add_prec(prec);
|
|
eliminate_redundant_card_marks(n);
|
|
}
|
|
|
|
// fall through
|
|
|
|
case Op_StoreB:
|
|
case Op_StoreC:
|
|
case Op_StorePConditional:
|
|
case Op_StoreI:
|
|
case Op_StoreL:
|
|
case Op_StoreIConditional:
|
|
case Op_StoreLConditional:
|
|
case Op_CompareAndSwapB:
|
|
case Op_CompareAndSwapS:
|
|
case Op_CompareAndSwapI:
|
|
case Op_CompareAndSwapL:
|
|
case Op_CompareAndSwapP:
|
|
case Op_CompareAndSwapN:
|
|
case Op_WeakCompareAndSwapB:
|
|
case Op_WeakCompareAndSwapS:
|
|
case Op_WeakCompareAndSwapI:
|
|
case Op_WeakCompareAndSwapL:
|
|
case Op_WeakCompareAndSwapP:
|
|
case Op_WeakCompareAndSwapN:
|
|
case Op_CompareAndExchangeB:
|
|
case Op_CompareAndExchangeS:
|
|
case Op_CompareAndExchangeI:
|
|
case Op_CompareAndExchangeL:
|
|
case Op_CompareAndExchangeP:
|
|
case Op_CompareAndExchangeN:
|
|
case Op_GetAndAddS:
|
|
case Op_GetAndAddB:
|
|
case Op_GetAndAddI:
|
|
case Op_GetAndAddL:
|
|
case Op_GetAndSetS:
|
|
case Op_GetAndSetB:
|
|
case Op_GetAndSetI:
|
|
case Op_GetAndSetL:
|
|
case Op_GetAndSetP:
|
|
case Op_GetAndSetN:
|
|
case Op_StoreP:
|
|
case Op_StoreN:
|
|
case Op_StoreNKlass:
|
|
case Op_LoadB:
|
|
case Op_LoadUB:
|
|
case Op_LoadUS:
|
|
case Op_LoadI:
|
|
case Op_LoadKlass:
|
|
case Op_LoadNKlass:
|
|
case Op_LoadL:
|
|
case Op_LoadL_unaligned:
|
|
case Op_LoadPLocked:
|
|
case Op_LoadP:
|
|
case Op_LoadN:
|
|
case Op_LoadRange:
|
|
case Op_LoadS:
|
|
break;
|
|
|
|
case Op_AddP: { // Assert sane base pointers
|
|
Node *addp = n->in(AddPNode::Address);
|
|
assert( !addp->is_AddP() ||
|
|
addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
|
|
addp->in(AddPNode::Base) == n->in(AddPNode::Base),
|
|
"Base pointers must match (addp %u)", addp->_idx );
|
|
#ifdef _LP64
|
|
if ((UseCompressedOops || UseCompressedClassPointers) &&
|
|
addp->Opcode() == Op_ConP &&
|
|
addp == n->in(AddPNode::Base) &&
|
|
n->in(AddPNode::Offset)->is_Con()) {
|
|
// If the transformation of ConP to ConN+DecodeN is beneficial depends
|
|
// on the platform and on the compressed oops mode.
|
|
// Use addressing with narrow klass to load with offset on x86.
|
|
// Some platforms can use the constant pool to load ConP.
|
|
// Do this transformation here since IGVN will convert ConN back to ConP.
|
|
const Type* t = addp->bottom_type();
|
|
bool is_oop = t->isa_oopptr() != NULL;
|
|
bool is_klass = t->isa_klassptr() != NULL;
|
|
|
|
if ((is_oop && Matcher::const_oop_prefer_decode() ) ||
|
|
(is_klass && Matcher::const_klass_prefer_decode())) {
|
|
Node* nn = NULL;
|
|
|
|
int op = is_oop ? Op_ConN : Op_ConNKlass;
|
|
|
|
// Look for existing ConN node of the same exact type.
|
|
Node* r = root();
|
|
uint cnt = r->outcnt();
|
|
for (uint i = 0; i < cnt; i++) {
|
|
Node* m = r->raw_out(i);
|
|
if (m!= NULL && m->Opcode() == op &&
|
|
m->bottom_type()->make_ptr() == t) {
|
|
nn = m;
|
|
break;
|
|
}
|
|
}
|
|
if (nn != NULL) {
|
|
// Decode a narrow oop to match address
|
|
// [R12 + narrow_oop_reg<<3 + offset]
|
|
if (is_oop) {
|
|
nn = new DecodeNNode(nn, t);
|
|
} else {
|
|
nn = new DecodeNKlassNode(nn, t);
|
|
}
|
|
// Check for succeeding AddP which uses the same Base.
|
|
// Otherwise we will run into the assertion above when visiting that guy.
|
|
for (uint i = 0; i < n->outcnt(); ++i) {
|
|
Node *out_i = n->raw_out(i);
|
|
if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
|
|
out_i->set_req(AddPNode::Base, nn);
|
|
#ifdef ASSERT
|
|
for (uint j = 0; j < out_i->outcnt(); ++j) {
|
|
Node *out_j = out_i->raw_out(j);
|
|
assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
|
|
"more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
n->set_req(AddPNode::Base, nn);
|
|
n->set_req(AddPNode::Address, nn);
|
|
if (addp->outcnt() == 0) {
|
|
addp->disconnect_inputs(this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
// platform dependent reshaping of the address expression
|
|
reshape_address(n->as_AddP());
|
|
break;
|
|
}
|
|
|
|
case Op_CastPP: {
|
|
// Remove CastPP nodes to gain more freedom during scheduling but
|
|
// keep the dependency they encode as control or precedence edges
|
|
// (if control is set already) on memory operations. Some CastPP
|
|
// nodes don't have a control (don't carry a dependency): skip
|
|
// those.
|
|
if (n->in(0) != NULL) {
|
|
ResourceMark rm;
|
|
Unique_Node_List wq;
|
|
wq.push(n);
|
|
for (uint next = 0; next < wq.size(); ++next) {
|
|
Node *m = wq.at(next);
|
|
for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
|
|
Node* use = m->fast_out(i);
|
|
if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
|
|
use->ensure_control_or_add_prec(n->in(0));
|
|
} else {
|
|
switch(use->Opcode()) {
|
|
case Op_AddP:
|
|
case Op_DecodeN:
|
|
case Op_DecodeNKlass:
|
|
case Op_CheckCastPP:
|
|
case Op_CastPP:
|
|
wq.push(use);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
|
|
if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
|
|
Node* in1 = n->in(1);
|
|
const Type* t = n->bottom_type();
|
|
Node* new_in1 = in1->clone();
|
|
new_in1->as_DecodeN()->set_type(t);
|
|
|
|
if (!Matcher::narrow_oop_use_complex_address()) {
|
|
//
|
|
// x86, ARM and friends can handle 2 adds in addressing mode
|
|
// and Matcher can fold a DecodeN node into address by using
|
|
// a narrow oop directly and do implicit NULL check in address:
|
|
//
|
|
// [R12 + narrow_oop_reg<<3 + offset]
|
|
// NullCheck narrow_oop_reg
|
|
//
|
|
// On other platforms (Sparc) we have to keep new DecodeN node and
|
|
// use it to do implicit NULL check in address:
|
|
//
|
|
// decode_not_null narrow_oop_reg, base_reg
|
|
// [base_reg + offset]
|
|
// NullCheck base_reg
|
|
//
|
|
// Pin the new DecodeN node to non-null path on these platform (Sparc)
|
|
// to keep the information to which NULL check the new DecodeN node
|
|
// corresponds to use it as value in implicit_null_check().
|
|
//
|
|
new_in1->set_req(0, n->in(0));
|
|
}
|
|
|
|
n->subsume_by(new_in1, this);
|
|
if (in1->outcnt() == 0) {
|
|
in1->disconnect_inputs(this);
|
|
}
|
|
} else {
|
|
n->subsume_by(n->in(1), this);
|
|
if (n->outcnt() == 0) {
|
|
n->disconnect_inputs(this);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#ifdef _LP64
|
|
case Op_CmpP:
|
|
// Do this transformation here to preserve CmpPNode::sub() and
|
|
// other TypePtr related Ideal optimizations (for example, ptr nullness).
