15805741f1
Reviewed-by: chagedorn, redestad, kvn
477 lines
18 KiB
C++
477 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/movenode.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/subnode.hpp"
|
|
|
|
//=============================================================================
|
|
/*
|
|
The major change is for CMoveP and StrComp. They have related but slightly
|
|
different problems. They both take in TWO oops which are both null-checked
|
|
independently before the using Node. After CCP removes the CastPP's they need
|
|
to pick up the guarding test edge - in this case TWO control edges. I tried
|
|
various solutions, all have problems:
|
|
|
|
(1) Do nothing. This leads to a bug where we hoist a Load from a CMoveP or a
|
|
StrComp above a guarding null check. I've seen both cases in normal -Xcomp
|
|
testing.
|
|
|
|
(2) Plug the control edge from 1 of the 2 oops in. Apparent problem here is
|
|
to figure out which test post-dominates. The real problem is that it doesn't
|
|
matter which one you pick. After you pick up, the dominating-test elider in
|
|
IGVN can remove the test and allow you to hoist up to the dominating test on
|
|
the chosen oop bypassing the test on the not-chosen oop. Seen in testing.
|
|
Oops.
|
|
|
|
(3) Leave the CastPP's in. This makes the graph more accurate in some sense;
|
|
we get to keep around the knowledge that an oop is not-null after some test.
|
|
Alas, the CastPP's interfere with GVN (some values are the regular oop, some
|
|
are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
|
|
This cost us 10% on SpecJVM, even when I removed some of the more trivial
|
|
cases in the optimizer. Removing more useless Phi's started allowing Loads to
|
|
illegally float above null checks. I gave up on this approach.
|
|
|
|
(4) Add BOTH control edges to both tests. Alas, too much code knows that
|
|
control edges are in slot-zero ONLY. Many quick asserts fail; no way to do
|
|
this one. Note that I really want to allow the CMoveP to float and add both
|
|
control edges to the dependent Load op - meaning I can select early but I
|
|
cannot Load until I pass both tests.
|
|
|
|
(5) Do not hoist CMoveP and StrComp. To this end I added the v-call
|
|
depends_only_on_test(). No obvious performance loss on Spec, but we are
|
|
clearly conservative on CMoveP (also so on StrComp but that's unlikely to
|
|
matter ever).
|
|
|
|
*/
|
|
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Move constants to the right.
|
|
Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
|
|
// Don't bother trying to transform a dead node
|
|
if( in(0) && in(0)->is_top() ) return NULL;
|
|
assert(in(Condition) != this &&
|
|
in(IfFalse) != this &&
|
|
in(IfTrue) != this, "dead loop in CMoveNode::Ideal" );
|
|
if( phase->type(in(Condition)) == Type::TOP )
|
|
return NULL; // return NULL when Condition is dead
|
|
|
|
if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
|
|
if( in(Condition)->is_Bool() ) {
|
|
BoolNode* b = in(Condition)->as_Bool();
|
|
BoolNode* b2 = b->negate(phase);
|
|
return make(in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------is_cmove_id------------------------------------
|
|
// Helper function to check for CMOVE identity. Shared with PhiNode::Identity
|
|
Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
|
|
// Check for Cmp'ing and CMove'ing same values
|
|
if ((cmp->in(1) == f && cmp->in(2) == t) ||
|
|
// Swapped Cmp is OK
|
|
(cmp->in(2) == f && cmp->in(1) == t)) {
|
|
// Give up this identity check for floating points because it may choose incorrect
|
|
// value around 0.0 and -0.0
|
|
if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
|
|
return NULL;
|
|
// Check for "(t==f)?t:f;" and replace with "f"
|
|
if( b->_test._test == BoolTest::eq )
|
|
return f;
|
|
// Allow the inverted case as well
|
|
// Check for "(t!=f)?t:f;" and replace with "t"
|
|
if( b->_test._test == BoolTest::ne )
|
|
return t;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
// Conditional-move is an identity if both inputs are the same, or the test
|
|
// true or false.
|
|
Node* CMoveNode::Identity(PhaseGVN* phase) {
|
|
// C-moving identical inputs?
