jdk-24/test/hotspot/jtreg/gc/g1/TestLargePageUseForAuxMemory.java
Igor Ignatyev a7aba2b61c 8263549: 8263412 can cause jtreg testlibrary split
Reviewed-by: iklam, dcubed
2021-03-13 14:51:53 +00:00

228 lines
11 KiB
Java

/*
* Copyright (c) 2015, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.g1;
/*
* @test TestLargePageUseForAuxMemory.java
* @summary Test that auxiliary data structures are allocated using large pages if available.
* @bug 8058354 8079208
* @modules java.base/jdk.internal.misc
* @library /test/lib
* @requires vm.gc.G1
* @build sun.hotspot.WhiteBox
* @run driver jdk.test.lib.helpers.ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UseG1GC -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:+IgnoreUnrecognizedVMOptions -XX:+UseLargePages gc.g1.TestLargePageUseForAuxMemory
*/
import java.lang.Math;
import jdk.test.lib.process.OutputAnalyzer;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.Asserts;
import jdk.test.lib.Platform;
import jtreg.SkippedException;
import sun.hotspot.WhiteBox;
public class TestLargePageUseForAuxMemory {
static final long HEAP_REGION_SIZE = 1 * 1024 * 1024;
static long largePageSize;
static long smallPageSize;
static long allocGranularity;
static boolean largePagesEnabled(OutputAnalyzer output) {
// The gc+init logging includes information about large pages.
String lp = output.firstMatch("Large Page Support: (\\w*)", 1);
return lp != null && lp.equals("Enabled");
}
static boolean largePagesAllocationFailure(OutputAnalyzer output, String pattern) {
// Check if there is a large page failure associated with the data structure
// being checked. In case of a large page allocation failure the output will
// include logs like this for the affected data structure:
// [0.048s][debug][gc,heap,coops] Reserve regular memory without large pages
// [0.048s][info ][pagesize ] Next Bitmap: ... page_size=4K ...
//
// The pattern passed in should match the second line.
String failureMatch = output.firstMatch("Reserve regular memory without large pages\\n.*" + pattern, 1);
if (failureMatch != null) {
return true;
}
return false;
}
static void checkSize(OutputAnalyzer output, long expectedSize, String pattern) {
// First check the output for any large page allocation failure associated with
// the checked data structure. If we detect a failure then expect small pages.
if (largePagesAllocationFailure(output, pattern)) {
// This should only happen when we are expecting large pages
if (expectedSize == smallPageSize) {
throw new RuntimeException("Expected small page size when large page failure was detected");
}
expectedSize = smallPageSize;
}
// Now check what page size is traced.
String pageSizeStr = output.firstMatch(pattern, 1);
if (pageSizeStr == null) {
output.reportDiagnosticSummary();
throw new RuntimeException("Match from '" + pattern + "' got 'null' expected: " + expectedSize);
}
long size = parseMemoryString(pageSizeStr);
if (size != expectedSize) {
output.reportDiagnosticSummary();
throw new RuntimeException("Match from '" + pattern + "' got " + size + " expected: " + expectedSize);
}
}
static void checkSmallTables(OutputAnalyzer output, long expectedPageSize) throws Exception {
checkSize(output, expectedPageSize, "Block Offset Table: .*page_size=([^ ]+)");
checkSize(output, expectedPageSize, "Card Counts Table: .*page_size=([^ ]+)");
}
static void checkBitmaps(OutputAnalyzer output, long expectedPageSize) throws Exception {
checkSize(output, expectedPageSize, "Prev Bitmap: .*page_size=([^ ]+)");
checkSize(output, expectedPageSize, "Next Bitmap: .*page_size=([^ ]+)");
}
static void testVM(String what, long heapsize, boolean cardsShouldUseLargePages, boolean bitmapShouldUseLargePages) throws Exception {
System.out.println(what + " heapsize " + heapsize + " card table should use large pages " + cardsShouldUseLargePages + " " +
"bitmaps should use large pages " + bitmapShouldUseLargePages);
ProcessBuilder pb;
// Test with large page enabled.
pb = ProcessTools.createJavaProcessBuilder("-XX:+UseG1GC",
"-XX:G1HeapRegionSize=" + HEAP_REGION_SIZE,
"-Xmx" + heapsize,
"-Xlog:pagesize,gc+init,gc+heap+coops=debug",
"-XX:+UseLargePages",
"-XX:+IgnoreUnrecognizedVMOptions", // there is no ObjectAlignmentInBytes in 32 bit builds
"-XX:ObjectAlignmentInBytes=8",
"-version");
OutputAnalyzer output = new OutputAnalyzer(pb.start());
// Only expect large page size if large pages are enabled.