|
|
if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
|
|
Node* in1 = n->in(1);
|
|
Node* in2 = n->in(2);
|
|
if (!in1->is_DecodeNarrowPtr()) {
|
|
in2 = in1;
|
|
in1 = n->in(2);
|
|
}
|
|
assert(in1->is_DecodeNarrowPtr(), "sanity");
|
|
|
|
Node* new_in2 = NULL;
|
|
if (in2->is_DecodeNarrowPtr()) {
|
|
assert(in2->Opcode() == in1->Opcode(), "must be same node type");
|
|
new_in2 = in2->in(1);
|
|
} else if (in2->Opcode() == Op_ConP) {
|
|
const Type* t = in2->bottom_type();
|
|
if (t == TypePtr::NULL_PTR) {
|
|
assert(in1->is_DecodeN(), "compare klass to null?");
|
|
// Don't convert CmpP null check into CmpN if compressed
|
|
// oops implicit null check is not generated.
|
|
// This will allow to generate normal oop implicit null check.
|
|
if (Matcher::gen_narrow_oop_implicit_null_checks())
|
|
new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
|
|
//
|
|
// This transformation together with CastPP transformation above
|
|
// will generated code for implicit NULL checks for compressed oops.
|
|
//
|
|
// The original code after Optimize()
|
|
//
|
|
// LoadN memory, narrow_oop_reg
|
|
// decode narrow_oop_reg, base_reg
|
|
// CmpP base_reg, NULL
|
|
// CastPP base_reg // NotNull
|
|
// Load [base_reg + offset], val_reg
|
|
//
|
|
// after these transformations will be
|
|
//
|
|
// LoadN memory, narrow_oop_reg
|
|
// CmpN narrow_oop_reg, NULL
|
|
// decode_not_null narrow_oop_reg, base_reg
|
|
// Load [base_reg + offset], val_reg
|
|
//
|
|
// and the uncommon path (== NULL) will use narrow_oop_reg directly
|
|
// since narrow oops can be used in debug info now (see the code in
|
|
// final_graph_reshaping_walk()).
|
|
//
|
|
// At the end the code will be matched to
|
|
// on x86:
|
|
//
|
|
// Load_narrow_oop memory, narrow_oop_reg
|
|
// Load [R12 + narrow_oop_reg<<3 + offset], val_reg
|
|
// NullCheck narrow_oop_reg
|
|
//
|
|
// and on sparc:
|
|
//
|
|
// Load_narrow_oop memory, narrow_oop_reg
|
|
// decode_not_null narrow_oop_reg, base_reg
|
|
// Load [base_reg + offset], val_reg
|
|
// NullCheck base_reg
|
|
//
|
|
} else if (t->isa_oopptr()) {
|
|
new_in2 = ConNode::make(t->make_narrowoop());
|
|
} else if (t->isa_klassptr()) {
|
|
new_in2 = ConNode::make(t->make_narrowklass());
|
|
}
|
|
}
|
|
if (new_in2 != NULL) {
|
|
Node* cmpN = new CmpNNode(in1->in(1), new_in2);
|
|
n->subsume_by(cmpN, this);
|
|
if (in1->outcnt() == 0) {
|
|
in1->disconnect_inputs(this);
|
|
}
|
|
if (in2->outcnt() == 0) {
|
|
in2->disconnect_inputs(this);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Op_DecodeN:
|
|
case Op_DecodeNKlass:
|
|
assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
|
|
// DecodeN could be pinned when it can't be fold into
|
|
// an address expression, see the code for Op_CastPP above.
|
|
assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
|
|
break;
|
|
|
|
case Op_EncodeP:
|
|
case Op_EncodePKlass: {
|
|
Node* in1 = n->in(1);
|
|
if (in1->is_DecodeNarrowPtr()) {
|
|
n->subsume_by(in1->in(1), this);
|
|
} else if (in1->Opcode() == Op_ConP) {
|
|
const Type* t = in1->bottom_type();
|
|
if (t == TypePtr::NULL_PTR) {
|
|
assert(t->isa_oopptr(), "null klass?");
|
|
n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
|
|
} else if (t->isa_oopptr()) {
|
|
n->subsume_by(ConNode::make(t->make_narrowoop()), this);
|
|
} else if (t->isa_klassptr()) {
|
|
n->subsume_by(ConNode::make(t->make_narrowklass()), this);
|
|
}
|
|
}
|
|
if (in1->outcnt() == 0) {
|
|
in1->disconnect_inputs(this);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Op_Proj: {
|
|
if (OptimizeStringConcat) {
|
|
ProjNode* p = n->as_Proj();
|
|
if (p->_is_io_use) {
|
|
// Separate projections were used for the exception path which
|
|
// are normally removed by a late inline. If it wasn't inlined
|
|
// then they will hang around and should just be replaced with
|
|
// the original one.
|
|
Node* proj = NULL;
|
|
// Replace with just one
|
|
for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
|
|
Node *use = i.get();
|
|
if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
|
|
proj = use;
|
|
break;
|
|
}
|
|
}
|
|
assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
|
|
if (proj != NULL) {
|
|
p->subsume_by(proj, this);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Op_Phi:
|
|
if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
|
|
// The EncodeP optimization may create Phi with the same edges
|
|
// for all paths. It is not handled well by Register Allocator.
|
|
Node* unique_in = n->in(1);
|
|
assert(unique_in != NULL, "");
|
|
uint cnt = n->req();
|
|
for (uint i = 2; i < cnt; i++) {
|
|
Node* m = n->in(i);
|
|
assert(m != NULL, "");
|
|
if (unique_in != m)
|
|
unique_in = NULL;
|
|
}
|
|
if (unique_in != NULL) {
|
|
n->subsume_by(unique_in, this);
|
|
}
|
|
}
|
|
break;
|
|
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
case Op_CastII:
|
|
// Verify that all range check dependent CastII nodes were removed.
|
|
if (n->isa_CastII()->has_range_check()) {
|
|
n->dump(3);
|
|
assert(false, "Range check dependent CastII node was not removed");
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case Op_ModI:
|
|
if (UseDivMod) {
|
|
// Check if a%b and a/b both exist
|
|
Node* d = n->find_similar(Op_DivI);
|
|
if (d) {
|
|
// Replace them with a fused divmod if supported
|
|
if (Matcher::has_match_rule(Op_DivModI)) {
|
|
DivModINode* divmod = DivModINode::make(n);
|
|
d->subsume_by(divmod->div_proj(), this);
|
|
n->subsume_by(divmod->mod_proj(), this);
|
|
} else {
|
|
// replace a%b with a-((a/b)*b)
|
|
Node* mult = new MulINode(d, d->in(2));
|
|
Node* sub = new SubINode(d->in(1), mult);
|
|
n->subsume_by(sub, this);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Op_ModL:
|
|
if (UseDivMod) {
|
|
// Check if a%b and a/b both exist
|
|
Node* d = n->find_similar(Op_DivL);
|
|
if (d) {
|
|
// Replace them with a fused divmod if supported
|
|
if (Matcher::has_match_rule(Op_DivModL)) {
|
|
DivModLNode* divmod = DivModLNode::make(n);
|
|
d->subsume_by(divmod->div_proj(), this);
|
|
n->subsume_by(divmod->mod_proj(), this);
|
|
} else {
|
|
// replace a%b with a-((a/b)*b)
|
|
Node* mult = new MulLNode(d, d->in(2));
|
|
Node* sub = new SubLNode(d->in(1), mult);
|
|
n->subsume_by(sub, this);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Op_LoadVector:
|
|
case Op_StoreVector:
|
|
case Op_LoadVectorGather:
|
|
case Op_StoreVectorScatter:
|
|
break;
|
|
|
|
case Op_AddReductionVI:
|
|
case Op_AddReductionVL:
|
|
case Op_AddReductionVF:
|
|
case Op_AddReductionVD:
|
|
case Op_MulReductionVI:
|
|
case Op_MulReductionVL:
|
|
case Op_MulReductionVF:
|
|
case Op_MulReductionVD:
|
|
case Op_MinReductionV:
|
|
case Op_MaxReductionV:
|
|
case Op_AndReductionV:
|
|
case Op_OrReductionV:
|
|
case Op_XorReductionV:
|
|
break;
|
|
|
|
case Op_PackB:
|
|
case Op_PackS:
|
|
case Op_PackI:
|
|
case Op_PackF:
|
|
case Op_PackL:
|
|
case Op_PackD:
|
|
if (n->req()-1 > 2) {
|
|
// Replace many operand PackNodes with a binary tree for matching
|
|
PackNode* p = (PackNode*) n;
|
|
Node* btp = p->binary_tree_pack(1, n->req());
|
|
n->subsume_by(btp, this);
|
|
}
|
|
break;
|
|
case Op_Loop:
|
|
assert(!n->as_Loop()->is_transformed_long_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
|
|
case Op_CountedLoop:
|
|
case Op_OuterStripMinedLoop:
|
|
if (n->as_Loop()->is_inner_loop()) {
|
|
frc.inc_inner_loop_count();
|
|
}
|
|
n->as_Loop()->verify_strip_mined(0);
|
|
break;
|
|
case Op_LShiftI:
|
|
case Op_RShiftI:
|
|
case Op_URShiftI:
|
|
case Op_LShiftL:
|
|
case Op_RShiftL:
|
|
case Op_URShiftL:
|
|
if (Matcher::need_masked_shift_count) {
|
|
// The cpu's shift instructions don't restrict the count to the
|
|
// lower 5/6 bits. We need to do the masking ourselves.