|
|
if (in(IfFalse) == in(IfTrue)) {
|
|
return in(IfFalse); // Then it doesn't matter
|
|
}
|
|
if (phase->type(in(Condition)) == TypeInt::ZERO) {
|
|
return in(IfFalse); // Always pick left(false) input
|
|
}
|
|
if (phase->type(in(Condition)) == TypeInt::ONE) {
|
|
return in(IfTrue); // Always pick right(true) input
|
|
}
|
|
|
|
// Check for CMove'ing a constant after comparing against the constant.
|
|
// Happens all the time now, since if we compare equality vs a constant in
|
|
// the parser, we "know" the variable is constant on one path and we force
|
|
// it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
|
|
// conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
|
|
// general in that we don't need constants.
|
|
if( in(Condition)->is_Bool() ) {
|
|
BoolNode *b = in(Condition)->as_Bool();
|
|
Node *cmp = b->in(1);
|
|
if( cmp->is_Cmp() ) {
|
|
Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
|
|
if( id ) return id;
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Result is the meet of inputs
|
|
const Type* CMoveNode::Value(PhaseGVN* phase) const {
|
|
if (phase->type(in(Condition)) == Type::TOP) {
|
|
return Type::TOP;
|
|
}
|
|
const Type* t = phase->type(in(IfFalse))->meet_speculative(phase->type(in(IfTrue)));
|
|
return t->filter(_type);
|
|
}
|
|
|
|
//------------------------------make-------------------------------------------
|
|
// Make a correctly-flavored CMove. Since _type is directly determined
|
|
// from the inputs we do not need to specify it here.
|
|
CMoveNode *CMoveNode::make(Node *c, Node *bol, Node *left, Node *right, const Type *t) {
|
|
switch( t->basic_type() ) {
|
|
case T_INT: return new CMoveINode( bol, left, right, t->is_int() );
|
|
case T_FLOAT: return new CMoveFNode( bol, left, right, t );
|
|
case T_DOUBLE: return new CMoveDNode( bol, left, right, t );
|
|
case T_LONG: return new CMoveLNode( bol, left, right, t->is_long() );
|
|
case T_OBJECT: return new CMovePNode( c, bol, left, right, t->is_oopptr() );
|
|
case T_ADDRESS: return new CMovePNode( c, bol, left, right, t->is_ptr() );
|
|
case T_NARROWOOP: return new CMoveNNode( c, bol, left, right, t );
|
|
default:
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Check for conversions to boolean
|
|
Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Try generic ideal's first
|
|
Node *x = CMoveNode::Ideal(phase, can_reshape);
|
|
if( x ) return x;
|
|
|
|
// If zero is on the left (false-case, no-move-case) it must mean another
|
|
// constant is on the right (otherwise the shared CMove::Ideal code would
|
|
// have moved the constant to the right). This situation is bad for Intel
|
|
// and a don't-care for Sparc. It's bad for Intel because the zero has to
|
|
// be manifested in a register with a XOR which kills flags, which are live
|
|
// on input to the CMoveI, leading to a situation which causes excessive
|
|
// spilling on Intel. For Sparc, if the zero in on the left the Sparc will
|
|
// zero a register via G0 and conditionally-move the other constant. If the
|
|
// zero is on the right, the Sparc will load the first constant with a
|
|
// 13-bit set-lo and conditionally move G0. See bug 4677505.
