Igor Veresov ed4e9a5d5c 6711930: NUMA allocator: ParOld can create a hole less than minimal object size in the lgrp chunk
The fix takes care of three issues that can create a hole less a minimal object in the lgrp chunk

Reviewed-by: ysr, apetrusenko
2008-06-09 07:18:59 -07:00

199 lines
8.6 KiB
C++

/*
* Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
/*
* The NUMA-aware allocator (MutableNUMASpace) is basically a modification
* of MutableSpace which preserves interfaces but implements different
* functionality. The space is split into chunks for each locality group
* (resizing for adaptive size policy is also supported). For each thread
* allocations are performed in the chunk corresponding to the home locality
* group of the thread. Whenever any chunk fills-in the young generation
* collection occurs.
* The chunks can be also be adaptively resized. The idea behind the adaptive
* sizing is to reduce the loss of the space in the eden due to fragmentation.
* The main cause of fragmentation is uneven allocation rates of threads.
* The allocation rate difference between locality groups may be caused either by
* application specifics or by uneven LWP distribution by the OS. Besides,
* application can have less threads then the number of locality groups.
* In order to resize the chunk we measure the allocation rate of the
* application between collections. After that we reshape the chunks to reflect
* the allocation rate pattern. The AdaptiveWeightedAverage exponentially
* decaying average is used to smooth the measurements. The NUMASpaceResizeRate
* parameter is used to control the adaptation speed by restricting the number of
* bytes that can be moved during the adaptation phase.
* Chunks may contain pages from a wrong locality group. The page-scanner has
* been introduced to address the problem. Remote pages typically appear due to
* the memory shortage in the target locality group. Besides Solaris would
* allocate a large page from the remote locality group even if there are small
* local pages available. The page-scanner scans the pages right after the
* collection and frees remote pages in hope that subsequent reallocation would
* be more successful. This approach proved to be useful on systems with high
* load where multiple processes are competing for the memory.
*/
class MutableNUMASpace : public MutableSpace {
friend class VMStructs;
class LGRPSpace : public CHeapObj {
int _lgrp_id;
MutableSpace* _space;
MemRegion _invalid_region;
AdaptiveWeightedAverage *_alloc_rate;
struct SpaceStats {
size_t _local_space, _remote_space, _unbiased_space, _uncommited_space;
size_t _large_pages, _small_pages;
SpaceStats() {
_local_space = 0;
_remote_space = 0;
_unbiased_space = 0;
_uncommited_space = 0;
_large_pages = 0;
_small_pages = 0;
}
};
SpaceStats _space_stats;
char* _last_page_scanned;
char* last_page_scanned() { return _last_page_scanned; }
void set_last_page_scanned(char* p) { _last_page_scanned = p; }
public:
LGRPSpace(int l) : _lgrp_id(l), _last_page_scanned(NULL) {
_space = new MutableSpace();
_alloc_rate = new AdaptiveWeightedAverage(NUMAChunkResizeWeight);
}
~LGRPSpace() {
delete _space;
delete _alloc_rate;
}
void add_invalid_region(MemRegion r) {
if (!_invalid_region.is_empty()) {
_invalid_region.set_start(MIN2(_invalid_region.start(), r.start()));
_invalid_region.set_end(MAX2(_invalid_region.end(), r.end()));
} else {
_invalid_region = r;
}
}
static bool equals(void* lgrp_id_value, LGRPSpace* p) {
return *(int*)lgrp_id_value == p->lgrp_id();
}
void sample() {
alloc_rate()->sample(space()->used_in_bytes());
}
MemRegion invalid_region() const { return _invalid_region; }
void set_invalid_region(MemRegion r) { _invalid_region = r; }
int lgrp_id() const { return _lgrp_id; }
MutableSpace* space() const { return _space; }
AdaptiveWeightedAverage* alloc_rate() const { return _alloc_rate; }
SpaceStats* space_stats() { return &_space_stats; }
void clear_space_stats() { _space_stats = SpaceStats(); }
void accumulate_statistics(size_t page_size);
void scan_pages(size_t page_size, size_t page_count);
};
GrowableArray<LGRPSpace*>* _lgrp_spaces;
size_t _page_size;
unsigned _adaptation_cycles, _samples_count;
void set_page_size(size_t psz) { _page_size = psz; }
size_t page_size() const { return _page_size; }
unsigned adaptation_cycles() { return _adaptation_cycles; }
void set_adaptation_cycles(int v) { _adaptation_cycles = v; }
unsigned samples_count() { return _samples_count; }
void increment_samples_count() { ++_samples_count; }
size_t _base_space_size;
void set_base_space_size(size_t v) { _base_space_size = v; }
size_t base_space_size() const { return _base_space_size; }
// Check if the NUMA topology has changed. Add and remove spaces if needed.
// The update can be forced by setting the force parameter equal to true.
bool update_layout(bool force);
// Bias region towards the lgrp.
void bias_region(MemRegion mr, int lgrp_id);
// Free pages in a given region.
void free_region(MemRegion mr);
// Get current chunk size.
size_t current_chunk_size(int i);
// Get default chunk size (equally divide the space).
size_t default_chunk_size();
// Adapt the chunk size to follow the allocation rate.
size_t adaptive_chunk_size(int i, size_t limit);
// Scan and free invalid pages.
void scan_pages(size_t page_count);
// Return the bottom_region and the top_region. Align them to page_size() boundary.
// |------------------new_region---------------------------------|
// |----bottom_region--|---intersection---|------top_region------|
void select_tails(MemRegion new_region, MemRegion intersection,
MemRegion* bottom_region, MemRegion *top_region);
// Try to merge the invalid region with the bottom or top region by decreasing
// the intersection area. Return the invalid_region aligned to the page_size()
// boundary if it's inside the intersection. Return non-empty invalid_region
// if it lies inside the intersection (also page-aligned).
// |------------------new_region---------------------------------|
// |----------------|-------invalid---|--------------------------|
// |----bottom_region--|---intersection---|------top_region------|
void merge_regions(MemRegion new_region, MemRegion* intersection,
MemRegion *invalid_region);
public:
GrowableArray<LGRPSpace*>* lgrp_spaces() const { return _lgrp_spaces; }
MutableNUMASpace();
virtual ~MutableNUMASpace();
// Space initialization.
virtual void initialize(MemRegion mr, bool clear_space);
// Update space layout if necessary. Do all adaptive resizing job.
virtual void update();
// Update allocation rate averages.
virtual void accumulate_statistics();
virtual void clear();
virtual void mangle_unused_area();
virtual void ensure_parsability();
virtual size_t used_in_words() const;
virtual size_t free_in_words() const;
virtual size_t tlab_capacity(Thread* thr) const;
virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
// Allocation (return NULL if full)
virtual HeapWord* allocate(size_t word_size);
virtual HeapWord* cas_allocate(size_t word_size);
// Debugging
virtual void print_on(outputStream* st) const;
virtual void print_short_on(outputStream* st) const;
virtual void verify(bool allow_dirty);
virtual void set_top(HeapWord* value);
};