jdk-24/src/hotspot/share/opto/regmask.cpp
Claes Redestad f7685a4639 8256203: Simplify RegMask::Empty
Reviewed-by: thartmann, chagedorn
2020-11-12 14:20:48 +00:00

406 lines
14 KiB
C++

/*
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "opto/ad.hpp"
#include "opto/chaitin.hpp"
#include "opto/compile.hpp"
#include "opto/matcher.hpp"
#include "opto/node.hpp"
#include "opto/regmask.hpp"
#include "utilities/population_count.hpp"
#include "utilities/powerOfTwo.hpp"
//------------------------------dump-------------------------------------------
#ifndef PRODUCT
void OptoReg::dump(int r, outputStream *st) {
switch (r) {
case Special: st->print("r---"); break;
case Bad: st->print("rBAD"); break;
default:
if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]);
else st->print("rS%d",r);
break;
}
}
#endif
//=============================================================================
const RegMask RegMask::Empty;
//=============================================================================
bool RegMask::is_vector(uint ireg) {
return (ireg == Op_VecA || ireg == Op_VecS || ireg == Op_VecD ||
ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ );
}
int RegMask::num_registers(uint ireg) {
switch(ireg) {
case Op_VecZ:
return SlotsPerVecZ;
case Op_VecY:
return SlotsPerVecY;
case Op_VecX:
return SlotsPerVecX;
case Op_VecD:
return SlotsPerVecD;
case Op_RegD:
case Op_RegL:
#ifdef _LP64
case Op_RegP:
#endif
return 2;
case Op_VecA:
assert(Matcher::supports_scalable_vector(), "does not support scalable vector");
return SlotsPerVecA;
default:
// Op_VecS and the rest ideal registers.
assert(ireg == Op_VecS || !is_vector(ireg), "unexpected, possibly multi-slot register");
return 1;
}
}
int RegMask::num_registers(uint ireg, LRG &lrg) {
int n_regs = num_registers(ireg);
// assigned is OptoReg which is selected by register allocator
OptoReg::Name assigned = lrg.reg();
assert(OptoReg::is_valid(assigned), "should be valid opto register");
if (lrg.is_scalable() && OptoReg::is_stack(assigned)) {
n_regs = lrg.scalable_reg_slots();
}
return n_regs;
}
static const uintptr_t zero = uintptr_t(0); // 0x00..00
static const uintptr_t all = ~uintptr_t(0); // 0xFF..FF
static const uintptr_t fives = all/3; // 0x5555..55
// only indices of power 2 are accessed, so index 3 is only filled in for storage.
static const uintptr_t low_bits[5] = { fives, // 0x5555..55
all/0xF, // 0x1111..11,
all/0xFF, // 0x0101..01,
zero, // 0x0000..00
all/0xFFFF }; // 0x0001..01
// Clear out partial bits; leave only bit pairs
void RegMask::clear_to_pairs() {
assert(valid_watermarks(), "sanity");
for (unsigned i = _lwm; i <= _hwm; i++) {
uintptr_t bits = _RM_UP[i];
bits &= ((bits & fives) << 1U); // 1 hi-bit set for each pair
bits |= (bits >> 1U); // Smear 1 hi-bit into a pair
_RM_UP[i] = bits;
}
assert(is_aligned_pairs(), "mask is not aligned, adjacent pairs");
}
bool RegMask::is_misaligned_pair() const {
return Size() == 2 && !is_aligned_pairs();
}
bool RegMask::is_aligned_pairs() const {
// Assert that the register mask contains only bit pairs.
assert(valid_watermarks(), "sanity");
for (unsigned i = _lwm; i <= _hwm; i++) {
uintptr_t bits = _RM_UP[i];
while (bits) { // Check bits for pairing
uintptr_t bit = uintptr_t(1) << find_lowest_bit(bits); // Extract low bit
// Low bit is not odd means its mis-aligned.
if ((bit & fives) == 0) return false;
bits -= bit; // Remove bit from mask
// Check for aligned adjacent bit
if ((bits & (bit << 1U)) == 0) return false;
bits -= (bit << 1U); // Remove other halve of pair
}
}
return true;
}
// Return TRUE if the mask contains a single bit
bool RegMask::is_bound1() const {
if (is_AllStack()) return false;
return Size() == 1;
}
// Return TRUE if the mask contains an adjacent pair of bits and no other bits.
