977a21add8
Reviewed-by: kvn
1289 lines
49 KiB
C++
1289 lines
49 KiB
C++
/*
|
|
* Copyright (c) 2010, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "code/scopeDesc.hpp"
|
|
#include "compiler/compilationPolicy.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/compilerOracle.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/methodData.hpp"
|
|
#include "oops/method.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "prims/jvmtiExport.hpp"
|
|
#include "prims/nativeLookup.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/deoptimization.hpp"
|
|
#include "runtime/frame.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/safepointVerifiers.hpp"
|
|
|
|
#if INCLUDE_JVMCI
|
|
#include "jvmci/jvmci.hpp"
|
|
#endif
|
|
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Compiler.hpp"
|
|
#endif
|
|
|
|
#ifdef COMPILER2
|
|
#include "opto/c2compiler.hpp"
|
|
#endif
|
|
|
|
jlong CompilationPolicy::_start_time = 0;
|
|
int CompilationPolicy::_c1_count = 0;
|
|
int CompilationPolicy::_c2_count = 0;
|
|
double CompilationPolicy::_increase_threshold_at_ratio = 0;
|
|
|
|
void compilationPolicy_init() {
|
|
CompilationPolicy::initialize();
|
|
}
|
|
|
|
int CompilationPolicy::compiler_count(CompLevel comp_level) {
|
|
if (is_c1_compile(comp_level)) {
|
|
return c1_count();
|
|
} else if (is_c2_compile(comp_level)) {
|
|
return c2_count();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Returns true if m must be compiled before executing it
|
|
// This is intended to force compiles for methods (usually for
|
|
// debugging) that would otherwise be interpreted for some reason.
|
|
bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
|
|
// Don't allow Xcomp to cause compiles in replay mode
|
|
if (ReplayCompiles) return false;
|
|
|
|
if (m->has_compiled_code()) return false; // already compiled
|
|
if (!can_be_compiled(m, comp_level)) return false;
|
|
|
|
return !UseInterpreter || // must compile all methods
|
|
(UseCompiler && AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
|
|
}
|
|
|
|
void CompilationPolicy::compile_if_required(const methodHandle& selected_method, TRAPS) {
|
|
if (must_be_compiled(selected_method)) {
|
|
// This path is unusual, mostly used by the '-Xcomp' stress test mode.
|
|
|
|
if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
|
|
// don't force compilation, resolve was on behalf of compiler
|
|
return;
|
|
}
|
|
if (selected_method->method_holder()->is_not_initialized()) {
|
|
// 'is_not_initialized' means not only '!is_initialized', but also that
|
|
// initialization has not been started yet ('!being_initialized')
|
|
// Do not force compilation of methods in uninitialized classes.
|
|
// Note that doing this would throw an assert later,
|
|
// in CompileBroker::compile_method.
|
|
// We sometimes use the link resolver to do reflective lookups
|
|
// even before classes are initialized.
|
|
return;
|
|
}
|
|
CompileBroker::compile_method(selected_method, InvocationEntryBci,
|
|
CompilationPolicy::initial_compile_level(selected_method),
|
|
methodHandle(), 0, CompileTask::Reason_MustBeCompiled, THREAD);
|
|
}
|
|
}
|
|
|
|
static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
|
|
if (comp_level == CompLevel_all) {
|
|
if (CompilerConfig::is_c1_only()) {
|
|
comp_level = CompLevel_simple;
|
|
} else if (CompilerConfig::is_c2_or_jvmci_compiler_only()) {
|
|
comp_level = CompLevel_full_optimization;
|
|
}
|
|
}
|
|
return comp_level;
|
|
}
|
|
|
|
// Returns true if m is allowed to be compiled
|
|
bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
|
|
// allow any levels for WhiteBox
|
|
assert(WhiteBoxAPI || comp_level == CompLevel_all || is_compile(comp_level), "illegal compilation level");
|
|
|
|
if (m->is_abstract()) return false;
|
|
if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
|
|
|
|
// Math intrinsics should never be compiled as this can lead to
|
|
// monotonicity problems because the interpreter will prefer the
|
|
// compiled code to the intrinsic version. This can't happen in
|
|
// production because the invocation counter can't be incremented
|
|
// but we shouldn't expose the system to this problem in testing
|
|
// modes.
