bfe8385fa9
Hide private node to block mapping using public interface Reviewed-by: kvn, roland
666 lines
24 KiB
C++
666 lines
24 KiB
C++
/*
|
|
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
// Optimization - Graph Style
|
|
|
|
//------------------------------Tarjan-----------------------------------------
|
|
// A data structure that holds all the information needed to find dominators.
|
|
struct Tarjan {
|
|
Block *_block; // Basic block for this info
|
|
|
|
uint _semi; // Semi-dominators
|
|
uint _size; // Used for faster LINK and EVAL
|
|
Tarjan *_parent; // Parent in DFS
|
|
Tarjan *_label; // Used for LINK and EVAL
|
|
Tarjan *_ancestor; // Used for LINK and EVAL
|
|
Tarjan *_child; // Used for faster LINK and EVAL
|
|
Tarjan *_dom; // Parent in dominator tree (immediate dom)
|
|
Tarjan *_bucket; // Set of vertices with given semidominator
|
|
|
|
Tarjan *_dom_child; // Child in dominator tree
|
|
Tarjan *_dom_next; // Next in dominator tree
|
|
|
|
// Fast union-find work
|
|
void COMPRESS();
|
|
Tarjan *EVAL(void);
|
|
void LINK( Tarjan *w, Tarjan *tarjan0 );
|
|
|
|
void setdepth( uint size );
|
|
|
|
};
|
|
|
|
//------------------------------Dominator--------------------------------------
|
|
// Compute the dominator tree of the CFG. The CFG must already have been
|
|
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
|
|
void PhaseCFG::Dominators( ) {
|
|
// Pre-grow the blocks array, prior to the ResourceMark kicking in
|
|
_blocks.map(_num_blocks,0);
|
|
|
|
ResourceMark rm;
|
|
// Setup mappings from my Graph to Tarjan's stuff and back
|
|
// Note: Tarjan uses 1-based arrays
|
|
Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
|
|
|
|
// Tarjan's algorithm, almost verbatim:
|
|
// Step 1:
|
|
_rpo_ctr = _num_blocks;
|
|
uint dfsnum = DFS( tarjan );
|
|
if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
|
|
// If the returned dfsnum does not match the number of blocks, then we
|
|
// must have some unreachable loops. These can be made at any time by
|
|
// IterGVN. They are cleaned up by CCP or the loop opts, but the last
|
|
// IterGVN can always make more that are not cleaned up. Highly unlikely
|
|
// except in ZKM.jar, where endless irreducible loops cause the loop opts
|
|
// to not get run.
|
|
//
|
|
// Having found unreachable loops, we have made a bad RPO _block layout.
|
|
// We can re-run the above DFS pass with the correct number of blocks,
|
|
// and hack the Tarjan algorithm below to be robust in the presence of
|
|
// such dead loops (as was done for the NTarjan code farther below).
|
|
// Since this situation is so unlikely, instead I've decided to bail out.
|
|
// CNC 7/24/2001
|
|
C->record_method_not_compilable("unreachable loop");
|
|
return;
|
|
}
|
|
_blocks._cnt = _num_blocks;
|
|
|
|
// Tarjan is using 1-based arrays, so these are some initialize flags
|
|
tarjan[0]._size = tarjan[0]._semi = 0;
|
|
tarjan[0]._label = &tarjan[0];
|
|
|
|
uint i;
|
|
for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
|
|
Tarjan *w = &tarjan[i]; // Get vertex from DFS
|
|
|
|
// Step 2:
|
|
Node *whead = w->_block->head();
|
|
for (uint j = 1; j < whead->req(); j++) {
|
|
Block* b = get_block_for_node(whead->in(j));
|
|
Tarjan *vx = &tarjan[b->_pre_order];
|
|
Tarjan *u = vx->EVAL();
|
|
if( u->_semi < w->_semi )
|
|
w->_semi = u->_semi;
|
|
}
|
|
|
|
// w is added to a bucket here, and only here.
|
|
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
|
|
// Thus bucket can be a linked list.
|
|
// Thus we do not need a small integer name for each Block.
