jdk-24/test/hotspot/gtest/nmt/test_nmt_treap.cpp
Johan Sjölen 3944e67366 8312132: Add tracking of multiple address spaces in NMT
Co-authored-by: Thomas Stuefe <stuefe@openjdk.org>
Reviewed-by: stefank, stuefe
2024-06-05 07:53:48 +00:00

327 lines
8.0 KiB
C++

/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/resourceArea.hpp"
#include "nmt/nmtTreap.hpp"
#include "runtime/os.hpp"
#include "unittest.hpp"
class TreapTest : public testing::Test {
public:
struct Cmp {
static int cmp(int a, int b) {
return a - b;
}
};
struct CmpInverse {
static int cmp(int a, int b) {
return b - a;
}
};
struct FCmp {
static int cmp(float a, float b) {
if (a < b) return -1;
if (a == b) return 0;
return 1;
}
};
#ifdef ASSERT
template<typename K, typename V, typename CMP, typename ALLOC>
void verify_it(Treap<K, V, CMP, ALLOC>& t) {
t.verify_self();
}
#endif // ASSERT
public:
void inserting_duplicates_results_in_one_value() {
constexpr const int up_to = 10;
GrowableArrayCHeap<int, mtTest> nums_seen(up_to, up_to, 0);
TreapCHeap<int, int, Cmp> treap;
for (int i = 0; i < up_to; i++) {
treap.upsert(i, i);
treap.upsert(i, i);
treap.upsert(i, i);
treap.upsert(i, i);
treap.upsert(i, i);
}
treap.visit_in_order([&](TreapCHeap<int, int, Cmp>::TreapNode* node) {
nums_seen.at(node->key())++;
});
for (int i = 0; i < up_to; i++) {
EXPECT_EQ(1, nums_seen.at(i));
}
}
void treap_ought_not_leak() {
struct LeakCheckedAllocator {
int allocations;
LeakCheckedAllocator()
: allocations(0) {
}
void* allocate(size_t sz) {
void* allocation = os::malloc(sz, mtTest);
if (allocation == nullptr) {
vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, "treap failed allocation");
}
++allocations;
return allocation;
}
void free(void* ptr) {
--allocations;
os::free(ptr);
}
};
constexpr const int up_to = 10;
{
Treap<int, int, Cmp, LeakCheckedAllocator> treap;
for (int i = 0; i < up_to; i++) {
treap.upsert(i, i);
}
EXPECT_EQ(up_to, treap._allocator.allocations);
for (int i = 0; i < up_to; i++) {
treap.remove(i);
}
EXPECT_EQ(0, treap._allocator.allocations);
EXPECT_EQ(nullptr, treap._root);
}
{
Treap<int, int, Cmp, LeakCheckedAllocator> treap;
for (int i = 0; i < up_to; i++) {
treap.upsert(i, i);
}
treap.remove_all();
EXPECT_EQ(0, treap._allocator.allocations);
EXPECT_EQ(nullptr, treap._root);
}
}
void test_find() {
struct Empty {};
TreapCHeap<float, Empty, FCmp> treap;
using Node = TreapCHeap<float, Empty, FCmp>::TreapNode;
Node* n = nullptr;
auto test = [&](float f) {
EXPECT_EQ(nullptr, treap.find(treap._root, f));
treap.upsert(f, Empty{});
Node* n = treap.find(treap._root, f);
EXPECT_NE(nullptr, n);
EXPECT_EQ(f, n->key());
};
test(1.0f);
test(5.0f);
test(0.0f);
}
};
TEST_VM_F(TreapTest, InsertingDuplicatesResultsInOneValue) {
this->inserting_duplicates_results_in_one_value();
}
TEST_VM_F(TreapTest, TreapOughtNotLeak) {
this->treap_ought_not_leak();
}
TEST_VM_F(TreapTest, TestVisitors) {
{ // Tests with 'default' ordering (ascending)
TreapCHeap<int, int, Cmp> treap;
using Node = TreapCHeap<int, int, Cmp>::TreapNode;
treap.visit_range_in_order(0, 100, [&](Node* x) {
EXPECT_TRUE(false) << "Empty treap has no nodes to visit";
});
// Single-element set
treap.upsert(1, 0);
int count = 0;
treap.visit_range_in_order(0, 100, [&](Node* x) {
count++;
});
EXPECT_EQ(1, count);
count = 0;
treap.visit_in_order([&](Node* x) {
count++;
});
EXPECT_EQ(1, count);
// Add an element outside of the range that should not be visited on the right side and
// one on the left side.