|
|
if (!AbstractInterpreter::can_be_compiled(m)) {
|
|
return false;
|
|
}
|
|
comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
|
|
if (comp_level == CompLevel_all || is_compile(comp_level)) {
|
|
return !m->is_not_compilable(comp_level);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if m is allowed to be osr compiled
|
|
bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
|
|
bool result = false;
|
|
comp_level = adjust_level_for_compilability_query((CompLevel) comp_level);
|
|
if (comp_level == CompLevel_all || is_compile(comp_level)) {
|
|
result = !m->is_not_osr_compilable(comp_level);
|
|
}
|
|
return (result && can_be_compiled(m, comp_level));
|
|
}
|
|
|
|
bool CompilationPolicy::is_compilation_enabled() {
|
|
// NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
|
|
return CompileBroker::should_compile_new_jobs();
|
|
}
|
|
|
|
CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
|
|
// Remove unloaded methods from the queue
|
|
for (CompileTask* task = compile_queue->first(); task != NULL; ) {
|
|
CompileTask* next = task->next();
|
|
if (task->is_unloaded()) {
|
|
compile_queue->remove_and_mark_stale(task);
|
|
}
|
|
task = next;
|
|
}
|
|
#if INCLUDE_JVMCI
|
|
if (UseJVMCICompiler && !BackgroundCompilation) {
|
|
/*
|
|
* In blocking compilation mode, the CompileBroker will make
|
|
* compilations submitted by a JVMCI compiler thread non-blocking. These
|
|
* compilations should be scheduled after all blocking compilations
|
|
* to service non-compiler related compilations sooner and reduce the
|
|
* chance of such compilations timing out.
|
|
*/
|
|
for (CompileTask* task = compile_queue->first(); task != NULL; task = task->next()) {
|
|
if (task->is_blocking()) {
|
|
return task;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return compile_queue->first();
|
|
}
|
|
|
|
// Simple methods are as good being compiled with C1 as C2.
|
|
// Determine if a given method is such a case.
|
|
bool CompilationPolicy::is_trivial(Method* method) {
|
|
if (method->is_accessor() ||
|
|
method->is_constant_getter()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CompilationPolicy::force_comp_at_level_simple(const methodHandle& method) {
|
|
if (CompilationModeFlag::quick_internal()) {
|
|
#if INCLUDE_JVMCI
|
|
if (UseJVMCICompiler) {
|
|
AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
|
|
if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
return false;
|
|
}
|
|
|
|
CompLevel CompilationPolicy::comp_level(Method* method) {
|
|
CompiledMethod *nm = method->code();
|
|
if (nm != NULL && nm->is_in_use()) {
|
|
return (CompLevel)nm->comp_level();
|
|
}
|
|
return CompLevel_none;
|
|
}
|
|
|
|
// Call and loop predicates determine whether a transition to a higher
|
|
// compilation level should be performed (pointers to predicate functions
|
|
// are passed to common()).
|
|
// Tier?LoadFeedback is basically a coefficient that determines of
|
|
// how many methods per compiler thread can be in the queue before
|
|
// the threshold values double.
