f665e07ab2
Reviewed-by: jwilhelm
471 lines
16 KiB
C++
471 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
|
|
#ifdef LINUX
|
|
|
|
#include "os_linux.hpp"
|
|
#include "prims/jniCheck.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/decoder.hpp"
|
|
#include "concurrentTestRunner.inline.hpp"
|
|
#include "testutils.hpp"
|
|
#include "unittest.hpp"
|
|
|
|
#include <sys/mman.h>
|
|
|
|
static bool using_explicit_hugepages() { return UseLargePages && !UseTransparentHugePages; }
|
|
|
|
namespace {
|
|
static void small_page_write(void* addr, size_t size) {
|
|
size_t page_size = os::vm_page_size();
|
|
|
|
char* end = (char*)addr + size;
|
|
for (char* p = (char*)addr; p < end; p += page_size) {
|
|
*p = 1;
|
|
}
|
|
}
|
|
|
|
class HugeTlbfsMemory : private ::os::Linux {
|
|
char* const _ptr;
|
|
const size_t _size;
|
|
public:
|
|
static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, size_t page_size, char* req_addr, bool exec) {
|
|
return os::reserve_memory_special(bytes, alignment, page_size, req_addr, exec);
|
|
}
|
|
HugeTlbfsMemory(char* const ptr, size_t size) : _ptr(ptr), _size(size) { }
|
|
~HugeTlbfsMemory() {
|
|
if (_ptr != nullptr) {
|
|
os::release_memory_special(_ptr, _size);
|
|
}
|
|
}
|
|
};
|
|
|
|
// have to use these functions, as gtest's _PRED macros don't like is_aligned
|
|
// nor (is_aligned<size_t, size_t>)
|
|
static bool is_size_aligned(size_t size, size_t alignment) {
|
|
return is_aligned(size, alignment);
|
|
}
|
|
static bool is_ptr_aligned(char* ptr, size_t alignment) {
|
|
return is_aligned(ptr, alignment);
|
|
}
|
|
}
|
|
|
|
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_aligned) {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
size_t lp = os::large_page_size();
|
|
|
|
for (size_t size = lp; size <= lp * 10; size += lp) {
|
|
char* addr = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, lp, lp, nullptr, false);
|
|
|
|
if (addr != nullptr) {
|
|
HugeTlbfsMemory mr(addr, size);
|
|
small_page_write(addr, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_without_addr) {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
size_t lp = os::large_page_size();
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
// sizes to test
|
|
const size_t sizes[] = {
|
|
lp, lp + ag, lp + lp / 2, lp * 2,
|
|
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
|
|
lp * 10, lp * 10 + lp / 2
|
|
};
|
|
const int num_sizes = sizeof(sizes) / sizeof(size_t);
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
|
|
char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, nullptr, false);
|
|
if (p != nullptr) {
|
|
HugeTlbfsMemory mr(p, size);
|
|
EXPECT_PRED2(is_ptr_aligned, p, alignment) << " size = " << size;
|
|
small_page_write(p, size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_with_good_req_addr) {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
size_t lp = os::large_page_size();
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
// sizes to test
|
|
const size_t sizes[] = {
|
|
lp, lp + ag, lp + lp / 2, lp * 2,
|
|
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
|
|
lp * 10, lp * 10 + lp / 2
|
|
};
|
|
const int num_sizes = sizeof(sizes) / sizeof(size_t);
|
|
|
|
// Pre-allocate an area as large as the largest allocation
|
|
// and aligned to the largest alignment we will be testing.
|
|
const size_t mapping_size = sizes[num_sizes - 1] * 2;
|
|
char* const mapping = (char*) ::mmap(nullptr, mapping_size,
|
|
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
ASSERT_TRUE(mapping != MAP_FAILED) << " mmap failed, mapping_size = " << mapping_size;
|
|
// Unmap the mapping, it will serve as a value for a "good" req_addr
|
|
::munmap(mapping, mapping_size);
|
|
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
|
|
// req_addr must be at least large page aligned.