|
|
if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
|
|
if( in(Condition)->is_Bool() ) {
|
|
BoolNode* b = in(Condition)->as_Bool();
|
|
BoolNode* b2 = b->negate(phase);
|
|
return make(in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type);
|
|
}
|
|
}
|
|
|
|
// Now check for booleans
|
|
int flip = 0;
|
|
|
|
// Check for picking from zero/one
|
|
if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
|
|
flip = 1 - flip;
|
|
} else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
|
|
} else return NULL;
|
|
|
|
// Check for eq/ne test
|
|
if( !in(1)->is_Bool() ) return NULL;
|
|
BoolNode *bol = in(1)->as_Bool();
|
|
if( bol->_test._test == BoolTest::eq ) {
|
|
} else if( bol->_test._test == BoolTest::ne ) {
|
|
flip = 1-flip;
|
|
} else return NULL;
|
|
|
|
// Check for vs 0 or 1
|
|
if( !bol->in(1)->is_Cmp() ) return NULL;
|
|
const CmpNode *cmp = bol->in(1)->as_Cmp();
|
|
if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
|
|
} else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
|
|
// Allow cmp-vs-1 if the other input is bounded by 0-1
|
|
if( phase->type(cmp->in(1)) != TypeInt::BOOL )
|
|
return NULL;
|
|
flip = 1 - flip;
|
|
} else return NULL;
|
|
|
|
// Convert to a bool (flipped)
|
|
// Build int->bool conversion
|
|
if (PrintOpto) { tty->print_cr("CMOV to I2B"); }
|
|
Node *n = new Conv2BNode( cmp->in(1) );
|
|
if( flip )
|
|
n = new XorINode( phase->transform(n), phase->intcon(1) );
|
|
|
|
return n;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Check for absolute value
|
|
Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Try generic ideal's first
|
|
Node *x = CMoveNode::Ideal(phase, can_reshape);
|
|
if( x ) return x;
|
|
|
|
int cmp_zero_idx = 0; // Index of compare input where to look for zero
|
|
int phi_x_idx = 0; // Index of phi input where to find naked x
|
|
|
|
// Find the Bool
|
|
if( !in(1)->is_Bool() ) return NULL;
|
|
BoolNode *bol = in(1)->as_Bool();
|
|
// Check bool sense
|
|
switch( bol->_test._test ) {
|
|
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
|
|
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
|
|
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
|
|
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
|
|
default: return NULL; break;
|
|
}
|
|
|
|
// Find zero input of CmpF; the other input is being abs'd
|
|
Node *cmpf = bol->in(1);
|
|
if( cmpf->Opcode() != Op_CmpF ) return NULL;
|
|
Node *X = NULL;
|
|
bool flip = false;
|
|
if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
|
|
X = cmpf->in(3 - cmp_zero_idx);
|
|
} else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
|
|
// The test is inverted, we should invert the result...
|
|
X = cmpf->in(cmp_zero_idx);
|
|
flip = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
// If X is found on the appropriate phi input, find the subtract on the other
|
|
if( X != in(phi_x_idx) ) return NULL;
|
|
int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
|
|
Node *sub = in(phi_sub_idx);
|
|
|
|
// Allow only SubF(0,X) and fail out for all others; NegF is not OK
|
|
if( sub->Opcode() != Op_SubF ||
|
|
sub->in(2) != X ||
|
|
phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
|
|
|
|
Node *abs = new AbsFNode( X );
|
|
if( flip )
|
|
abs = new SubFNode(sub->in(1), phase->transform(abs));
|
|
|
|
return abs;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Check for absolute value
|
|
Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Try generic ideal's first
|
|
Node *x = CMoveNode::Ideal(phase, can_reshape);
|
|
if( x ) return x;
|
|
|
|
int cmp_zero_idx = 0; // Index of compare input where to look for zero
|
|
int phi_x_idx = 0; // Index of phi input where to find naked x
|
|
|
|
// Find the Bool
|
|
if( !in(1)->is_Bool() ) return NULL;
|
|
BoolNode *bol = in(1)->as_Bool();
|
|
// Check bool sense
|
|
switch( bol->_test._test ) {
|
|
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
|
|
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
|
|
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
|
|
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
|
|
default: return NULL; break;
|
|
}
|
|
|
|
// Find zero input of CmpD; the other input is being abs'd
|
|
Node *cmpd = bol->in(1);
|
|
if( cmpd->Opcode() != Op_CmpD ) return NULL;
|
|
Node *X = NULL;
|
|
bool flip = false;
|
|
if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
|
|
X = cmpd->in(3 - cmp_zero_idx);
|
|
} else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
|
|
// The test is inverted, we should invert the result...