|
|
class LoopPredicate : AllStatic {
|
|
public:
|
|
static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
|
|
double threshold_scaling;
|
|
if (CompilerOracle::has_option_value(method, CompileCommand::CompileThresholdScaling, threshold_scaling)) {
|
|
scale *= threshold_scaling;
|
|
}
|
|
switch(cur_level) {
|
|
case CompLevel_aot:
|
|
return b >= Tier3AOTBackEdgeThreshold * scale;
|
|
case CompLevel_none:
|
|
case CompLevel_limited_profile:
|
|
return b >= Tier3BackEdgeThreshold * scale;
|
|
case CompLevel_full_profile:
|
|
return b >= Tier4BackEdgeThreshold * scale;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool apply(int i, int b, CompLevel cur_level, const methodHandle& method) {
|
|
double k = 1;
|
|
switch(cur_level) {
|
|
case CompLevel_aot: {
|
|
k = CompilationModeFlag::disable_intermediate() ? 1 : CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
|
break;
|
|
}
|
|
case CompLevel_none:
|
|
// Fall through
|
|
case CompLevel_limited_profile: {
|
|
k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
|
break;
|
|
}
|
|
case CompLevel_full_profile: {
|
|
k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
|
|
break;
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
return apply_scaled(method, cur_level, i, b, k);
|
|
}
|
|
};
|
|
|
|
class CallPredicate : AllStatic {
|
|
public:
|
|
static bool apply_scaled(const methodHandle& method, CompLevel cur_level, int i, int b, double scale) {
|
|
double threshold_scaling;
|
|
if (CompilerOracle::has_option_value(method, CompileCommand::CompileThresholdScaling, threshold_scaling)) {
|
|
scale *= threshold_scaling;
|
|
}
|
|
switch(cur_level) {
|
|
case CompLevel_aot:
|
|
return (i >= Tier3AOTInvocationThreshold * scale) ||
|
|
(i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
|
|
case CompLevel_none:
|
|
case CompLevel_limited_profile:
|
|
return (i >= Tier3InvocationThreshold * scale) ||
|
|
(i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
|
|
case CompLevel_full_profile:
|
|
return (i >= Tier4InvocationThreshold * scale) ||
|
|
(i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool apply(int i, int b, CompLevel cur_level, const methodHandle& method) {
|
|
double k = 1;
|
|
switch(cur_level) {
|
|
case CompLevel_aot: {
|
|
k = CompilationModeFlag::disable_intermediate() ? 1 : CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
|
break;
|
|
}
|
|
case CompLevel_none:
|
|
case CompLevel_limited_profile: {
|
|
k = CompilationPolicy::threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
|
break;
|
|
}
|
|
case CompLevel_full_profile: {
|
|
k = CompilationPolicy::threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
|
|
break;
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
return apply_scaled(method, cur_level, i, b, k);
|
|
}
|
|
};
|
|
|
|
double CompilationPolicy::threshold_scale(CompLevel level, int feedback_k) {
|
|
int comp_count = compiler_count(level);
|
|
if (comp_count > 0) {
|
|
double queue_size = CompileBroker::queue_size(level);
|
|
double k = queue_size / (feedback_k * comp_count) + 1;
|
|
|
|
// Increase C1 compile threshold when the code cache is filled more
|
|
// than specified by IncreaseFirstTierCompileThresholdAt percentage.
|
|
// The main intention is to keep enough free space for C2 compiled code
|
|
// to achieve peak performance if the code cache is under stress.
|
|
if (CompilerConfig::is_tiered() && !CompilationModeFlag::disable_intermediate() && is_c1_compile(level)) {
|
|
double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
|
|
if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
|
|
k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void CompilationPolicy::print_counters(const char* prefix, Method* m) {
|
|
int invocation_count = m->invocation_count();
|
|
int backedge_count = m->backedge_count();
|
|
MethodData* mdh = m->method_data();
|
|
int mdo_invocations = 0, mdo_backedges = 0;
|
|
int mdo_invocations_start = 0, mdo_backedges_start = 0;
|
|
if (mdh != NULL) {
|
|
mdo_invocations = mdh->invocation_count();
|
|
mdo_backedges = mdh->backedge_count();
|
|
mdo_invocations_start = mdh->invocation_count_start();
|
|
mdo_backedges_start = mdh->backedge_count_start();
|
|
}
|
|
tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
|
|
invocation_count, backedge_count, prefix,
|
|
mdo_invocations, mdo_invocations_start,
|
|
mdo_backedges, mdo_backedges_start);
|
|
tty->print(" %smax levels=%d,%d", prefix,
|
|
m->highest_comp_level(), m->highest_osr_comp_level());
|
|
}
|
|
|
|
// Print an event.