|
|
Node* in2 = n->in(2);
|
|
juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
|
|
const TypeInt* t = in2->find_int_type();
|
|
if (t != NULL && t->is_con()) {
|
|
juint shift = t->get_con();
|
|
if (shift > mask) { // Unsigned cmp
|
|
n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
|
|
}
|
|
} else {
|
|
if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
|
|
Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
|
|
n->set_req(2, shift);
|
|
}
|
|
}
|
|
if (in2->outcnt() == 0) { // Remove dead node
|
|
in2->disconnect_inputs(this);
|
|
}
|
|
}
|
|
break;
|
|
case Op_MemBarStoreStore:
|
|
case Op_MemBarRelease:
|
|
// Break the link with AllocateNode: it is no longer useful and
|
|
// confuses register allocation.
|
|
if (n->req() > MemBarNode::Precedent) {
|
|
n->set_req(MemBarNode::Precedent, top());
|
|
}
|
|
break;
|
|
case Op_MemBarAcquire: {
|
|
if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
|
|
// At parse time, the trailing MemBarAcquire for a volatile load
|
|
// is created with an edge to the load. After optimizations,
|
|
// that input may be a chain of Phis. If those phis have no
|
|
// other use, then the MemBarAcquire keeps them alive and
|
|
// register allocation can be confused.
|
|
ResourceMark rm;
|
|
Unique_Node_List wq;
|
|
wq.push(n->in(MemBarNode::Precedent));
|
|
n->set_req(MemBarNode::Precedent, top());
|
|
while (wq.size() > 0) {
|
|
Node* m = wq.pop();
|
|
if (m->outcnt() == 0) {
|
|
for (uint j = 0; j < m->req(); j++) {
|
|
Node* in = m->in(j);
|
|
if (in != NULL) {
|
|
wq.push(in);
|
|
}
|
|
}
|
|
m->disconnect_inputs(this);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Op_RangeCheck: {
|
|
RangeCheckNode* rc = n->as_RangeCheck();
|
|
Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
|
|
n->subsume_by(iff, this);
|
|
frc._tests.push(iff);
|
|
break;
|
|
}
|
|
case Op_ConvI2L: {
|
|
if (!Matcher::convi2l_type_required) {
|
|
// Code generation on some platforms doesn't need accurate
|
|
// ConvI2L types. Widening the type can help remove redundant
|
|
// address computations.
|
|
n->as_Type()->set_type(TypeLong::INT);
|
|
ResourceMark rm;
|
|
Unique_Node_List wq;
|
|
wq.push(n);
|
|
for (uint next = 0; next < wq.size(); next++) {
|
|
Node *m = wq.at(next);
|
|
|
|
for(;;) {
|
|
// Loop over all nodes with identical inputs edges as m
|
|
Node* k = m->find_similar(m->Opcode());
|
|
if (k == NULL) {
|
|
break;
|
|
}
|
|
// Push their uses so we get a chance to remove node made
|
|
// redundant
|
|
for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
|
|
Node* u = k->fast_out(i);
|
|
if (u->Opcode() == Op_LShiftL ||
|
|
u->Opcode() == Op_AddL ||
|
|
u->Opcode() == Op_SubL ||
|
|
u->Opcode() == Op_AddP) {
|
|
wq.push(u);
|
|
}
|
|
}
|
|
// Replace all nodes with identical edges as m with m
|
|
k->subsume_by(m, this);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Op_CmpUL: {
|
|
if (!Matcher::has_match_rule(Op_CmpUL)) {
|
|
// No support for unsigned long comparisons
|
|
ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
|
|
Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
|
|
Node* orl = new OrLNode(n->in(1), sign_bit_mask);
|
|
ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
|
|
Node* andl = new AndLNode(orl, remove_sign_mask);
|
|
Node* cmp = new CmpLNode(andl, n->in(2));
|
|
n->subsume_by(cmp, this);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
assert(!n->is_Call(), "");
|
|
assert(!n->is_Mem(), "");
|
|
assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
|
|
break;
|
|
}
|
|
}
|
|
|
|
//------------------------------final_graph_reshaping_walk---------------------
|
|
// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
|
|
// requires that the walk visits a node's inputs before visiting the node.
|
|
void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
|
|
Unique_Node_List sfpt;
|
|
|
|
frc._visited.set(root->_idx); // first, mark node as visited
|
|
uint cnt = root->req();
|
|
Node *n = root;
|
|
uint i = 0;
|
|
while (true) {
|
|
if (i < cnt) {
|
|
// Place all non-visited non-null inputs onto stack
|
|
Node* m = n->in(i);
|
|
++i;
|
|
if (m != NULL && !frc._visited.test_set(m->_idx)) {
|
|
if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
|
|
// compute worst case interpreter size in case of a deoptimization
|
|
update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
|
|
|
|
sfpt.push(m);
|
|
}
|
|
cnt = m->req();
|
|
nstack.push(n, i); // put on stack parent and next input's index
|
|
n = m;
|
|
i = 0;
|
|
}
|
|
} else {
|
|
// Now do post-visit work
|
|
final_graph_reshaping_impl( n, frc );
|
|
if (nstack.is_empty())
|
|
break; // finished
|
|
n = nstack.node(); // Get node from stack
|
|
cnt = n->req();
|
|
i = nstack.index();
|
|
nstack.pop(); // Shift to the next node on stack
|
|
}
|
|
}
|
|
|
|
// Skip next transformation if compressed oops are not used.
|
|
if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
|
|
(!UseCompressedOops && !UseCompressedClassPointers))
|
|
return;
|
|
|
|
// Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
|
|
// It could be done for an uncommon traps or any safepoints/calls
|
|
// if the DecodeN/DecodeNKlass node is referenced only in a debug info.
|
|
while (sfpt.size() > 0) {
|
|
n = sfpt.pop();
|
|
JVMState *jvms = n->as_SafePoint()->jvms();
|
|
assert(jvms != NULL, "sanity");
|
|
int start = jvms->debug_start();
|
|
int end = n->req();
|
|
bool is_uncommon = (n->is_CallStaticJava() &&
|
|
n->as_CallStaticJava()->uncommon_trap_request() != 0);
|
|
for (int j = start; j < end; j++) {
|
|
Node* in = n->in(j);
|
|
if (in->is_DecodeNarrowPtr()) {
|
|
bool safe_to_skip = true;
|
|
if (!is_uncommon ) {
|
|
// Is it safe to skip?
|
|
for (uint i = 0; i < in->outcnt(); i++) {
|
|
Node* u = in->raw_out(i);
|
|
if (!u->is_SafePoint() ||
|
|
(u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
|
|
safe_to_skip = false;
|
|
}
|
|
}
|
|
}
|
|
if (safe_to_skip) {
|
|
n->set_req(j, in->in(1));
|
|
}
|
|
if (in->outcnt() == 0) {
|
|
in->disconnect_inputs(this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------final_graph_reshaping--------------------------
|
|
// Final Graph Reshaping.