|
|
X = cmpd->in(cmp_zero_idx);
|
|
flip = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
// If X is found on the appropriate phi input, find the subtract on the other
|
|
if( X != in(phi_x_idx) ) return NULL;
|
|
int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
|
|
Node *sub = in(phi_sub_idx);
|
|
|
|
// Allow only SubD(0,X) and fail out for all others; NegD is not OK
|
|
if( sub->Opcode() != Op_SubD ||
|
|
sub->in(2) != X ||
|
|
phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
|
|
|
|
Node *abs = new AbsDNode( X );
|
|
if( flip )
|
|
abs = new SubDNode(sub->in(1), phase->transform(abs));
|
|
|
|
return abs;
|
|
}
|
|
|
|
//------------------------------MoveNode------------------------------------------
|
|
|
|
Node* MoveNode::Ideal(PhaseGVN* phase, bool can_reshape) {
|
|
if (can_reshape) {
|
|
// Fold reinterpret cast into memory operation:
|
|
// MoveX2Y (LoadX mem) => LoadY mem
|
|
LoadNode* ld = in(1)->isa_Load();
|
|
if (ld != NULL && (ld->outcnt() == 1)) { // replace only
|
|
const Type* rt = bottom_type();
|
|
if (ld->has_reinterpret_variant(rt)) {
|
|
if (phase->C->post_loop_opts_phase()) {
|
|
return ld->convert_to_reinterpret_load(*phase, rt);
|
|
} else {
|
|
phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
Node* MoveNode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->is_Move()) {
|
|
// Back-to-back moves: MoveX2Y (MoveY2X v) => v
|
|
assert(bottom_type() == in(1)->in(1)->bottom_type(), "sanity");
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* MoveL2DNode::Value(PhaseGVN* phase) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeLong *tl = t->is_long();
|
|
if( !tl->is_con() ) return bottom_type();
|
|
JavaValue v;
|
|
v.set_jlong(tl->get_con());
|
|
return TypeD::make( v.get_jdouble() );
|
|
}
|
|
|
|
//------------------------------Identity----------------------------------------
|
|
Node* MoveL2DNode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->Opcode() == Op_MoveD2L) {
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* MoveI2FNode::Value(PhaseGVN* phase) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeInt *ti = t->is_int();
|
|
if( !ti->is_con() ) return bottom_type();
|
|
JavaValue v;
|
|
v.set_jint(ti->get_con());
|
|
return TypeF::make( v.get_jfloat() );
|
|
}
|
|
|
|
//------------------------------Identity----------------------------------------
|
|
Node* MoveI2FNode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->Opcode() == Op_MoveF2I) {
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* MoveF2INode::Value(PhaseGVN* phase) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::FLOAT ) return TypeInt::INT;
|
|
const TypeF *tf = t->is_float_constant();
|
|
JavaValue v;
|
|
v.set_jfloat(tf->getf());
|
|
return TypeInt::make( v.get_jint() );
|
|
}
|
|
|
|
//------------------------------Identity----------------------------------------
|
|
Node* MoveF2INode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->Opcode() == Op_MoveI2F) {
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* MoveD2LNode::Value(PhaseGVN* phase) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::DOUBLE ) return TypeLong::LONG;
|
|
const TypeD *td = t->is_double_constant();
|
|
JavaValue v;
|
|
v.set_jdouble(td->getd());
|
|
return TypeLong::make( v.get_jlong() );
|
|
}
|
|
|
|
//------------------------------Identity----------------------------------------
|
|
Node* MoveD2LNode::Identity(PhaseGVN* phase) {
|
|
if (in(1)->Opcode() == Op_MoveL2D) {
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
//----------------------------BinaryNode---------------------------------------
|
|
// The set of related nodes for a BinaryNode is all data inputs and all outputs
|
|
// till level 2 (i.e., one beyond the associated CMoveNode). In compact mode,
|
|
// it's the inputs till level 1 and the outputs till level 2.
|
|
void BinaryNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
|
|
if (compact) {
|
|
this->collect_nodes(in_rel, 1, false, true);
|
|
} else {
|
|
this->collect_nodes_in_all_data(in_rel, false);
|
|
}
|
|
this->collect_nodes(out_rel, -2, false, false);
|
|
}
|
|
#endif
|