|
|
void CompilationPolicy::print_event(EventType type, Method* m, Method* im,
|
|
int bci, CompLevel level) {
|
|
bool inlinee_event = m != im;
|
|
|
|
ttyLocker tty_lock;
|
|
tty->print("%lf: [", os::elapsedTime());
|
|
|
|
switch(type) {
|
|
case CALL:
|
|
tty->print("call");
|
|
break;
|
|
case LOOP:
|
|
tty->print("loop");
|
|
break;
|
|
case COMPILE:
|
|
tty->print("compile");
|
|
break;
|
|
case REMOVE_FROM_QUEUE:
|
|
tty->print("remove-from-queue");
|
|
break;
|
|
case UPDATE_IN_QUEUE:
|
|
tty->print("update-in-queue");
|
|
break;
|
|
case REPROFILE:
|
|
tty->print("reprofile");
|
|
break;
|
|
case MAKE_NOT_ENTRANT:
|
|
tty->print("make-not-entrant");
|
|
break;
|
|
default:
|
|
tty->print("unknown");
|
|
}
|
|
|
|
tty->print(" level=%d ", level);
|
|
|
|
ResourceMark rm;
|
|
char *method_name = m->name_and_sig_as_C_string();
|
|
tty->print("[%s", method_name);
|
|
if (inlinee_event) {
|
|
char *inlinee_name = im->name_and_sig_as_C_string();
|
|
tty->print(" [%s]] ", inlinee_name);
|
|
}
|
|
else tty->print("] ");
|
|
tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
|
|
CompileBroker::queue_size(CompLevel_full_optimization));
|
|
|
|
tty->print(" rate=");
|
|
if (m->prev_time() == 0) tty->print("n/a");
|
|
else tty->print("%f", m->rate());
|
|
|
|
tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
|
|
threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
|
|
|
|
if (type != COMPILE) {
|
|
print_counters("", m);
|
|
if (inlinee_event) {
|
|
print_counters("inlinee ", im);
|
|
}
|
|
tty->print(" compilable=");
|
|
bool need_comma = false;
|
|
if (!m->is_not_compilable(CompLevel_full_profile)) {
|
|
tty->print("c1");
|
|
need_comma = true;
|
|
}
|
|
if (!m->is_not_osr_compilable(CompLevel_full_profile)) {
|
|
if (need_comma) tty->print(",");
|
|
tty->print("c1-osr");
|
|
need_comma = true;
|
|
}
|
|
if (!m->is_not_compilable(CompLevel_full_optimization)) {
|
|
if (need_comma) tty->print(",");
|
|
tty->print("c2");
|
|
need_comma = true;
|
|
}
|
|
if (!m->is_not_osr_compilable(CompLevel_full_optimization)) {
|
|
if (need_comma) tty->print(",");
|
|
tty->print("c2-osr");
|
|
}
|
|
tty->print(" status=");
|
|
if (m->queued_for_compilation()) {
|
|
tty->print("in-queue");
|
|
} else tty->print("idle");
|
|
}
|
|
tty->print_cr("]");
|
|
}
|
|
|
|
void CompilationPolicy::initialize() {
|
|
if (!CompilerConfig::is_interpreter_only()) {
|
|
int count = CICompilerCount;
|
|
bool c1_only = CompilerConfig::is_c1_only();
|
|
bool c2_only = CompilerConfig::is_c2_or_jvmci_compiler_only();
|
|
|
|
#ifdef _LP64
|
|
// Turn on ergonomic compiler count selection
|
|
if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
|
|
FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
|
|
}
|
|
if (CICompilerCountPerCPU) {
|
|
// Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
|
|
int log_cpu = log2i(os::active_processor_count());
|
|
int loglog_cpu = log2i(MAX2(log_cpu, 1));
|
|
count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
|
|
// Make sure there is enough space in the code cache to hold all the compiler buffers
|
|
size_t c1_size = 0;
|
|
#ifdef COMPILER1
|
|
c1_size = Compiler::code_buffer_size();
|
|
#endif
|
|
size_t c2_size = 0;
|
|
#ifdef COMPILER2
|
|
c2_size = C2Compiler::initial_code_buffer_size();
|
|
#endif
|
|
size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
|
|
int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
|
|
if (count > max_count) {
|
|
// Lower the compiler count such that all buffers fit into the code cache
|
|
count = MAX2(max_count, c1_only ? 1 : 2);
|
|
}
|
|
FLAG_SET_ERGO(CICompilerCount, count);
|
|
}
|
|
#else
|
|
// On 32-bit systems, the number of compiler threads is limited to 3.
|
|
// On these systems, the virtual address space available to the JVM
|
|
// is usually limited to 2-4 GB (the exact value depends on the platform).