|
|
//
|
|
// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
|
|
// and not commoned up and forced early. Must come after regular
|
|
// optimizations to avoid GVN undoing the cloning. Clone constant
|
|
// inputs to Loop Phis; these will be split by the allocator anyways.
|
|
// Remove Opaque nodes.
|
|
// (2) Move last-uses by commutative operations to the left input to encourage
|
|
// Intel update-in-place two-address operations and better register usage
|
|
// on RISCs. Must come after regular optimizations to avoid GVN Ideal
|
|
// calls canonicalizing them back.
|
|
// (3) Count the number of double-precision FP ops, single-precision FP ops
|
|
// and call sites. On Intel, we can get correct rounding either by
|
|
// forcing singles to memory (requires extra stores and loads after each
|
|
// FP bytecode) or we can set a rounding mode bit (requires setting and
|
|
// clearing the mode bit around call sites). The mode bit is only used
|
|
// if the relative frequency of single FP ops to calls is low enough.
|
|
// This is a key transform for SPEC mpeg_audio.
|
|
// (4) Detect infinite loops; blobs of code reachable from above but not
|
|
// below. Several of the Code_Gen algorithms fail on such code shapes,
|
|
// so we simply bail out. Happens a lot in ZKM.jar, but also happens
|
|
// from time to time in other codes (such as -Xcomp finalizer loops, etc).
|
|
// Detection is by looking for IfNodes where only 1 projection is
|
|
// reachable from below or CatchNodes missing some targets.
|
|
// (5) Assert for insane oop offsets in debug mode.
|
|
|
|
bool Compile::final_graph_reshaping() {
|
|
// an infinite loop may have been eliminated by the optimizer,
|
|
// in which case the graph will be empty.
|
|
if (root()->req() == 1) {
|
|
record_method_not_compilable("trivial infinite loop");
|
|
return true;
|
|
}
|
|
|
|
// Expensive nodes have their control input set to prevent the GVN
|
|
// from freely commoning them. There's no GVN beyond this point so
|
|
// no need to keep the control input. We want the expensive nodes to
|
|
// be freely moved to the least frequent code path by gcm.
|
|
assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
|
|
for (int i = 0; i < expensive_count(); i++) {
|
|
_expensive_nodes.at(i)->set_req(0, NULL);
|
|
}
|
|
|
|
Final_Reshape_Counts frc;
|
|
|
|
// Visit everybody reachable!
|
|
// Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
|
|
Node_Stack nstack(live_nodes() >> 1);
|
|
final_graph_reshaping_walk(nstack, root(), frc);
|
|
|
|
// Check for unreachable (from below) code (i.e., infinite loops).
|
|
for( uint i = 0; i < frc._tests.size(); i++ ) {
|
|
MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
|
|
// Get number of CFG targets.
|
|
// Note that PCTables include exception targets after calls.
|
|
uint required_outcnt = n->required_outcnt();
|
|
if (n->outcnt() != required_outcnt) {
|
|
// Check for a few special cases. Rethrow Nodes never take the
|
|
// 'fall-thru' path, so expected kids is 1 less.
|
|
if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
|
|
if (n->in(0)->in(0)->is_Call()) {
|
|
CallNode *call = n->in(0)->in(0)->as_Call();
|
|
if (call->entry_point() == OptoRuntime::rethrow_stub()) {
|
|
required_outcnt--; // Rethrow always has 1 less kid
|
|
} else if (call->req() > TypeFunc::Parms &&
|
|
call->is_CallDynamicJava()) {
|
|
// Check for null receiver. In such case, the optimizer has
|
|
// detected that the virtual call will always result in a null
|
|
// pointer exception. The fall-through projection of this CatchNode
|
|
// will not be populated.
|
|
Node *arg0 = call->in(TypeFunc::Parms);
|
|
if (arg0->is_Type() &&
|
|
arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
|
|
required_outcnt--;
|
|
}
|
|
} else if (call->entry_point() == OptoRuntime::new_array_Java() &&
|
|
call->req() > TypeFunc::Parms+1 &&
|
|
call->is_CallStaticJava()) {
|
|
// Check for negative array length. In such case, the optimizer has
|
|
// detected that the allocation attempt will always result in an
|
|
// exception. There is no fall-through projection of this CatchNode .
|
|
Node *arg1 = call->in(TypeFunc::Parms+1);
|
|
if (arg1->is_Type() &&
|
|
arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
|
|
required_outcnt--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Recheck with a better notion of 'required_outcnt'
|
|
if (n->outcnt() != required_outcnt) {
|
|
record_method_not_compilable("malformed control flow");
|
|
return true; // Not all targets reachable!
|
|
}
|
|
}
|
|
// Check that I actually visited all kids. Unreached kids
|
|
// must be infinite loops.
|
|
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
|
|
if (!frc._visited.test(n->fast_out(j)->_idx)) {
|
|
record_method_not_compilable("infinite loop");
|
|
return true; // Found unvisited kid; must be unreach
|
|
}
|
|
|
|
// Here so verification code in final_graph_reshaping_walk()
|
|
// always see an OuterStripMinedLoopEnd
|
|
if (n->is_OuterStripMinedLoopEnd()) {
|
|
IfNode* init_iff = n->as_If();
|
|
Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
|
|
n->subsume_by(iff, this);
|
|
}
|
|
}
|
|
|
|
#ifdef IA32
|
|
// If original bytecodes contained a mixture of floats and doubles
|
|
// check if the optimizer has made it homogenous, item (3).
|
|
if (UseSSE == 0 &&
|
|
frc.get_float_count() > 32 &&
|
|
frc.get_double_count() == 0 &&
|
|
(10 * frc.get_call_count() < frc.get_float_count()) ) {
|
|
set_24_bit_selection_and_mode(false, true);
|
|
}
|
|
#endif // IA32
|
|
|
|
set_java_calls(frc.get_java_call_count());
|
|
set_inner_loops(frc.get_inner_loop_count());
|
|
|
|
// No infinite loops, no reason to bail out.
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------too_many_traps----------------------------------
|
|
// Report if there are too many traps at the current method and bci.
|
|
// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
|
|
bool Compile::too_many_traps(ciMethod* method,
|
|
int bci,
|
|
Deoptimization::DeoptReason reason) {
|
|
ciMethodData* md = method->method_data();
|
|
if (md->is_empty()) {
|
|
// Assume the trap has not occurred, or that it occurred only
|
|
// because of a transient condition during start-up in the interpreter.
|
|
return false;
|
|
}
|
|
ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
|
|
if (md->has_trap_at(bci, m, reason) != 0) {
|
|
// Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
|
|
// Also, if there are multiple reasons, or if there is no per-BCI record,
|
|
// assume the worst.
|
|
if (log())
|
|
log()->elem("observe trap='%s' count='%d'",
|
|
Deoptimization::trap_reason_name(reason),
|
|
md->trap_count(reason));
|
|
return true;
|
|
} else {
|
|
// Ignore method/bci and see if there have been too many globally.
|
|
return too_many_traps(reason, md);
|
|
}
|
|
}
|
|
|
|
// Less-accurate variant which does not require a method and bci.
|
|
bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
|
|
ciMethodData* logmd) {
|
|
if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
|
|
// Too many traps globally.
|
|
// Note that we use cumulative trap_count, not just md->trap_count.
|
|
if (log()) {
|
|
int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
|
|
log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
|
|
Deoptimization::trap_reason_name(reason),
|
|
mcount, trap_count(reason));
|
|
}
|
|
return true;
|
|
} else {
|
|
// The coast is clear.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//--------------------------too_many_recompiles--------------------------------
|
|
// Report if there are too many recompiles at the current method and bci.
|
|
// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
|
|
// Is not eager to return true, since this will cause the compiler to use
|
|
// Action_none for a trap point, to avoid too many recompilations.
|
|
bool Compile::too_many_recompiles(ciMethod* method,
|
|
int bci,
|
|
Deoptimization::DeoptReason reason) {
|
|
ciMethodData* md = method->method_data();
|
|
if (md->is_empty()) {
|
|
// Assume the trap has not occurred, or that it occurred only
|
|
// because of a transient condition during start-up in the interpreter.