|
|
w->_bucket = tarjan[w->_semi]._bucket;
|
|
tarjan[w->_semi]._bucket = w;
|
|
|
|
w->_parent->LINK( w, &tarjan[0] );
|
|
|
|
// Step 3:
|
|
for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
|
|
Tarjan *u = vx->EVAL();
|
|
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
|
|
}
|
|
}
|
|
|
|
// Step 4:
|
|
for( i=2; i <= _num_blocks; i++ ) {
|
|
Tarjan *w = &tarjan[i];
|
|
if( w->_dom != &tarjan[w->_semi] )
|
|
w->_dom = w->_dom->_dom;
|
|
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
}
|
|
// No immediate dominator for the root
|
|
Tarjan *w = &tarjan[_broot->_pre_order];
|
|
w->_dom = NULL;
|
|
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
|
|
// Convert the dominator tree array into my kind of graph
|
|
for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
|
|
Tarjan *t = &tarjan[i]; // Handy access
|
|
Tarjan *tdom = t->_dom; // Handy access to immediate dominator
|
|
if( tdom ) { // Root has no immediate dominator
|
|
t->_block->_idom = tdom->_block; // Set immediate dominator
|
|
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
|
|
tdom->_dom_child = t; // Make me a child of my parent
|
|
} else
|
|
t->_block->_idom = NULL; // Root
|
|
}
|
|
w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
|
|
|
|
}
|
|
|
|
//----------------------------Block_Stack--------------------------------------
|
|
class Block_Stack {
|
|
private:
|
|
struct Block_Descr {
|
|
Block *block; // Block
|
|
int index; // Index of block's successor pushed on stack
|
|
int freq_idx; // Index of block's most frequent successor
|
|
};
|
|
Block_Descr *_stack_top;
|
|
Block_Descr *_stack_max;
|
|
Block_Descr *_stack;
|
|
Tarjan *_tarjan;
|
|
uint most_frequent_successor( Block *b );
|
|
public:
|
|
Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
|
|
_stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
|
|
_stack_max = _stack + size;
|
|
_stack_top = _stack - 1; // stack is empty
|
|
}
|
|
void push(uint pre_order, Block *b) {
|
|
Tarjan *t = &_tarjan[pre_order]; // Fast local access
|
|
b->_pre_order = pre_order; // Flag as visited
|
|
t->_block = b; // Save actual block
|
|
t->_semi = pre_order; // Block to DFS map
|
|
t->_label = t; // DFS to vertex map
|
|
t->_ancestor = NULL; // Fast LINK & EVAL setup
|
|
t->_child = &_tarjan[0]; // Sentenial
|
|
t->_size = 1;
|
|
t->_bucket = NULL;
|
|
if (pre_order == 1)
|
|
t->_parent = NULL; // first block doesn't have parent
|
|
else {
|
|
// Save parent (current top block on stack) in DFS
|
|
t->_parent = &_tarjan[_stack_top->block->_pre_order];
|
|
}
|
|
// Now put this block on stack
|
|
++_stack_top;
|
|
assert(_stack_top < _stack_max, ""); // assert if stack have to grow
|
|
_stack_top->block = b;
|
|
_stack_top->index = -1;
|
|
// Find the index into b->succs[] array of the most frequent successor.
|
|
_stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
|
|
}
|
|
Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
|
|
bool is_nonempty() { return (_stack_top >= _stack); }
|
|
bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
|
|
Block* next_successor() {
|
|
int i = _stack_top->index;
|
|
i++;
|
|
if (i == _stack_top->freq_idx) i++;
|
|
if (i >= (int)(_stack_top->block->_num_succs)) {
|
|
i = _stack_top->freq_idx; // process most frequent successor last
|
|
}
|
|
_stack_top->index = i;
|
|
return _stack_top->block->_succs[ i ];
|
|
}
|
|
};
|
|
|
|
//-------------------------most_frequent_successor-----------------------------
|
|
// Find the index into the b->succs[] array of the most frequent successor.