bool RegMask::is_bound_pair() const {
if (is_AllStack()) return false;
uintptr_t bit = all; // Set to hold the one bit allowed
assert(valid_watermarks(), "sanity");
for (unsigned i = _lwm; i <= _hwm; i++) {
if (_RM_UP[i]) { // Found some bits
if (bit != all) return false; // Already had bits, so fail
bit = uintptr_t(1) << find_lowest_bit(_RM_UP[i]); // Extract lowest bit from mask
if ((bit << 1U) != 0) { // Bit pair stays in same word?
if ((bit | (bit << 1U)) != _RM_UP[i])
return false; // Require adjacent bit pair and no more bits
} else { // Else its a split-pair case
if (bit != _RM_UP[i]) return false; // Found many bits, so fail
i++; // Skip iteration forward
if (i > _hwm || _RM_UP[i] != 1)
return false; // Require 1 lo bit in next word
}
}
}
// True for both the empty mask and for a bit pair
return true;
}
// Test for a single adjacent set of ideal register's size.
bool RegMask::is_bound(uint ireg) const {
if (is_vector(ireg)) {
if (is_bound_set(num_registers(ireg)))
return true;
} else if (is_bound1() || is_bound_pair()) {
return true;
}
return false;
}
// Check that whether given reg number with size is valid
// for current regmask, where reg is the highest number.
bool RegMask::is_valid_reg(OptoReg::Name reg, const int size) const {
for (int i = 0; i < size; i++) {
if (!Member(reg - i)) {
return false;
}
}
return true;
}
// Find the lowest-numbered register set in the mask. Return the
// HIGHEST register number in the set, or BAD if no sets.
// Works also for size 1.
OptoReg::Name RegMask::find_first_set(LRG &lrg, const int size) const {
if (lrg.is_scalable()) {
// For scalable vector register, regmask is SlotsPerVecA bits aligned.
assert(is_aligned_sets(SlotsPerVecA), "mask is not aligned, adjacent sets");
} else {
assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
}
assert(valid_watermarks(), "sanity");
for (unsigned i = _lwm; i <= _hwm; i++) {
if (_RM_UP[i]) { // Found some bits
// Convert to bit number, return hi bit in pair
return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(_RM_UP[i]) + (size - 1));
}
}
return OptoReg::Bad;
}
// Clear out partial bits; leave only aligned adjacent bit pairs
void RegMask::clear_to_sets(const unsigned int size) {
if (size == 1) return;
assert(2 <= size && size <= 16, "update low bits table");
assert(is_power_of_2(size), "sanity");
assert(valid_watermarks(), "sanity");
uintptr_t low_bits_mask = low_bits[size >> 2U];
for (unsigned i = _lwm; i <= _hwm; i++) {
uintptr_t bits = _RM_UP[i];
uintptr_t sets = (bits & low_bits_mask);
for (unsigned j = 1U; j < size; j++) {
sets = (bits & (sets << 1U)); // filter bits which produce whole sets
}
sets |= (sets >> 1U); // Smear 1 hi-bit into a set
if (size > 2) {
sets |= (sets >> 2U); // Smear 2 hi-bits into a set
if (size > 4) {
sets |= (sets >> 4U); // Smear 4 hi-bits into a set
if (size > 8) {
sets |= (sets >> 8U); // Smear 8 hi-bits into a set
}
}
}
_RM_UP[i] = sets;
}
assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
}
// Smear out partial bits to aligned adjacent bit sets
void RegMask::smear_to_sets(const unsigned int size) {
if (size == 1) return;
assert(2 <= size && size <= 16, "update low bits table");
assert(is_power_of_2(size), "sanity");
assert(valid_watermarks(), "sanity");
uintptr_t low_bits_mask = low_bits[size >> 2U];
for (unsigned i = _lwm; i <= _hwm; i++) {
uintptr_t bits = _RM_UP[i];
uintptr_t sets = 0;
for (unsigned j = 0; j < size; j++) {
sets |= (bits & low_bits_mask); // collect partial bits
bits = bits >> 1U;
}
sets |= (sets << 1U); // Smear 1 lo-bit into a set
if (size > 2) {
sets |= (sets << 2U); // Smear 2 lo-bits into a set
if (size > 4) {
sets |= (sets << 4U); // Smear 4 lo-bits into a set
if (size > 8) {
sets |= (sets << 8U); // Smear 8 lo-bits into a set
}
}
}
_RM_UP[i] = sets;
}
assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
}
// Assert that the register mask contains only bit sets.