|
|
// As the compilers (especially C2) can consume a large amount of
|
|
// memory, scaling the number of compiler threads with the number of
|
|
// available cores can result in the exhaustion of the address space
|
|
/// available to the VM and thus cause the VM to crash.
|
|
if (FLAG_IS_DEFAULT(CICompilerCount)) {
|
|
count = 3;
|
|
FLAG_SET_ERGO(CICompilerCount, count);
|
|
}
|
|
#endif
|
|
|
|
if (c1_only) {
|
|
// No C2 compiler thread required
|
|
set_c1_count(count);
|
|
} else if (c2_only) {
|
|
set_c2_count(count);
|
|
} else {
|
|
set_c1_count(MAX2(count / 3, 1));
|
|
set_c2_count(MAX2(count - c1_count(), 1));
|
|
}
|
|
assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
|
|
set_increase_threshold_at_ratio();
|
|
}
|
|
set_start_time(nanos_to_millis(os::javaTimeNanos()));
|
|
}
|
|
|
|
|
|
#ifdef ASSERT
|
|
bool CompilationPolicy::verify_level(CompLevel level) {
|
|
if (TieredCompilation && level > TieredStopAtLevel) {
|
|
return false;
|
|
}
|
|
// Check if there is a compiler to process the requested level
|
|
if (!CompilerConfig::is_c1_enabled() && is_c1_compile(level)) {
|
|
return false;
|
|
}
|
|
if (!CompilerConfig::is_c2_or_jvmci_compiler_enabled() && is_c2_compile(level)) {
|
|
return false;
|
|
}
|
|
|
|
// AOT and interpreter levels are always valid.
|
|
if (level == CompLevel_aot || level == CompLevel_none) {
|
|
return true;
|
|
}
|
|
if (CompilationModeFlag::normal()) {
|
|
return true;
|
|
} else if (CompilationModeFlag::quick_only()) {
|
|
return level == CompLevel_simple;
|
|
} else if (CompilationModeFlag::high_only()) {
|
|
return level == CompLevel_full_optimization;
|
|
} else if (CompilationModeFlag::high_only_quick_internal()) {
|
|
return level == CompLevel_full_optimization || level == CompLevel_simple;
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
|
|
CompLevel CompilationPolicy::highest_compile_level() {
|
|
CompLevel level = CompLevel_none;
|
|
// Setup the maximum level availible for the current compiler configuration.
|
|
if (!CompilerConfig::is_interpreter_only()) {
|
|
if (CompilerConfig::is_c2_or_jvmci_compiler_enabled()) {
|
|
level = CompLevel_full_optimization;
|
|
} else if (CompilerConfig::is_c1_enabled()) {
|
|
if (CompilerConfig::is_c1_simple_only()) {
|
|
level = CompLevel_simple;
|
|
} else {
|
|
level = CompLevel_full_profile;
|
|
}
|
|
}
|
|
}
|
|
// Clamp the maximum level with TieredStopAtLevel.
|
|
if (TieredCompilation) {
|
|
level = MIN2(level, (CompLevel) TieredStopAtLevel);
|
|
}
|
|
|
|
// Fix it up if after the clamping it has become invalid.
|
|
// Bring it monotonically down depending on the next available level for
|
|
// the compilation mode.
|
|
if (!CompilationModeFlag::normal()) {
|
|
// a) quick_only - levels 2,3,4 are invalid; levels -1,0,1 are valid;
|
|
// b) high_only - levels 1,2,3 are invalid; levels -1,0,4 are valid;
|
|
// c) high_only_quick_internal - levels 2,3 are invalid; levels -1,0,1,4 are valid.