|
|
uint Block_Stack::most_frequent_successor( Block *b ) {
|
|
uint freq_idx = 0;
|
|
int eidx = b->end_idx();
|
|
Node *n = b->_nodes[eidx];
|
|
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
|
|
switch( op ) {
|
|
case Op_CountedLoopEnd:
|
|
case Op_If: { // Split frequency amongst children
|
|
float prob = n->as_MachIf()->_prob;
|
|
// Is succ[0] the TRUE branch or the FALSE branch?
|
|
if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
|
|
prob = 1.0f - prob;
|
|
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
|
|
break;
|
|
}
|
|
case Op_Catch: // Split frequency amongst children
|
|
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
|
|
if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
|
|
break;
|
|
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
|
|
if( freq_idx == b->_num_succs ) freq_idx = 0;
|
|
break;
|
|
// Currently there is no support for finding out the most
|
|
// frequent successor for jumps, so lets just make it the first one
|
|
case Op_Jump:
|
|
case Op_Root:
|
|
case Op_Goto:
|
|
case Op_NeverBranch:
|
|
freq_idx = 0; // fall thru
|
|
break;
|
|
case Op_TailCall:
|
|
case Op_TailJump:
|
|
case Op_Return:
|
|
case Op_Halt:
|
|
case Op_Rethrow:
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return freq_idx;
|
|
}
|
|
|
|
//------------------------------DFS--------------------------------------------
|
|
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
|
|
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
|
|
uint PhaseCFG::DFS( Tarjan *tarjan ) {
|
|
Block *b = _broot;
|
|
uint pre_order = 1;
|
|
// Allocate stack of size _num_blocks+1 to avoid frequent realloc
|
|
Block_Stack bstack(tarjan, _num_blocks+1);
|
|
|
|
// Push on stack the state for the first block
|
|
bstack.push(pre_order, b);
|
|
++pre_order;
|
|
|
|
while (bstack.is_nonempty()) {
|
|
if (!bstack.last_successor()) {
|
|
// Walk over all successors in pre-order (DFS).
|
|
Block *s = bstack.next_successor();
|
|
if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
|
|
// Push on stack the state of successor
|
|
bstack.push(pre_order, s);
|
|
++pre_order;
|
|
}
|
|
}
|
|
else {
|
|
// Build a reverse post-order in the CFG _blocks array
|
|
Block *stack_top = bstack.pop();
|
|
stack_top->_rpo = --_rpo_ctr;
|
|
_blocks.map(stack_top->_rpo, stack_top);
|
|
}
|
|
}
|
|
return pre_order;
|
|
}
|
|
|
|
//------------------------------COMPRESS---------------------------------------
|
|
void Tarjan::COMPRESS()
|
|
{
|
|
assert( _ancestor != 0, "" );
|
|
if( _ancestor->_ancestor != 0 ) {
|
|
_ancestor->COMPRESS( );
|
|
if( _ancestor->_label->_semi < _label->_semi )
|
|
_label = _ancestor->_label;
|
|
_ancestor = _ancestor->_ancestor;
|
|
}
|
|
}
|
|
|
|
//------------------------------EVAL-------------------------------------------
|
|
Tarjan *Tarjan::EVAL() {
|
|
if( !_ancestor ) return _label;
|
|
COMPRESS();
|
|
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
|
|
}
|
|
|
|
//------------------------------LINK-------------------------------------------
|
|
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
|
|
Tarjan *s = w;
|
|
while( w->_label->_semi < s->_child->_label->_semi ) {
|
|
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
|
|
s->_child->_ancestor = s;
|
|
s->_child = s->_child->_child;
|
|
} else {
|
|
s->_child->_size = s->_size;
|
|
s = s->_ancestor = s->_child;
|
|
}
|
|
}
|
|
s->_label = w->_label;
|
|
_size += w->_size;
|
|
if( _size < (w->_size << 1) ) {
|
|
Tarjan *tmp = s; s = _child; _child = tmp;
|
|
}
|
|
while( s != tarjan0 ) {
|
|
s->_ancestor = this;
|
|
s = s->_child;
|
|
}
|
|
}
|
|
|
|
//------------------------------setdepth---------------------------------------
|
|
void Tarjan::setdepth( uint stack_size ) {
|
|
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
|
|
Tarjan **next = top;
|
|
Tarjan **last;
|
|
uint depth = 0;
|
|
*top = this;
|
|
++top;
|
|
do {
|
|
// next level
|
|
++depth;
|
|
last = top;
|
|
do {
|
|
// Set current depth for all tarjans on this level
|
|
Tarjan *t = *next; // next tarjan from stack
|
|
++next;
|
|
do {
|
|
t->_block->_dom_depth = depth; // Set depth in dominator tree
|
|
Tarjan *dom_child = t->_dom_child;
|
|
t = t->_dom_next; // next tarjan
|
|
if (dom_child != NULL) {
|
|
*top = dom_child; // save child on stack
|
|
++top;
|
|
}
|
|
} while (t != NULL);
|
|
} while (next < last);
|
|
} while (last < top);
|
|
}
|
|
|
|
//*********************** DOMINATORS ON THE SEA OF NODES***********************
|
|
//------------------------------NTarjan----------------------------------------
|
|
// A data structure that holds all the information needed to find dominators.