|
|
return false;
|
|
}
|
|
// Pick a cutoff point well within PerBytecodeRecompilationCutoff.
|
|
uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
|
|
uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
|
|
Deoptimization::DeoptReason per_bc_reason
|
|
= Deoptimization::reason_recorded_per_bytecode_if_any(reason);
|
|
ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
|
|
if ((per_bc_reason == Deoptimization::Reason_none
|
|
|| md->has_trap_at(bci, m, reason) != 0)
|
|
// The trap frequency measure we care about is the recompile count:
|
|
&& md->trap_recompiled_at(bci, m)
|
|
&& md->overflow_recompile_count() >= bc_cutoff) {
|
|
// Do not emit a trap here if it has already caused recompilations.
|
|
// Also, if there are multiple reasons, or if there is no per-BCI record,
|
|
// assume the worst.
|
|
if (log())
|
|
log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
|
|
Deoptimization::trap_reason_name(reason),
|
|
md->trap_count(reason),
|
|
md->overflow_recompile_count());
|
|
return true;
|
|
} else if (trap_count(reason) != 0
|
|
&& decompile_count() >= m_cutoff) {
|
|
// Too many recompiles globally, and we have seen this sort of trap.
|
|
// Use cumulative decompile_count, not just md->decompile_count.
|
|
if (log())
|
|
log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
|
|
Deoptimization::trap_reason_name(reason),
|
|
md->trap_count(reason), trap_count(reason),
|
|
md->decompile_count(), decompile_count());
|
|
return true;
|
|
} else {
|
|
// The coast is clear.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Compute when not to trap. Used by matching trap based nodes and
|
|
// NullCheck optimization.
|
|
void Compile::set_allowed_deopt_reasons() {
|
|
_allowed_reasons = 0;
|
|
if (is_method_compilation()) {
|
|
for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
|
|
assert(rs < BitsPerInt, "recode bit map");
|
|
if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
|
|
_allowed_reasons |= nth_bit(rs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
|
|
return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
|
|
}
|
|
|
|
bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
|
|
return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
|
|
}
|
|
|
|
bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
|
|
if (holder->is_initialized()) {
|
|
return false;
|
|
}
|
|
if (holder->is_being_initialized()) {
|
|
if (accessing_method->holder() == holder) {
|
|
// Access inside a class. The barrier can be elided when access happens in <clinit>,
|
|
// <init>, or a static method. In all those cases, there was an initialization
|
|
// barrier on the holder klass passed.
|
|
if (accessing_method->is_static_initializer() ||
|
|
accessing_method->is_object_initializer() ||
|
|
accessing_method->is_static()) {
|
|
return false;
|
|
}
|
|
} else if (accessing_method->holder()->is_subclass_of(holder)) {
|
|
// Access from a subclass. The barrier can be elided only when access happens in <clinit>.
|
|
// In case of <init> or a static method, the barrier is on the subclass is not enough:
|
|
// child class can become fully initialized while its parent class is still being initialized.
|
|
if (accessing_method->is_static_initializer()) {
|
|
return false;
|
|
}
|
|
}
|
|
ciMethod* root = method(); // the root method of compilation
|
|
if (root != accessing_method) {
|
|
return needs_clinit_barrier(holder, root); // check access in the context of compilation root
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
//------------------------------verify_graph_edges---------------------------
|
|
// Walk the Graph and verify that there is a one-to-one correspondence
|
|
// between Use-Def edges and Def-Use edges in the graph.
|
|
void Compile::verify_graph_edges(bool no_dead_code) {
|
|
if (VerifyGraphEdges) {
|
|
Unique_Node_List visited;
|
|
// Call recursive graph walk to check edges
|
|
_root->verify_edges(visited);
|
|
if (no_dead_code) {
|
|
// Now make sure that no visited node is used by an unvisited node.
|
|
bool dead_nodes = false;
|
|
Unique_Node_List checked;
|
|
while (visited.size() > 0) {
|
|
Node* n = visited.pop();
|
|
checked.push(n);
|
|
for (uint i = 0; i < n->outcnt(); i++) {
|
|
Node* use = n->raw_out(i);
|
|
if (checked.member(use)) continue; // already checked
|
|
if (visited.member(use)) continue; // already in the graph
|
|
if (use->is_Con()) continue; // a dead ConNode is OK
|
|
// At this point, we have found a dead node which is DU-reachable.
|
|
if (!dead_nodes) {
|
|
tty->print_cr("*** Dead nodes reachable via DU edges:");
|
|
dead_nodes = true;
|
|
}
|
|
use->dump(2);
|
|
tty->print_cr("---");
|
|
checked.push(use); // No repeats; pretend it is now checked.
|
|
}
|
|
}
|
|
assert(!dead_nodes, "using nodes must be reachable from root");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// The Compile object keeps track of failure reasons separately from the ciEnv.
|
|
// This is required because there is not quite a 1-1 relation between the
|
|
// ciEnv and its compilation task and the Compile object. Note that one
|
|
// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
|
|
// to backtrack and retry without subsuming loads. Other than this backtracking
|
|
// behavior, the Compile's failure reason is quietly copied up to the ciEnv
|
|
// by the logic in C2Compiler.
|
|
void Compile::record_failure(const char* reason) {
|
|
if (log() != NULL) {
|
|
log()->elem("failure reason='%s' phase='compile'", reason);
|
|
}
|
|
if (_failure_reason == NULL) {
|
|
// Record the first failure reason.
|
|
_failure_reason = reason;
|
|
}
|
|
|
|
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
|
|
C->print_method(PHASE_FAILURE);
|
|
}
|
|
_root = NULL; // flush the graph, too
|
|
}
|
|
|
|
Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
|
|
: TraceTime(name, accumulator, CITime, CITimeVerbose),
|
|
_phase_name(name), _dolog(CITimeVerbose)
|
|
{
|
|
if (_dolog) {
|
|
C = Compile::current();
|
|
_log = C->log();
|
|
} else {
|
|
C = NULL;
|
|
_log = NULL;
|
|
}
|
|
if (_log != NULL) {
|
|
_log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
|
|
_log->stamp();
|
|
_log->end_head();
|
|
}
|
|
}
|
|
|
|
Compile::TracePhase::~TracePhase() {
|
|
|
|
C = Compile::current();
|
|
if (_dolog) {
|
|
_log = C->log();
|
|
} else {
|
|
_log = NULL;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if (PrintIdealNodeCount) {
|
|
tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
|
|
_phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
|
|
}
|
|
|
|
if (VerifyIdealNodeCount) {
|
|
Compile::current()->print_missing_nodes();
|
|
}
|
|
#endif
|
|
|
|
if (_log != NULL) {
|
|
_log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
|
|
}
|
|
}
|
|
|
|
//----------------------------static_subtype_check-----------------------------
|
|
// Shortcut important common cases when superklass is exact:
|
|
// (0) superklass is java.lang.Object (can occur in reflective code)
|
|
// (1) subklass is already limited to a subtype of superklass => always ok
|
|
// (2) subklass does not overlap with superklass => always fail
|
|
// (3) superklass has NO subtypes and we can check with a simple compare.
|
|
int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
|
|
if (StressReflectiveCode) {
|
|
return SSC_full_test; // Let caller generate the general case.
|
|
}
|
|
|
|
if (superk == env()->Object_klass()) {
|
|
return SSC_always_true; // (0) this test cannot fail
|
|
}
|
|
|
|
ciType* superelem = superk;
|
|
if (superelem->is_array_klass())
|
|
superelem = superelem->as_array_klass()->base_element_type();
|
|
|
|
if (!subk->is_interface()) { // cannot trust static interface types yet
|
|
if (subk->is_subtype_of(superk)) {
|
|
return SSC_always_true; // (1) false path dead; no dynamic test needed
|
|
}
|
|
if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
|
|
!superk->is_subtype_of(subk)) {
|
|
return SSC_always_false;
|
|
}
|
|
}
|
|
|
|
// If casting to an instance klass, it must have no subtypes
|
|
if (superk->is_interface()) {
|
|
// Cannot trust interfaces yet.