if (largePagesEnabled(output)) {
checkSmallTables(output, (cardsShouldUseLargePages ? largePageSize : smallPageSize));
checkBitmaps(output, (bitmapShouldUseLargePages ? largePageSize : smallPageSize));
} else {
checkSmallTables(output, smallPageSize);
checkBitmaps(output, smallPageSize);
}
output.shouldHaveExitValue(0);
// Test with large page disabled.
pb = ProcessTools.createJavaProcessBuilder("-XX:+UseG1GC",
"-XX:G1HeapRegionSize=" + HEAP_REGION_SIZE,
"-Xmx" + heapsize,
"-Xlog:pagesize",
"-XX:-UseLargePages",
"-XX:+IgnoreUnrecognizedVMOptions", // there is no ObjectAlignmentInBytes in 32 bit builds
"-XX:ObjectAlignmentInBytes=8",
"-version");
output = new OutputAnalyzer(pb.start());
checkSmallTables(output, smallPageSize);
checkBitmaps(output, smallPageSize);
output.shouldHaveExitValue(0);
}
private static long gcd(long x, long y) {
while (x > 0) {
long t = x;
x = y % x;
y = t;
}
return y;
}
private static long lcm(long x, long y) {
return x * (y / gcd(x, y));
}
public static void main(String[] args) throws Exception {
// Size that a single card covers.
final int cardSize = 512;
WhiteBox wb = WhiteBox.getWhiteBox();
smallPageSize = wb.getVMPageSize();
largePageSize = wb.getVMLargePageSize();
allocGranularity = wb.getVMAllocationGranularity();
final long heapAlignment = lcm(cardSize * smallPageSize, largePageSize);
if (largePageSize == 0) {
throw new SkippedException("Large page support does not seem to be available on this platform.");
}
if (largePageSize == smallPageSize) {
throw new SkippedException("Large page support does not seem to be available on this platform."
+ "Small and large page size are the same.");
}
// To get large pages for the card table etc. we need at least a 1G heap (with 4k page size).
// 32 bit systems will have problems reserving such an amount of contiguous space, so skip the
// test there.
if (!Platform.is32bit()) {
final long heapSizeForCardTableUsingLargePages = largePageSize * cardSize;
final long heapSizeDiffForCardTable = Math.max(Math.max(allocGranularity * cardSize, HEAP_REGION_SIZE), largePageSize);
Asserts.assertGT(heapSizeForCardTableUsingLargePages, heapSizeDiffForCardTable,
"To test we would require to use an invalid heap size");
testVM("case1: card table and bitmap use large pages (barely)", heapSizeForCardTableUsingLargePages, true, true);
testVM("case2: card table and bitmap use large pages (extra slack)", heapSizeForCardTableUsingLargePages + heapSizeDiffForCardTable, true, true);
testVM("case3: only bitmap uses large pages (barely not)", heapSizeForCardTableUsingLargePages - heapSizeDiffForCardTable, false, true);
}
// Minimum heap requirement to get large pages for bitmaps is 128M heap. This seems okay to test
// everywhere.
final int bitmapTranslationFactor = 8 * 8; // ObjectAlignmentInBytes * BitsPerByte
final long heapSizeForBitmapUsingLargePages = largePageSize * bitmapTranslationFactor;
final long heapSizeDiffForBitmap = Math.max(Math.max(allocGranularity * bitmapTranslationFactor, HEAP_REGION_SIZE),
Math.max(largePageSize, heapAlignment));
Asserts.assertGT(heapSizeForBitmapUsingLargePages, heapSizeDiffForBitmap,
"To test we would require to use an invalid heap size");
testVM("case4: only bitmap uses large pages (barely)", heapSizeForBitmapUsingLargePages, false, true);
testVM("case5: only bitmap uses large pages (extra slack)", heapSizeForBitmapUsingLargePages + heapSizeDiffForBitmap, false, true);
testVM("case6: nothing uses large pages (barely not)", heapSizeForBitmapUsingLargePages - heapSizeDiffForBitmap, false, false);
}
public static long parseMemoryString(String value) {
long multiplier = 1;
if (value.endsWith("B")) {
multiplier = 1;
} else if (value.endsWith("K")) {
multiplier = 1024;
} else if (value.endsWith("M")) {
multiplier = 1024 * 1024;
} else if (value.endsWith("G")) {
multiplier = 1024 * 1024 * 1024;
} else {
throw new IllegalArgumentException("Expected memory string '" + value + "'to end with either of: B, K, M, G");
}
long longValue = Long.parseUnsignedLong(value.substring(0, value.length() - 1));
return longValue * multiplier;
}
}