|
|
struct NTarjan {
|
|
Node *_control; // Control node associated with this info
|
|
|
|
uint _semi; // Semi-dominators
|
|
uint _size; // Used for faster LINK and EVAL
|
|
NTarjan *_parent; // Parent in DFS
|
|
NTarjan *_label; // Used for LINK and EVAL
|
|
NTarjan *_ancestor; // Used for LINK and EVAL
|
|
NTarjan *_child; // Used for faster LINK and EVAL
|
|
NTarjan *_dom; // Parent in dominator tree (immediate dom)
|
|
NTarjan *_bucket; // Set of vertices with given semidominator
|
|
|
|
NTarjan *_dom_child; // Child in dominator tree
|
|
NTarjan *_dom_next; // Next in dominator tree
|
|
|
|
// Perform DFS search.
|
|
// Setup 'vertex' as DFS to vertex mapping.
|
|
// Setup 'semi' as vertex to DFS mapping.
|
|
// Set 'parent' to DFS parent.
|
|
static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
|
|
void setdepth( uint size, uint *dom_depth );
|
|
|
|
// Fast union-find work
|
|
void COMPRESS();
|
|
NTarjan *EVAL(void);
|
|
void LINK( NTarjan *w, NTarjan *ntarjan0 );
|
|
#ifndef PRODUCT
|
|
void dump(int offset) const;
|
|
#endif
|
|
};
|
|
|
|
//------------------------------Dominator--------------------------------------
|
|
// Compute the dominator tree of the sea of nodes. This version walks all CFG
|
|
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
|
|
// it needs a count of the CFG nodes for the mapping table. This is the
|
|
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
|
|
void PhaseIdealLoop::Dominators() {
|
|
ResourceMark rm;
|
|
// Setup mappings from my Graph to Tarjan's stuff and back
|
|
// Note: Tarjan uses 1-based arrays
|
|
NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
|
|
// Initialize _control field for fast reference
|
|
int i;
|
|
for( i= C->unique()-1; i>=0; i-- )
|
|
ntarjan[i]._control = NULL;
|
|
|
|
// Store the DFS order for the main loop
|
|
uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
|
|
memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
|
|
|
|
// Tarjan's algorithm, almost verbatim:
|
|
// Step 1:
|
|
VectorSet visited(Thread::current()->resource_area());
|
|
int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
|
|
|
|
// Tarjan is using 1-based arrays, so these are some initialize flags
|
|
ntarjan[0]._size = ntarjan[0]._semi = 0;
|
|
ntarjan[0]._label = &ntarjan[0];
|
|
|
|
for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order
|
|
NTarjan *w = &ntarjan[i]; // Get Node from DFS
|
|
assert(w->_control != NULL,"bad DFS walk");
|
|
|
|
// Step 2:
|
|
Node *whead = w->_control;
|
|
for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
|
|
if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
|
|
continue; // Only process control nodes
|
|
uint b = dfsorder[whead->in(j)->_idx];
|
|
if(b == max_uint) continue;
|
|
NTarjan *vx = &ntarjan[b];
|
|
NTarjan *u = vx->EVAL();
|
|
if( u->_semi < w->_semi )
|
|
w->_semi = u->_semi;
|
|
}
|
|
|
|
// w is added to a bucket here, and only here.