bool RegMask::is_aligned_sets(const unsigned int size) const {
if (size == 1) return true;
assert(2 <= size && size <= 16, "update low bits table");
assert(is_power_of_2(size), "sanity");
uintptr_t low_bits_mask = low_bits[size >> 2U];
assert(valid_watermarks(), "sanity");
for (unsigned i = _lwm; i <= _hwm; i++) {
uintptr_t bits = _RM_UP[i];
while (bits) { // Check bits for pairing
uintptr_t bit = uintptr_t(1) << find_lowest_bit(bits);
// Low bit is not odd means its mis-aligned.
if ((bit & low_bits_mask) == 0) {
return false;
}
// Do extra work since (bit << size) may overflow.
uintptr_t hi_bit = bit << (size-1); // high bit
uintptr_t set = hi_bit + ((hi_bit-1) & ~(bit-1));
// Check for aligned adjacent bits in this set
if ((bits & set) != set) {
return false;
}
bits -= set; // Remove this set
}
}
return true;
}
// Return TRUE if the mask contains one adjacent set of bits and no other bits.
// Works also for size 1.
bool RegMask::is_bound_set(const unsigned int size) const {
if (is_AllStack()) return false;
assert(1 <= size && size <= 16, "update low bits table");
assert(valid_watermarks(), "sanity");
uintptr_t bit = all; // Set to hold the one bit allowed
for (unsigned i = _lwm; i <= _hwm; i++) {
if (_RM_UP[i] ) { // Found some bits
if (bit != all)
return false; // Already had bits, so fail
unsigned bit_index = find_lowest_bit(_RM_UP[i]);
bit = uintptr_t(1) << bit_index;
uintptr_t hi_bit = bit << (size - 1); // high bit
if (hi_bit != 0) { // Bit set stays in same word?
uintptr_t set = hi_bit + ((hi_bit-1) & ~(bit-1));
if (set != _RM_UP[i])
return false; // Require adjacent bit set and no more bits
} else { // Else its a split-set case
if ((all & ~(bit-1)) != _RM_UP[i])
return false; // Found many bits, so fail
i++; // Skip iteration forward and check high part
// The lower (BitsPerWord - size) bits should be 1 since it is split case.
uintptr_t set = (bit >> (BitsPerWord - bit_index)) - 1;
if (i > _hwm || _RM_UP[i] != set)
return false; // Require expected low bits in next word
}
}
}
// True for both the empty mask and for a bit set
return true;
}
// UP means register only, Register plus stack, or stack only is DOWN
bool RegMask::is_UP() const {
// Quick common case check for DOWN (any stack slot is legal)
if (is_AllStack())
return false;
// Slower check for any stack bits set (also DOWN)
if (overlap(Matcher::STACK_ONLY_mask))
return false;
// Not DOWN, so must be UP
return true;
}
// Compute size of register mask in bits
uint RegMask::Size() const {
uint sum = 0;
assert(valid_watermarks(), "sanity");
for (unsigned i = _lwm; i <= _hwm; i++) {
sum += population_count(_RM_UP[i]);
}
return sum;
}
#ifndef PRODUCT
void RegMask::dump(outputStream *st) const {
st->print("[");
RegMask rm = *this; // Structure copy into local temp
OptoReg::Name start = rm.find_first_elem(); // Get a register
if (OptoReg::is_valid(start)) { // Check for empty mask
rm.Remove(start); // Yank from mask
OptoReg::dump(start, st); // Print register
OptoReg::Name last = start;
// Now I have printed an initial register.
// Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
// Begin looping over the remaining registers.
while (1) { //
OptoReg::Name reg = rm.find_first_elem(); // Get a register
if (!OptoReg::is_valid(reg))
break; // Empty mask, end loop
rm.Remove(reg); // Yank from mask
if (last+1 == reg) { // See if they are adjacent
// Adjacent registers just collect into long runs, no printing.
last = reg;
} else { // Ending some kind of run
if (start == last) { // 1-register run; no special printing
} else if (start+1 == last) {
st->print(","); // 2-register run; print as "rX,rY"
OptoReg::dump(last, st);
} else { // Multi-register run; print as "rX-rZ"
st->print("-");
OptoReg::dump(last, st);
}
st->print(","); // Seperate start of new run
start = last = reg; // Start a new register run
OptoReg::dump(start, st); // Print register
} // End of if ending a register run or not
} // End of while regmask not empty
if (start == last) { // 1-register run; no special printing
} else if (start+1 == last) {
st->print(","); // 2-register run; print as "rX,rY"
OptoReg::dump(last, st);
} else { // Multi-register run; print as "rX-rZ"
st->print("-");
OptoReg::dump(last, st);
}
if (rm.is_AllStack()) st->print("...");
}
st->print("]");
}
#endif