|
|
// %%% S.B. superk->nof_implementors() == 1
|
|
} else if (superelem->is_instance_klass()) {
|
|
ciInstanceKlass* ik = superelem->as_instance_klass();
|
|
if (!ik->has_subklass() && !ik->is_interface()) {
|
|
if (!ik->is_final()) {
|
|
// Add a dependency if there is a chance of a later subclass.
|
|
dependencies()->assert_leaf_type(ik);
|
|
}
|
|
return SSC_easy_test; // (3) caller can do a simple ptr comparison
|
|
}
|
|
} else {
|
|
// A primitive array type has no subtypes.
|
|
return SSC_easy_test; // (3) caller can do a simple ptr comparison
|
|
}
|
|
|
|
return SSC_full_test;
|
|
}
|
|
|
|
Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
|
|
#ifdef _LP64
|
|
// The scaled index operand to AddP must be a clean 64-bit value.
|
|
// Java allows a 32-bit int to be incremented to a negative
|
|
// value, which appears in a 64-bit register as a large
|
|
// positive number. Using that large positive number as an
|
|
// operand in pointer arithmetic has bad consequences.
|
|
// On the other hand, 32-bit overflow is rare, and the possibility
|
|
// can often be excluded, if we annotate the ConvI2L node with
|
|
// a type assertion that its value is known to be a small positive
|
|
// number. (The prior range check has ensured this.)
|
|
// This assertion is used by ConvI2LNode::Ideal.
|
|
int index_max = max_jint - 1; // array size is max_jint, index is one less
|
|
if (sizetype != NULL) index_max = sizetype->_hi - 1;
|
|
const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
|
|
idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
|
|
#endif
|
|
return idx;
|
|
}
|
|
|
|
// Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
|
|
Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
|
|
if (ctrl != NULL) {
|
|
// Express control dependency by a CastII node with a narrow type.
|
|
value = new CastIINode(value, itype, false, true /* range check dependency */);
|
|
// Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
|
|
// node from floating above the range check during loop optimizations. Otherwise, the
|
|
// ConvI2L node may be eliminated independently of the range check, causing the data path
|
|
// to become TOP while the control path is still there (although it's unreachable).
|
|
value->set_req(0, ctrl);
|
|
value = phase->transform(value);
|
|
}
|
|
const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
|
|
return phase->transform(new ConvI2LNode(value, ltype));
|
|
}
|
|
|
|
void Compile::print_inlining_stream_free() {
|
|
if (_print_inlining_stream != NULL) {
|
|
_print_inlining_stream->~stringStream();
|
|
_print_inlining_stream = NULL;
|
|
}
|
|
}
|
|
|
|
// The message about the current inlining is accumulated in
|
|
// _print_inlining_stream and transfered into the _print_inlining_list
|
|
// once we know whether inlining succeeds or not. For regular
|
|
// inlining, messages are appended to the buffer pointed by
|
|
// _print_inlining_idx in the _print_inlining_list. For late inlining,
|
|
// a new buffer is added after _print_inlining_idx in the list. This
|
|
// way we can update the inlining message for late inlining call site
|
|
// when the inlining is attempted again.
|
|
void Compile::print_inlining_init() {
|
|
if (print_inlining() || print_intrinsics()) {
|
|
// print_inlining_init is actually called several times.
|
|
print_inlining_stream_free();
|
|
_print_inlining_stream = new stringStream();
|
|
// Watch out: The memory initialized by the constructor call PrintInliningBuffer()
|
|
// will be copied into the only initial element. The default destructor of
|
|
// PrintInliningBuffer will be called when leaving the scope here. If it
|
|
// would destuct the enclosed stringStream _print_inlining_list[0]->_ss
|
|
// would be destructed, too!
|
|
_print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
|
|
}
|
|
}
|
|
|
|
void Compile::print_inlining_reinit() {
|
|
if (print_inlining() || print_intrinsics()) {
|
|
print_inlining_stream_free();
|
|
// Re allocate buffer when we change ResourceMark
|
|
_print_inlining_stream = new stringStream();
|
|
}
|
|
}
|
|
|
|
void Compile::print_inlining_reset() {
|
|
_print_inlining_stream->reset();
|
|
}
|
|
|
|
void Compile::print_inlining_commit() {
|
|
assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
|
|
// Transfer the message from _print_inlining_stream to the current
|
|
// _print_inlining_list buffer and clear _print_inlining_stream.
|
|
_print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
|
|
print_inlining_reset();
|
|
}
|
|
|
|
void Compile::print_inlining_push() {
|
|
// Add new buffer to the _print_inlining_list at current position
|
|
_print_inlining_idx++;
|
|
_print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
|
|
}
|
|
|
|
Compile::PrintInliningBuffer& Compile::print_inlining_current() {
|
|
return _print_inlining_list->at(_print_inlining_idx);
|
|
}
|
|
|
|
void Compile::print_inlining_update(CallGenerator* cg) {
|
|
if (print_inlining() || print_intrinsics()) {
|
|
if (!cg->is_late_inline()) {
|
|
if (print_inlining_current().cg() != NULL) {
|
|
print_inlining_push();
|
|
}
|
|
print_inlining_commit();
|
|
} else {
|
|
if (print_inlining_current().cg() != cg &&
|
|
(print_inlining_current().cg() != NULL ||
|
|
print_inlining_current().ss()->size() != 0)) {
|
|
print_inlining_push();
|
|
}
|
|
print_inlining_commit();
|
|
print_inlining_current().set_cg(cg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Compile::print_inlining_move_to(CallGenerator* cg) {
|
|
// We resume inlining at a late inlining call site. Locate the
|
|
// corresponding inlining buffer so that we can update it.
|
|
if (print_inlining()) {
|
|
for (int i = 0; i < _print_inlining_list->length(); i++) {
|
|
if (_print_inlining_list->adr_at(i)->cg() == cg) {
|
|
_print_inlining_idx = i;
|
|
return;
|
|
}
|
|
}
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void Compile::print_inlining_update_delayed(CallGenerator* cg) {
|
|
if (print_inlining()) {
|
|
assert(_print_inlining_stream->size() > 0, "missing inlining msg");
|
|
assert(print_inlining_current().cg() == cg, "wrong entry");
|
|
// replace message with new message
|
|
_print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
|
|
print_inlining_commit();
|
|
print_inlining_current().set_cg(cg);
|
|
}
|
|
}
|
|
|
|
void Compile::print_inlining_assert_ready() {
|
|
assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
|
|
}
|
|
|
|
void Compile::process_print_inlining() {
|
|
bool do_print_inlining = print_inlining() || print_intrinsics();
|
|
if (do_print_inlining || log() != NULL) {
|
|
// Print inlining message for candidates that we couldn't inline
|
|
// for lack of space
|
|
for (int i = 0; i < _late_inlines.length(); i++) {
|
|
CallGenerator* cg = _late_inlines.at(i);
|
|
if (!cg->is_mh_late_inline()) {
|
|
const char* msg = "live nodes > LiveNodeCountInliningCutoff";
|
|
if (do_print_inlining) {
|
|
cg->print_inlining_late(msg);
|
|
}
|
|
log_late_inline_failure(cg, msg);
|
|
}
|
|
}
|
|
}
|
|
if (do_print_inlining) {
|
|
ResourceMark rm;
|
|
stringStream ss;
|
|
assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
|
|
for (int i = 0; i < _print_inlining_list->length(); i++) {
|
|
ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
|
|
_print_inlining_list->at(i).freeStream();
|
|
}
|
|
// Reset _print_inlining_list, it only contains destructed objects.
|
|
// It is on the arena, so it will be freed when the arena is reset.
|
|
_print_inlining_list = NULL;
|
|
// _print_inlining_stream won't be used anymore, either.