treap.upsert(101, 0);
treap.upsert(-1, 0);
count = 0;
treap.visit_range_in_order(0, 100, [&](Node* x) {
count++;
});
EXPECT_EQ(1, count);
count = 0;
treap.visit_in_order([&](Node* x) {
count++;
});
EXPECT_EQ(3, count);
// Visiting empty range [0, 0) == {}
treap.upsert(0, 0); // This node should not be visited.
treap.visit_range_in_order(0, 0, [&](Node* x) {
EXPECT_TRUE(false) << "Empty visiting range should not visit any node";
});
treap.remove_all();
for (int i = 0; i < 11; i++) {
treap.upsert(i, 0);
}
ResourceMark rm;
GrowableArray<int> seen;
treap.visit_range_in_order(0, 10, [&](Node* x) {
seen.push(x->key());
});
EXPECT_EQ(10, seen.length());
for (int i = 0; i < 10; i++) {
EXPECT_EQ(i, seen.at(i));
}
seen.clear();
treap.visit_in_order([&](Node* x) {
seen.push(x->key());
});
EXPECT_EQ(11, seen.length());
for (int i = 0; i < 10; i++) {
EXPECT_EQ(i, seen.at(i));
}
seen.clear();
treap.visit_range_in_order(10, 12, [&](Node* x) {
seen.push(x->key());
});
EXPECT_EQ(1, seen.length());
EXPECT_EQ(10, seen.at(0));
}
{ // Test with descending ordering
TreapCHeap<int, int, CmpInverse> treap;
using Node = TreapCHeap<int, int, CmpInverse>::TreapNode;
for (int i = 0; i < 10; i++) {
treap.upsert(i, 0);
}
ResourceMark rm;
GrowableArray<int> seen;
treap.visit_range_in_order(9, -1, [&](Node* x) {
seen.push(x->key());
});
EXPECT_EQ(10, seen.length());
for (int i = 0; i < 10; i++) {
EXPECT_EQ(10-i-1, seen.at(i));
}
seen.clear();
treap.visit_in_order([&](Node* x) {
seen.push(x->key());
});
EXPECT_EQ(10, seen.length());
for (int i = 0; i < 10; i++) {
EXPECT_EQ(10 - i - 1, seen.at(i));
}
}
}
TEST_VM_F(TreapTest, TestFind) {
test_find();
}
TEST_VM_F(TreapTest, TestClosestLeq) {
using Node = TreapCHeap<int, int, Cmp>::TreapNode;
{
TreapCHeap<int, int, Cmp> treap;
Node* n = treap.closest_leq(0);
EXPECT_EQ(nullptr, n);
treap.upsert(0, 0);
n = treap.closest_leq(0);
EXPECT_EQ(0, n->key());
treap.upsert(-1, -1);
n = treap.closest_leq(0);
EXPECT_EQ(0, n->key());
treap.upsert(6, 0);
n = treap.closest_leq(6);
EXPECT_EQ(6, n->key());
n = treap.closest_leq(-2);
EXPECT_EQ(nullptr, n);
}
}
#ifdef ASSERT
TEST_VM_F(TreapTest, VerifyItThroughStressTest) {
{ // Repeatedly verify a treap of moderate size
TreapCHeap<int, int, Cmp> treap;
constexpr const int ten_thousand = 10000;
for (int i = 0; i < ten_thousand; i++) {
int r = os::random();
if (r % 2 == 0) {
treap.upsert(i, i);
} else {
treap.remove(i);
}
verify_it(treap);
}
for (int i = 0; i < ten_thousand; i++) {
int r = os::random();
if (r % 2 == 0) {
treap.upsert(i, i);
} else {
treap.remove(i);
}
verify_it(treap);
}
}
{ // Make a very large treap and verify at the end
struct Nothing {};
TreapCHeap<int, Nothing, Cmp> treap;
constexpr const int five_million = 5000000;
for (int i = 0; i < five_million; i++) {
treap.upsert(i, Nothing());
}
verify_it(treap);
}
}
#endif // ASSERT