|
|
char* const req_addr = align_up(mapping, MAX2(alignment, lp));
|
|
char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, req_addr, false);
|
|
if (p != nullptr) {
|
|
HugeTlbfsMemory mr(p, size);
|
|
ASSERT_EQ(req_addr, p) << " size = " << size << ", alignment = " << alignment;
|
|
small_page_write(p, size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
TEST_VM(os_linux, reserve_memory_special_huge_tlbfs_size_not_aligned_with_bad_req_addr) {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
size_t lp = os::large_page_size();
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
// sizes to test
|
|
const size_t sizes[] = {
|
|
lp, lp + ag, lp + lp / 2, lp * 2,
|
|
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
|
|
lp * 10, lp * 10 + lp / 2
|
|
};
|
|
const int num_sizes = sizeof(sizes) / sizeof(size_t);
|
|
|
|
// Pre-allocate an area as large as the largest allocation
|
|
// and aligned to the largest alignment we will be testing.
|
|
const size_t mapping_size = sizes[num_sizes - 1] * 2;
|
|
char* const mapping = (char*) ::mmap(nullptr, mapping_size,
|
|
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
ASSERT_TRUE(mapping != MAP_FAILED) << " mmap failed, mapping_size = " << mapping_size;
|
|
// Leave the mapping intact, it will server as "bad" req_addr
|
|
|
|
class MappingHolder {
|
|
char* const _mapping;
|
|
size_t _size;
|
|
public:
|
|
MappingHolder(char* mapping, size_t size) : _mapping(mapping), _size(size) { }
|
|
~MappingHolder() {
|
|
::munmap(_mapping, _size);
|
|
}
|
|
} holder(mapping, mapping_size);
|
|
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
|
|
// req_addr must be at least large page aligned.
|
|
char* const req_addr = align_up(mapping, MAX2(alignment, lp));
|
|
char* p = HugeTlbfsMemory::reserve_memory_special_huge_tlbfs(size, alignment, lp, req_addr, false);
|
|
HugeTlbfsMemory mr(p, size);
|
|
// as the area around req_addr contains already existing mappings, the API should always
|
|
// return null (as per contract, it cannot return another address)
|
|
EXPECT_TRUE(p == nullptr) << " size = " << size
|
|
<< ", alignment = " << alignment
|
|
<< ", req_addr = " << req_addr
|
|
<< ", p = " << p;
|
|
}
|
|
}
|
|
}
|
|
|
|
class TestReserveMemorySpecial : AllStatic {
|
|
public:
|
|
static void small_page_write(void* addr, size_t size) {
|
|
size_t page_size = os::vm_page_size();
|
|
|
|
char* end = (char*)addr + size;
|
|
for (char* p = (char*)addr; p < end; p += page_size) {
|
|
*p = 1;
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs_size_aligned(size_t size, size_t alignment, size_t page_size) {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
char* addr = os::reserve_memory_special(size, alignment, page_size, nullptr, false);
|
|
if (addr != nullptr) {
|
|
small_page_write(addr, size);
|
|
os::release_memory_special(addr, size);
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs_size_aligned() {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
size_t lp = os::large_page_size();
|
|
for (size_t size = lp; size <= lp * 10; size += lp) {
|
|
test_reserve_memory_special_huge_tlbfs_size_aligned(size, lp, lp);
|
|
}
|
|
}
|
|
|
|
static void test_reserve_memory_special_huge_tlbfs_size_not_aligned() {
|
|
size_t lp = os::large_page_size();
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
// sizes to test
|
|
const size_t sizes[] = {
|
|
lp, lp + ag, lp + lp / 2, lp * 2,
|
|
lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
|
|
lp * 10, lp * 10 + lp / 2
|
|
};
|
|
const int num_sizes = sizeof(sizes) / sizeof(size_t);
|
|
|
|
// For each size/alignment combination, we test three scenarios:
|
|
// 1) with req_addr == nullptr
|
|
// 2) with a non-null req_addr at which we expect to successfully allocate
|
|
// 3) with a non-null req_addr which contains a pre-existing mapping, at which we
|
|
// expect the allocation to either fail or to ignore req_addr
|
|
|
|
// Pre-allocate two areas; they shall be as large as the largest allocation
|
|
// and aligned to the largest alignment we will be testing.
|
|
const size_t mapping_size = sizes[num_sizes - 1] * 2;
|
|
char* const mapping1 = (char*) ::mmap(nullptr, mapping_size,
|
|
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
EXPECT_NE(mapping1, MAP_FAILED);
|
|
|
|
char* const mapping2 = (char*) ::mmap(nullptr, mapping_size,
|
|
PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
|
|
-1, 0);
|
|
EXPECT_NE(mapping2, MAP_FAILED);
|
|
|
|
// Unmap the first mapping, but leave the second mapping intact: the first
|
|
// mapping will serve as a value for a "good" req_addr (case 2). The second
|
|
// mapping, still intact, as "bad" req_addr (case 3).