|
|
if (CompilationModeFlag::quick_only()) {
|
|
if (level == CompLevel_limited_profile || level == CompLevel_full_profile || level == CompLevel_full_optimization) {
|
|
level = CompLevel_simple;
|
|
}
|
|
} else if (CompilationModeFlag::high_only()) {
|
|
if (level == CompLevel_simple || level == CompLevel_limited_profile || level == CompLevel_full_profile) {
|
|
level = CompLevel_none;
|
|
}
|
|
} else if (CompilationModeFlag::high_only_quick_internal()) {
|
|
if (level == CompLevel_limited_profile || level == CompLevel_full_profile) {
|
|
level = CompLevel_simple;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(verify_level(level), "Invalid highest compilation level: %d", level);
|
|
return level;
|
|
}
|
|
|
|
CompLevel CompilationPolicy::limit_level(CompLevel level) {
|
|
level = MIN2(level, highest_compile_level());
|
|
assert(verify_level(level), "Invalid compilation level: %d", level);
|
|
return level;
|
|
}
|
|
|
|
CompLevel CompilationPolicy::initial_compile_level(const methodHandle& method) {
|
|
CompLevel level = CompLevel_any;
|
|
if (CompilationModeFlag::normal()) {
|
|
level = CompLevel_full_profile;
|
|
} else if (CompilationModeFlag::quick_only()) {
|
|
level = CompLevel_simple;
|
|
} else if (CompilationModeFlag::high_only()) {
|
|
level = CompLevel_full_optimization;
|
|
} else if (CompilationModeFlag::high_only_quick_internal()) {
|
|
if (force_comp_at_level_simple(method)) {
|
|
level = CompLevel_simple;
|
|
} else {
|
|
level = CompLevel_full_optimization;
|
|
}
|
|
}
|
|
assert(level != CompLevel_any, "Unhandled compilation mode");
|
|
return limit_level(level);
|
|
}
|
|
|
|
// Set carry flags on the counters if necessary
|
|
void CompilationPolicy::handle_counter_overflow(Method* method) {
|
|
MethodCounters *mcs = method->method_counters();
|
|
if (mcs != NULL) {
|
|
mcs->invocation_counter()->set_carry_on_overflow();
|
|
mcs->backedge_counter()->set_carry_on_overflow();
|
|
}
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
mdo->invocation_counter()->set_carry_on_overflow();
|
|
mdo->backedge_counter()->set_carry_on_overflow();
|
|
}
|
|
}
|
|
|
|
// Called with the queue locked and with at least one element
|
|
CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue) {
|
|
CompileTask *max_blocking_task = NULL;
|
|
CompileTask *max_task = NULL;
|
|
Method* max_method = NULL;
|
|
|
|
jlong t = nanos_to_millis(os::javaTimeNanos());
|
|
// Iterate through the queue and find a method with a maximum rate.
|
|
for (CompileTask* task = compile_queue->first(); task != NULL;) {
|
|
CompileTask* next_task = task->next();
|
|
Method* method = task->method();
|
|
// If a method was unloaded or has been stale for some time, remove it from the queue.
|
|
// Blocking tasks and tasks submitted from whitebox API don't become stale
|
|
if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
|
|
if (!task->is_unloaded()) {
|
|
if (PrintTieredEvents) {
|
|
print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
|
|
}
|
|
method->clear_queued_for_compilation();
|
|
}
|
|
compile_queue->remove_and_mark_stale(task);
|
|
task = next_task;
|
|
continue;
|
|
}
|
|
update_rate(t, method);
|
|
if (max_task == NULL || compare_methods(method, max_method)) {
|
|
// Select a method with the highest rate
|
|
max_task = task;
|
|
max_method = method;
|
|
}
|
|
|
|
if (task->is_blocking()) {
|
|
if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
|
|
max_blocking_task = task;
|
|
}
|
|
}
|
|
|
|
task = next_task;
|
|
}
|
|
|
|
if (max_blocking_task != NULL) {
|
|
// In blocking compilation mode, the CompileBroker will make
|
|
// compilations submitted by a JVMCI compiler thread non-blocking. These
|
|
// compilations should be scheduled after all blocking compilations
|
|
// to service non-compiler related compilations sooner and reduce the
|
|
// chance of such compilations timing out.