|
|
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
|
|
// Thus bucket can be a linked list.
|
|
w->_bucket = ntarjan[w->_semi]._bucket;
|
|
ntarjan[w->_semi]._bucket = w;
|
|
|
|
w->_parent->LINK( w, &ntarjan[0] );
|
|
|
|
// Step 3:
|
|
for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
|
|
NTarjan *u = vx->EVAL();
|
|
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
|
|
}
|
|
|
|
// Cleanup any unreachable loops now. Unreachable loops are loops that
|
|
// flow into the main graph (and hence into ROOT) but are not reachable
|
|
// from above. Such code is dead, but requires a global pass to detect
|
|
// it; this global pass was the 'build_loop_tree' pass run just prior.
|
|
if( !_verify_only && whead->is_Region() ) {
|
|
for( uint i = 1; i < whead->req(); i++ ) {
|
|
if (!has_node(whead->in(i))) {
|
|
// Kill dead input path
|
|
assert( !visited.test(whead->in(i)->_idx),
|
|
"input with no loop must be dead" );
|
|
_igvn.delete_input_of(whead, i);
|
|
for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
|
|
Node* p = whead->fast_out(j);
|
|
if( p->is_Phi() ) {
|
|
_igvn.delete_input_of(p, i);
|
|
}
|
|
}
|
|
i--; // Rerun same iteration
|
|
} // End of if dead input path
|
|
} // End of for all input paths
|
|
} // End if if whead is a Region
|
|
} // End of for all Nodes in reverse DFS order
|
|
|
|
// Step 4:
|
|
for( i=2; i < dfsnum; i++ ) { // DFS order
|
|
NTarjan *w = &ntarjan[i];
|
|
assert(w->_control != NULL,"Bad DFS walk");
|
|
if( w->_dom != &ntarjan[w->_semi] )
|
|
w->_dom = w->_dom->_dom;
|
|
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
}
|
|
// No immediate dominator for the root
|
|
NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
|
|
w->_dom = NULL;
|
|
w->_parent = NULL;
|
|
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
|
|
// Convert the dominator tree array into my kind of graph
|
|
for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices
|
|
NTarjan *t = &ntarjan[i]; // Handy access
|
|
assert(t->_control != NULL,"Bad DFS walk");
|
|
NTarjan *tdom = t->_dom; // Handy access to immediate dominator
|
|
if( tdom ) { // Root has no immediate dominator
|
|
_idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
|
|
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
|
|
tdom->_dom_child = t; // Make me a child of my parent
|
|
} else
|
|
_idom[C->root()->_idx] = NULL; // Root
|
|
}
|
|
w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
|
|
// Pick up the 'top' node as well
|
|
_idom [C->top()->_idx] = C->root();
|
|
_dom_depth[C->top()->_idx] = 1;
|
|
|
|
// Debug Print of Dominator tree
|
|
if( PrintDominators ) {
|
|
#ifndef PRODUCT
|
|
w->dump(0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
//------------------------------DFS--------------------------------------------
|
|
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
|
|
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
|
|
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
|
|
// Allocate stack of size C->unique()/8 to avoid frequent realloc
|
|
GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
|
|
Node *b = pil->C->root();
|
|
int dfsnum = 1;
|
|
dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
|
|
dfstack.push(b);
|
|
|
|
while (dfstack.is_nonempty()) {
|
|
b = dfstack.pop();
|
|
if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
|
|
NTarjan *w = &ntarjan[dfsnum];
|
|
// Only fully process control nodes
|
|
w->_control = b; // Save actual node
|
|
// Use parent's cached dfsnum to identify "Parent in DFS"
|
|
w->_parent = &ntarjan[dfsorder[b->_idx]];
|
|
dfsorder[b->_idx] = dfsnum; // Save DFS order info
|
|
w->_semi = dfsnum; // Node to DFS map
|
|
w->_label = w; // DFS to vertex map
|
|
w->_ancestor = NULL; // Fast LINK & EVAL setup
|
|
w->_child = &ntarjan[0]; // Sentinal
|
|
w->_size = 1;
|
|
w->_bucket = NULL;
|
|
|
|
// Need DEF-USE info for this pass
|
|
for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
|
|
Node* s = b->raw_out(i); // Get a use
|
|
// CFG nodes only and not dead stuff
|
|
if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
|
|
dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use
|
|
dfstack.push(s);
|
|
}
|
|
}
|
|
dfsnum++; // update after parent's dfsnum has been cached.