|
|
::munmap(mapping1, mapping_size);
|
|
|
|
// Case 1
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
char* p = os::reserve_memory_special(size, alignment, lp, nullptr, false);
|
|
if (p != nullptr) {
|
|
EXPECT_TRUE(is_aligned(p, alignment));
|
|
small_page_write(p, size);
|
|
os::release_memory_special(p, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Case 2
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
// req_addr must be at least large page aligned.
|
|
char* const req_addr = align_up(mapping1, MAX2(alignment, lp));
|
|
char* p = os::reserve_memory_special(size, alignment, lp, req_addr, false);
|
|
if (p != nullptr) {
|
|
EXPECT_EQ(p, req_addr);
|
|
small_page_write(p, size);
|
|
os::release_memory_special(p, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Case 3
|
|
for (int i = 0; i < num_sizes; i++) {
|
|
const size_t size = sizes[i];
|
|
for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
|
|
// req_addr must be at least large page aligned.
|
|
char* const req_addr = align_up(mapping2, MAX2(alignment, lp));
|
|
char* p = os::reserve_memory_special(size, alignment, lp, req_addr, false);
|
|
// as the area around req_addr contains already existing mappings, the API should always
|
|
// return nullptr (as per contract, it cannot return another address)
|
|
EXPECT_TRUE(p == nullptr);
|
|
}
|
|
}
|
|
|
|
::munmap(mapping2, mapping_size);
|
|
|
|
}
|
|
|
|
static void test() {
|
|
if (!using_explicit_hugepages()) {
|
|
return;
|
|
}
|
|
test_reserve_memory_special_huge_tlbfs_size_aligned();
|
|
test_reserve_memory_special_huge_tlbfs_size_not_aligned();
|
|
}
|
|
};
|
|
|
|
TEST_VM(os_linux, reserve_memory_special) {
|
|
TestReserveMemorySpecial::test();
|
|
}
|
|
|
|
class ReserveMemorySpecialRunnable : public TestRunnable {
|
|
public:
|
|
void runUnitTest() const {
|
|
TestReserveMemorySpecial::test();
|
|
}
|
|
};
|
|
|
|
TEST_VM(os_linux, reserve_memory_special_concurrent) {
|
|
if (UseLargePages) {
|
|
ReserveMemorySpecialRunnable runnable;
|
|
ConcurrentTestRunner testRunner(&runnable, 5, 3000);
|
|
testRunner.run();
|
|
}
|
|
}
|
|
|
|
TEST_VM(os_linux, pretouch_thp_and_use_concurrent) {
|
|
// Explicitly enable thp to test cocurrent system calls.
|
|
const size_t size = 1 * G;
|
|
const bool useThp = UseTransparentHugePages;
|
|
UseTransparentHugePages = true;
|
|
char* const heap = os::reserve_memory(size, false, mtInternal);
|
|
EXPECT_NE(heap, nullptr);
|
|
EXPECT_TRUE(os::commit_memory(heap, size, false));
|
|
|
|
{
|
|
auto pretouch = [heap, size](Thread*, int) {
|
|
os::pretouch_memory(heap, heap + size, os::vm_page_size());
|
|
};
|
|
auto useMemory = [heap, size](Thread*, int) {
|
|
int* iptr = reinterpret_cast<int*>(heap);
|
|
for (int i = 0; i < 1000; i++) *iptr++ = i;
|
|
};
|
|
TestThreadGroup<decltype(pretouch)> pretouchThreads{pretouch, 4};
|
|
TestThreadGroup<decltype(useMemory)> useMemoryThreads{useMemory, 4};
|
|
useMemoryThreads.doit();
|
|
pretouchThreads.doit();
|
|
useMemoryThreads.join();
|
|
pretouchThreads.join();
|
|
}
|
|
|
|
int* iptr = reinterpret_cast<int*>(heap);
|
|
for (int i = 0; i < 1000; i++)
|
|
EXPECT_EQ(*iptr++, i);
|
|
|
|
EXPECT_TRUE(os::uncommit_memory(heap, size, false));
|
|
EXPECT_TRUE(os::release_memory(heap, size));
|
|
UseTransparentHugePages = useThp;
|
|
}
|
|
|
|
// Check that method JNI_CreateJavaVM is found.