|
|
max_task = max_blocking_task;
|
|
max_method = max_task->method();
|
|
}
|
|
|
|
methodHandle max_method_h(Thread::current(), max_method);
|
|
|
|
if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
|
|
TieredStopAtLevel > CompLevel_full_profile &&
|
|
max_method != NULL && is_method_profiled(max_method_h)) {
|
|
max_task->set_comp_level(CompLevel_limited_profile);
|
|
|
|
if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) {
|
|
if (PrintTieredEvents) {
|
|
print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
|
|
}
|
|
compile_queue->remove_and_mark_stale(max_task);
|
|
max_method->clear_queued_for_compilation();
|
|
return NULL;
|
|
}
|
|
|
|
if (PrintTieredEvents) {
|
|
print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
|
|
}
|
|
}
|
|
|
|
return max_task;
|
|
}
|
|
|
|
void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
|
|
for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
|
|
if (PrintTieredEvents) {
|
|
print_event(REPROFILE, sd->method(), sd->method(), InvocationEntryBci, CompLevel_none);
|
|
}
|
|
MethodData* mdo = sd->method()->method_data();
|
|
if (mdo != NULL) {
|
|
mdo->reset_start_counters();
|
|
}
|
|
if (sd->is_top()) break;
|
|
}
|
|
}
|
|
|
|
nmethod* CompilationPolicy::event(const methodHandle& method, const methodHandle& inlinee,
|
|
int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, TRAPS) {
|
|
if (PrintTieredEvents) {
|
|
print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
|
|
}
|
|
|
|
if (comp_level == CompLevel_none &&
|
|
JvmtiExport::can_post_interpreter_events() &&
|
|
THREAD->as_Java_thread()->is_interp_only_mode()) {
|
|
return NULL;
|
|
}
|
|
if (ReplayCompiles) {
|
|
// Don't trigger other compiles in testing mode
|
|
return NULL;
|
|
}
|
|
|
|
handle_counter_overflow(method());
|
|
if (method() != inlinee()) {
|
|
handle_counter_overflow(inlinee());
|
|
}
|
|
|
|
if (bci == InvocationEntryBci) {
|
|
method_invocation_event(method, inlinee, comp_level, nm, THREAD);
|
|
} else {
|
|
// method == inlinee if the event originated in the main method
|
|
method_back_branch_event(method, inlinee, bci, comp_level, nm, THREAD);
|
|
// Check if event led to a higher level OSR compilation
|
|
CompLevel expected_comp_level = MIN2(CompLevel_full_optimization, static_cast<CompLevel>(comp_level + 1));
|
|
if (!CompilationModeFlag::disable_intermediate() && inlinee->is_not_osr_compilable(expected_comp_level)) {
|
|
// It's not possble to reach the expected level so fall back to simple.
|
|
expected_comp_level = CompLevel_simple;
|
|
}
|
|
CompLevel max_osr_level = static_cast<CompLevel>(inlinee->highest_osr_comp_level());
|
|
if (max_osr_level >= expected_comp_level) { // fast check to avoid locking in a typical scenario
|
|
nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
|
|
assert(osr_nm == NULL || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
|
|
if (osr_nm != NULL && osr_nm->comp_level() != comp_level) {
|
|
// Perform OSR with new nmethod
|
|
return osr_nm;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Check if the method can be compiled, change level if necessary
|
|
void CompilationPolicy::compile(const methodHandle& mh, int bci, CompLevel level, TRAPS) {
|
|
assert(verify_level(level), "Invalid compilation level requested: %d", level);
|
|
|
|
if (level == CompLevel_none) {
|
|
if (mh->has_compiled_code()) {
|
|
// Happens when we switch from AOT to interpreter to profile.
|
|
MutexLocker ml(Compile_lock);
|
|
NoSafepointVerifier nsv;
|
|
if (mh->has_compiled_code()) {
|
|
mh->code()->make_not_used();
|
|
}
|
|
// Deoptimize immediately (we don't have to wait for a compile).
|
|
JavaThread* jt = THREAD->as_Java_thread();
|
|
RegisterMap map(jt, false);
|
|
frame fr = jt->last_frame().sender(&map);
|
|
Deoptimization::deoptimize_frame(jt, fr.id());
|
|
}
|
|
return;
|
|
}
|
|
if (level == CompLevel_aot) {
|
|
if (mh->has_aot_code()) {
|
|
if (PrintTieredEvents) {
|
|
print_event(COMPILE, mh(), mh(), bci, level);
|
|
}
|
|
MutexLocker ml(Compile_lock);
|
|
NoSafepointVerifier nsv;
|
|
if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
|
|
mh->aot_code()->make_entrant();
|
|
if (mh->has_compiled_code()) {
|
|
mh->code()->make_not_entrant();
|
|
}
|
|
MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
|
|
Method::set_code(mh, mh->aot_code());
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!CompilationModeFlag::disable_intermediate()) {
|
|
// Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
|
|
// in the interpreter and then compile with C2 (the transition function will request that,
|
|
// see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
|
|
// pure C1.