|
|
}
|
|
}
|
|
|
|
return dfsnum;
|
|
}
|
|
|
|
//------------------------------COMPRESS---------------------------------------
|
|
void NTarjan::COMPRESS()
|
|
{
|
|
assert( _ancestor != 0, "" );
|
|
if( _ancestor->_ancestor != 0 ) {
|
|
_ancestor->COMPRESS( );
|
|
if( _ancestor->_label->_semi < _label->_semi )
|
|
_label = _ancestor->_label;
|
|
_ancestor = _ancestor->_ancestor;
|
|
}
|
|
}
|
|
|
|
//------------------------------EVAL-------------------------------------------
|
|
NTarjan *NTarjan::EVAL() {
|
|
if( !_ancestor ) return _label;
|
|
COMPRESS();
|
|
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
|
|
}
|
|
|
|
//------------------------------LINK-------------------------------------------
|
|
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
|
|
NTarjan *s = w;
|
|
while( w->_label->_semi < s->_child->_label->_semi ) {
|
|
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
|
|
s->_child->_ancestor = s;
|
|
s->_child = s->_child->_child;
|
|
} else {
|
|
s->_child->_size = s->_size;
|
|
s = s->_ancestor = s->_child;
|
|
}
|
|
}
|
|
s->_label = w->_label;
|
|
_size += w->_size;
|
|
if( _size < (w->_size << 1) ) {
|
|
NTarjan *tmp = s; s = _child; _child = tmp;
|
|
}
|
|
while( s != ntarjan0 ) {
|
|
s->_ancestor = this;
|
|
s = s->_child;
|
|
}
|
|
}
|
|
|
|
//------------------------------setdepth---------------------------------------
|
|
void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
|
|
NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
|
|
NTarjan **next = top;
|
|
NTarjan **last;
|
|
uint depth = 0;
|
|
*top = this;
|
|
++top;
|
|
do {
|
|
// next level
|
|
++depth;
|
|
last = top;
|
|
do {
|
|
// Set current depth for all tarjans on this level
|
|
NTarjan *t = *next; // next tarjan from stack
|
|
++next;
|
|
do {
|
|
dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
|
|
NTarjan *dom_child = t->_dom_child;
|
|
t = t->_dom_next; // next tarjan
|
|
if (dom_child != NULL) {
|
|
*top = dom_child; // save child on stack
|
|
++top;
|
|
}
|
|
} while (t != NULL);
|
|
} while (next < last);
|
|
} while (last < top);
|
|
}
|
|
|
|
//------------------------------dump-------------------------------------------
|
|
#ifndef PRODUCT
|
|
void NTarjan::dump(int offset) const {
|
|
// Dump the data from this node
|
|
int i;
|
|
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
tty->print(" ");
|
|
tty->print("Dominator Node: ");
|
|
_control->dump(); // Control node for this dom node
|
|
tty->print("\n");
|
|
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
tty->print(" ");
|
|
tty->print("semi:%d, size:%d\n",_semi, _size);
|
|
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
tty->print(" ");
|
|
tty->print("DFS Parent: ");
|
|
if(_parent != NULL)
|
|
_parent->_control->dump(); // Parent in DFS
|
|
tty->print("\n");
|
|
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
tty->print(" ");
|
|
tty->print("Dom Parent: ");
|
|
if(_dom != NULL)
|
|
_dom->_control->dump(); // Parent in Dominator Tree
|
|
tty->print("\n");
|
|
|
|
// Recurse over remaining tree
|
|
if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree
|
|
if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree
|
|
|
|
}
|
|
#endif
|