|
|
TEST(os_linux, addr_to_function_valid) {
|
|
char buf[128] = "";
|
|
int offset = -1;
|
|
address valid_function_pointer = (address)JNI_CreateJavaVM;
|
|
ASSERT_TRUE(os::dll_address_to_function_name(valid_function_pointer, buf, sizeof(buf), &offset, true));
|
|
ASSERT_THAT(buf, testing::HasSubstr("JNI_CreateJavaVM"));
|
|
ASSERT_TRUE(offset >= 0);
|
|
}
|
|
|
|
#if !defined(__clang_major__) || (__clang_major__ >= 5) // DWARF does not support Clang versions older than 5.0.
|
|
// Test valid address of method ReportJNIFatalError in jniCheck.hpp. We should get "jniCheck.hpp" in the buffer and a valid line number.
|
|
TEST_VM(os_linux, decoder_get_source_info_valid) {
|
|
char buf[128] = "";
|
|
int line = -1;
|
|
address valid_function_pointer = (address)ReportJNIFatalError;
|
|
ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, sizeof(buf), &line));
|
|
EXPECT_STREQ(buf, "jniCheck.hpp");
|
|
ASSERT_TRUE(line > 0);
|
|
}
|
|
|
|
// Test invalid addresses. Should not cause harm and output buffer and line must contain "" and -1, respectively.
|
|
TEST_VM(os_linux, decoder_get_source_info_invalid) {
|
|
char buf[128] = "";
|
|
int line = -1;
|
|
address invalid_function_pointers[] = { nullptr, (address)1, (address)&line };
|
|
|
|
for (address addr : invalid_function_pointers) {
|
|
strcpy(buf, "somestring");
|
|
line = 12;
|
|
// We should return false but do not crash or fail in any way.
|
|
ASSERT_FALSE(Decoder::get_source_info(addr, buf, sizeof(buf), &line));
|
|
ASSERT_TRUE(buf[0] == '\0'); // Should contain "" on error
|
|
ASSERT_TRUE(line == -1); // Should contain -1 on error
|
|
}
|
|
}
|
|
|
|
// Test with valid address but a too small buffer to store the entire filename. Should find generic <OVERFLOW> message
|
|
// and a valid line number.
|
|
TEST_VM(os_linux, decoder_get_source_info_valid_overflow) {
|
|
char buf[11] = "";
|
|
int line = -1;
|
|
address valid_function_pointer = (address)ReportJNIFatalError;
|
|
ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, 11, &line));
|
|
EXPECT_STREQ(buf, "<OVERFLOW>");
|
|
ASSERT_TRUE(line > 0);
|
|
}
|
|
|
|
// Test with valid address but a too small buffer that can neither store the entire filename nor the generic <OVERFLOW>
|
|
// message. We should find "L" as filename and a valid line number.
|
|
TEST_VM(os_linux, decoder_get_source_info_valid_overflow_minimal) {
|
|
char buf[2] = "";
|
|
int line = -1;
|
|
address valid_function_pointer = (address)ReportJNIFatalError;
|
|
ASSERT_TRUE(Decoder::get_source_info(valid_function_pointer, buf, 2, &line));
|
|
EXPECT_STREQ(buf, "L"); // Overflow message does not fit, so we fall back to "L:line_number"
|
|
ASSERT_TRUE(line > 0); // Line should correctly be found and returned
|
|
}
|
|
#endif // clang
|
|
|
|
#ifdef __GLIBC__
|
|
TEST_VM(os_linux, glibc_mallinfo_wrapper) {
|
|
// Very basic test. Call it. That proves that resolution and invocation works.
|
|
os::Linux::glibc_mallinfo mi;
|
|
bool did_wrap = false;
|
|
|
|
os::Linux::get_mallinfo(&mi, &did_wrap);
|
|
|
|
void* p = os::malloc(2 * K, mtTest);
|
|
ASSERT_NOT_NULL(p);
|
|
|
|
// We should see total allocation values > 0
|
|
ASSERT_GE((mi.uordblks + mi.hblkhd), 2 * K);
|
|
|
|
// These values also should exceed some reasonable size.
|
|
ASSERT_LT(mi.fordblks, 2 * G);
|
|
ASSERT_LT(mi.uordblks, 2 * G);
|
|
ASSERT_LT(mi.hblkhd, 2 * G);
|
|
|
|
os::free(p);
|
|
}
|
|
#endif // __GLIBC__
|
|
|
|
#endif // LINUX
|