|
|
print_inlining_stream_free();
|
|
size_t end = ss.size();
|
|
_print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
|
|
strncpy(_print_inlining_output, ss.base(), end+1);
|
|
_print_inlining_output[end] = 0;
|
|
}
|
|
}
|
|
|
|
void Compile::dump_print_inlining() {
|
|
if (_print_inlining_output != NULL) {
|
|
tty->print_raw(_print_inlining_output);
|
|
}
|
|
}
|
|
|
|
void Compile::log_late_inline(CallGenerator* cg) {
|
|
if (log() != NULL) {
|
|
log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
|
|
cg->unique_id());
|
|
JVMState* p = cg->call_node()->jvms();
|
|
while (p != NULL) {
|
|
log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
|
|
p = p->caller();
|
|
}
|
|
log()->tail("late_inline");
|
|
}
|
|
}
|
|
|
|
void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
|
|
log_late_inline(cg);
|
|
if (log() != NULL) {
|
|
log()->inline_fail(msg);
|
|
}
|
|
}
|
|
|
|
void Compile::log_inline_id(CallGenerator* cg) {
|
|
if (log() != NULL) {
|
|
// The LogCompilation tool needs a unique way to identify late
|
|
// inline call sites. This id must be unique for this call site in
|
|
// this compilation. Try to have it unique across compilations as
|
|
// well because it can be convenient when grepping through the log
|
|
// file.
|
|
// Distinguish OSR compilations from others in case CICountOSR is
|
|
// on.
|
|
jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
|
|
cg->set_unique_id(id);
|
|
log()->elem("inline_id id='" JLONG_FORMAT "'", id);
|
|
}
|
|
}
|
|
|
|
void Compile::log_inline_failure(const char* msg) {
|
|
if (C->log() != NULL) {
|
|
C->log()->inline_fail(msg);
|
|
}
|
|
}
|
|
|
|
|
|
// Dump inlining replay data to the stream.
|
|
// Don't change thread state and acquire any locks.
|
|
void Compile::dump_inline_data(outputStream* out) {
|
|
InlineTree* inl_tree = ilt();
|
|
if (inl_tree != NULL) {
|
|
out->print(" inline %d", inl_tree->count());
|
|
inl_tree->dump_replay_data(out);
|
|
}
|
|
}
|
|
|
|
int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
|
|
if (n1->Opcode() < n2->Opcode()) return -1;
|
|
else if (n1->Opcode() > n2->Opcode()) return 1;
|
|
|
|
assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
|
|
for (uint i = 1; i < n1->req(); i++) {
|
|
if (n1->in(i) < n2->in(i)) return -1;
|
|
else if (n1->in(i) > n2->in(i)) return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
|
|
Node* n1 = *n1p;
|
|
Node* n2 = *n2p;
|
|
|
|
return cmp_expensive_nodes(n1, n2);
|
|
}
|
|
|
|
void Compile::sort_expensive_nodes() {
|
|
if (!expensive_nodes_sorted()) {
|
|
_expensive_nodes.sort(cmp_expensive_nodes);
|
|
}
|
|
}
|
|
|
|
bool Compile::expensive_nodes_sorted() const {
|
|
for (int i = 1; i < _expensive_nodes.length(); i++) {
|
|
if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
|
|
if (_expensive_nodes.length() == 0) {
|
|
return false;
|
|
}
|
|
|
|
assert(OptimizeExpensiveOps, "optimization off?");
|
|
|
|
// Take this opportunity to remove dead nodes from the list
|
|
int j = 0;
|
|
for (int i = 0; i < _expensive_nodes.length(); i++) {
|
|
Node* n = _expensive_nodes.at(i);
|
|
if (!n->is_unreachable(igvn)) {
|
|
assert(n->is_expensive(), "should be expensive");
|
|
_expensive_nodes.at_put(j, n);
|
|
j++;
|
|
}
|
|
}
|
|
_expensive_nodes.trunc_to(j);
|
|
|
|
// Then sort the list so that similar nodes are next to each other
|
|
// and check for at least two nodes of identical kind with same data
|
|
// inputs.
|
|
sort_expensive_nodes();
|
|
|
|
for (int i = 0; i < _expensive_nodes.length()-1; i++) {
|
|
if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
|
|
if (_expensive_nodes.length() == 0) {
|
|
return;
|
|
}
|
|
|
|
assert(OptimizeExpensiveOps, "optimization off?");
|
|
|
|
// Sort to bring similar nodes next to each other and clear the
|
|
// control input of nodes for which there's only a single copy.
|
|
sort_expensive_nodes();
|
|
|
|
int j = 0;
|
|
int identical = 0;
|
|
int i = 0;
|
|
bool modified = false;
|
|
for (; i < _expensive_nodes.length()-1; i++) {
|
|
assert(j <= i, "can't write beyond current index");
|
|
if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
|
|
identical++;
|
|
_expensive_nodes.at_put(j++, _expensive_nodes.at(i));
|
|
continue;
|
|
}
|
|
if (identical > 0) {
|
|
_expensive_nodes.at_put(j++, _expensive_nodes.at(i));
|
|
identical = 0;
|
|
} else {
|
|
Node* n = _expensive_nodes.at(i);
|
|
igvn.replace_input_of(n, 0, NULL);
|
|
igvn.hash_insert(n);
|
|
modified = true;
|
|
}
|
|
}
|
|
if (identical > 0) {
|
|
_expensive_nodes.at_put(j++, _expensive_nodes.at(i));
|
|
} else if (_expensive_nodes.length() >= 1) {
|
|
Node* n = _expensive_nodes.at(i);
|
|
igvn.replace_input_of(n, 0, NULL);
|
|
igvn.hash_insert(n);
|
|
modified = true;
|
|
}
|
|
_expensive_nodes.trunc_to(j);
|
|
if (modified) {
|
|
igvn.optimize();
|
|
}
|
|
}
|
|
|
|
void Compile::add_expensive_node(Node * n) {
|
|
assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
|
|
assert(n->is_expensive(), "expensive nodes with non-null control here only");
|
|
assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
|
|
if (OptimizeExpensiveOps) {
|
|
_expensive_nodes.append(n);
|
|
} else {
|
|
// Clear control input and let IGVN optimize expensive nodes if
|
|
// OptimizeExpensiveOps is off.
|
|
n->set_req(0, NULL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Remove the speculative part of types and clean up the graph
|
|
*/
|
|
void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
|
|
if (UseTypeSpeculation) {
|
|
Unique_Node_List worklist;
|
|
worklist.push(root());
|
|
int modified = 0;
|
|
// Go over all type nodes that carry a speculative type, drop the
|
|
// speculative part of the type and enqueue the node for an igvn
|
|
// which may optimize it out.
|
|
for (uint next = 0; next < worklist.size(); ++next) {
|
|
Node *n = worklist.at(next);
|
|
if (n->is_Type()) {
|
|
TypeNode* tn = n->as_Type();
|
|
const Type* t = tn->type();
|
|
const Type* t_no_spec = t->remove_speculative();
|
|
if (t_no_spec != t) {
|
|
bool in_hash = igvn.hash_delete(n);
|
|
assert(in_hash, "node should be in igvn hash table");
|
|
tn->set_type(t_no_spec);
|
|
igvn.hash_insert(n);
|
|
igvn._worklist.push(n); // give it a chance to go away
|
|
modified++;
|
|
}
|
|
}
|
|
uint max = n->len();
|
|
for( uint i = 0; i < max; ++i ) {
|
|
Node *m = n->in(i);
|
|
if (not_a_node(m)) continue;
|
|
worklist.push(m);
|
|
}
|
|
}
|
|
// Drop the speculative part of all types in the igvn's type table
|
|
igvn.remove_speculative_types();
|
|
if (modified > 0) {
|
|
igvn.optimize();
|
|
}
|
|
#ifdef ASSERT
|
|
// Verify that after the IGVN is over no speculative type has resurfaced
|
|
worklist.clear();
|
|
worklist.push(root());
|
|
for (uint next = 0; next < worklist.size(); ++next) {
|
|
Node *n = worklist.at(next);
|
|
const Type* t = igvn.type_or_null(n);
|
|
assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
|
|
if (n->is_Type()) {
|
|
t = n->as_Type()->type();
|
|
assert(t == t->remove_speculative(), "no more speculative types");
|
|
}
|
|
uint max = n->len();
|
|
for( uint i = 0; i < max; ++i ) {
|
|
Node *m = n->in(i);
|
|
if (not_a_node(m)) continue;
|
|
worklist.push(m);
|
|
}
|
|
}
|
|
igvn.check_no_speculative_types();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Auxiliary methods to support randomized stressing/fuzzing.
|
|
|
|
int Compile::random() {
|
|
_stress_seed = os::next_random(_stress_seed);
|
|
return static_cast<int>(_stress_seed);
|
|
}
|
|
|
|
// This method can be called the arbitrary number of times, with current count
|
|
// as the argument. The logic allows selecting a single candidate from the
|
|
// running list of candidates as follows:
|
|
// int count = 0;
|
|
// Cand* selected = null;
|
|
// while(cand = cand->next()) {
|
|
// if (randomized_select(++count)) {
|
|
// selected = cand;
|
|
// }
|
|
// }
|
|
//
|
|
// Including count equalizes the chances any candidate is "selected".
|
|
// This is useful when we don't have the complete list of candidates to choose
|
|
// from uniformly. In this case, we need to adjust the randomicity of the
|
|
// selection, or else we will end up biasing the selection towards the latter
|
|
// candidates.
|
|
//
|
|
// Quick back-envelope calculation shows that for the list of n candidates
|
|
// the equal probability for the candidate to persist as "best" can be
|
|
// achieved by replacing it with "next" k-th candidate with the probability
|
|
// of 1/k. It can be easily shown that by the end of the run, the
|
|
// probability for any candidate is converged to 1/n, thus giving the
|
|
// uniform distribution among all the candidates.
|
|
//
|
|
// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
|
|
#define RANDOMIZED_DOMAIN_POW 29
|
|
#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
|
|
#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
|
|
bool Compile::randomized_select(int count) {
|
|
assert(count > 0, "only positive");
|
|
return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
|
|
}
|
|
|
|
CloneMap& Compile::clone_map() { return _clone_map; }
|
|
void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; }
|
|
|
|
void NodeCloneInfo::dump() const {
|
|
tty->print(" {%d:%d} ", idx(), gen());
|
|
}
|
|
|
|
void CloneMap::clone(Node* old, Node* nnn, int gen) {
|
|
uint64_t val = value(old->_idx);
|
|
NodeCloneInfo cio(val);
|
|
assert(val != 0, "old node should be in the map");
|
|
NodeCloneInfo cin(cio.idx(), gen + cio.gen());
|
|
insert(nnn->_idx, cin.get());
|
|
#ifndef PRODUCT
|
|
if (is_debug()) {
|
|
tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
|
|
NodeCloneInfo cio(value(old->_idx));
|
|
if (cio.get() == 0) {
|
|
cio.set(old->_idx, 0);
|
|
insert(old->_idx, cio.get());
|
|
#ifndef PRODUCT
|
|
if (is_debug()) {
|
|
tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
|
|
}
|
|
#endif
|
|
}
|
|
clone(old, nnn, gen);
|
|
}
|
|
|
|
int CloneMap::max_gen() const {
|
|
int g = 0;
|
|
DictI di(_dict);
|
|
for(; di.test(); ++di) {
|
|
int t = gen(di._key);
|
|
if (g < t) {
|
|
g = t;
|
|
#ifndef PRODUCT
|
|
if (is_debug()) {
|
|
tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
return g;
|
|
}
|
|
|
|
void CloneMap::dump(node_idx_t key) const {
|
|
uint64_t val = value(key);
|
|
if (val != 0) {
|
|
NodeCloneInfo ni(val);
|
|
ni.dump();
|
|
}
|
|
}
|
|
|
|
// Move Allocate nodes to the start of the list
|
|
void Compile::sort_macro_nodes() {
|
|
int count = macro_count();
|
|
int allocates = 0;
|
|
for (int i = 0; i < count; i++) {
|
|
Node* n = macro_node(i);
|
|
if (n->is_Allocate()) {
|
|
if (i != allocates) {
|
|
Node* tmp = macro_node(allocates);
|
|
_macro_nodes.at_put(allocates, n);
|
|
_macro_nodes.at_put(i, tmp);
|
|
}
|
|
allocates++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Compile::print_method(CompilerPhaseType cpt, const char *name, int level, int idx) {
|
|
EventCompilerPhase event;
|
|
if (event.should_commit()) {
|
|
CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
|
|
}
|
|
#ifndef PRODUCT
|
|
if (should_print(level)) {
|
|
_printer->print_method(name, level);
|
|
}
|
|
#endif
|
|
C->_latest_stage_start_counter.stamp();
|
|
}
|
|
|
|
void Compile::print_method(CompilerPhaseType cpt, int level, int idx) {
|
|
char output[1024];
|
|
#ifndef PRODUCT
|
|
if (idx != 0) {
|
|
jio_snprintf(output, sizeof(output), "%s:%d", CompilerPhaseTypeHelper::to_string(cpt), idx);
|
|
} else {
|
|
jio_snprintf(output, sizeof(output), "%s", CompilerPhaseTypeHelper::to_string(cpt));
|
|
}
|
|
#endif
|
|
print_method(cpt, output, level, idx);
|
|
}
|
|
|
|
void Compile::print_method(CompilerPhaseType cpt, Node* n, int level) {
|
|
ResourceMark rm;
|
|
stringStream ss;
|
|
ss.print_raw(CompilerPhaseTypeHelper::to_string(cpt));
|
|
if (n != NULL) {
|
|
ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]);
|
|
} else {
|
|
ss.print_raw(": NULL");
|
|
}
|
|
C->print_method(cpt, ss.as_string(), level);
|
|
}
|
|
|
|
void Compile::end_method(int level) {
|
|
EventCompilerPhase event;
|
|
if (event.should_commit()) {
|
|
CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, level);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (_method != NULL && should_print(level)) {
|
|
_printer->end_method();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
IdealGraphPrinter* Compile::_debug_file_printer = NULL;
|
|
IdealGraphPrinter* Compile::_debug_network_printer = NULL;
|
|
|
|
// Called from debugger. Prints method to the default file with the default phase name.
|
|
// This works regardless of any Ideal Graph Visualizer flags set or not.
|
|
void igv_print() {
|
|
Compile::current()->igv_print_method_to_file();
|
|
}
|
|
|
|
// Same as igv_print() above but with a specified phase name.
|
|
void igv_print(const char* phase_name) {
|
|
Compile::current()->igv_print_method_to_file(phase_name);
|
|
}
|
|
|
|
// Called from debugger. Prints method with the default phase name to the default network or the one specified with
|
|
// the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
|
|
// This works regardless of any Ideal Graph Visualizer flags set or not.
|
|
void igv_print(bool network) {
|
|
if (network) {
|
|
Compile::current()->igv_print_method_to_network();
|
|
} else {
|
|
Compile::current()->igv_print_method_to_file();
|
|
}
|
|
}
|
|
|
|
// Same as igv_print(bool network) above but with a specified phase name.
|
|
void igv_print(bool network, const char* phase_name) {
|
|
if (network) {
|
|
Compile::current()->igv_print_method_to_network(phase_name);
|
|
} else {
|
|
Compile::current()->igv_print_method_to_file(phase_name);
|
|
}
|
|
}
|
|
|
|
// Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
|
|
void igv_print_default() {
|
|
Compile::current()->print_method(PHASE_DEBUG, 0, 0);
|
|
}
|
|
|
|
// Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
|
|
// A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
|
|
// an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
|
|
void igv_append() {
|
|
Compile::current()->igv_print_method_to_file("Debug", true);
|
|
}
|
|
|
|
// Same as igv_append() above but with a specified phase name.
|
|
void igv_append(const char* phase_name) {
|
|
Compile::current()->igv_print_method_to_file(phase_name, true);
|
|
}
|
|
|
|
void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
|
|
const char* file_name = "custom_debug.xml";
|
|
if (_debug_file_printer == NULL) {
|
|
_debug_file_printer = new IdealGraphPrinter(C, file_name, append);
|
|
} else {
|
|
_debug_file_printer->update_compiled_method(C->method());
|
|
}
|
|
tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
|
|
_debug_file_printer->print_method(phase_name, 0);
|
|
}
|
|
|
|
void Compile::igv_print_method_to_network(const char* phase_name) {
|
|
if (_debug_network_printer == NULL) {
|
|
_debug_network_printer = new IdealGraphPrinter(C);
|
|
} else {
|
|
_debug_network_printer->update_compiled_method(C->method());
|
|
}
|
|
tty->print_cr("Method printed over network stream to IGV");
|
|
_debug_network_printer->print_method(phase_name, 0);
|
|
}
|
|
#endif
|
|
|