|
|
if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
|
|
if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
|
|
compile(mh, bci, CompLevel_simple, THREAD);
|
|
}
|
|
return;
|
|
}
|
|
if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
|
|
if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
|
|
nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
|
|
if (osr_nm != NULL && osr_nm->comp_level() > CompLevel_simple) {
|
|
// Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
|
|
osr_nm->make_not_entrant();
|
|
}
|
|
compile(mh, bci, CompLevel_simple, THREAD);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
|
|
return;
|
|
}
|
|
if (!CompileBroker::compilation_is_in_queue(mh)) {
|
|
if (PrintTieredEvents) {
|
|
print_event(COMPILE, mh(), mh(), bci, level);
|
|
}
|
|
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
|
|
update_rate(nanos_to_millis(os::javaTimeNanos()), mh());
|
|
CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, THREAD);
|
|
}
|
|
}
|
|
|
|
// update_rate() is called from select_task() while holding a compile queue lock.
|
|
void CompilationPolicy::update_rate(jlong t, Method* m) {
|
|
// Skip update if counters are absent.
|
|
// Can't allocate them since we are holding compile queue lock.
|
|
if (m->method_counters() == NULL) return;
|
|
|
|
if (is_old(m)) {
|
|
// We don't remove old methods from the queue,
|
|
// so we can just zero the rate.
|
|
m->set_rate(0);
|
|
return;
|
|
}
|
|
|
|
// We don't update the rate if we've just came out of a safepoint.
|
|
// delta_s is the time since last safepoint in milliseconds.
|
|
jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
|
|
jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
|
|
// How many events were there since the last time?
|
|
int event_count = m->invocation_count() + m->backedge_count();
|
|
int delta_e = event_count - m->prev_event_count();
|
|
|
|
// We should be running for at least 1ms.
|
|
if (delta_s >= TieredRateUpdateMinTime) {
|
|
// And we must've taken the previous point at least 1ms before.
|
|
if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
|
|
m->set_prev_time(t);
|
|
m->set_prev_event_count(event_count);
|
|
m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
|
|
} else {
|
|
if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
|
|
// If nothing happened for 25ms, zero the rate. Don't modify prev values.
|
|
m->set_rate(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if this method has been stale for a given number of milliseconds.
|
|
// See select_task().
|
|
bool CompilationPolicy::is_stale(jlong t, jlong timeout, Method* m) {
|
|
jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
|
|
jlong delta_t = t - m->prev_time();
|
|
if (delta_t > timeout && delta_s > timeout) {
|
|
int event_count = m->invocation_count() + m->backedge_count();
|
|
int delta_e = event_count - m->prev_event_count();
|
|
// Return true if there were no events.
|
|
return delta_e == 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// We don't remove old methods from the compile queue even if they have
|
|
// very low activity. See select_task().
|
|
bool CompilationPolicy::is_old(Method* method) {
|
|
return method->invocation_count() > 50000 || method->backedge_count() > 500000;
|
|
}
|
|
|
|
double CompilationPolicy::weight(Method* method) {
|
|
return (double)(method->rate() + 1) *
|
|
(method->invocation_count() + 1) * (method->backedge_count() + 1);
|
|
}
|
|
|
|
// Apply heuristics and return true if x should be compiled before y
|
|
bool CompilationPolicy::compare_methods(Method* x, Method* y) {
|
|
if (x->highest_comp_level() > y->highest_comp_level()) {
|
|
// recompilation after deopt
|
|
return true;
|
|
} else
|
|
if (x->highest_comp_level() == y->highest_comp_level()) {
|
|
if (weight(x) > weight(y)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Is method profiled enough?
|
|
bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
int i = mdo->invocation_count_delta();
|
|
int b = mdo->backedge_count_delta();
|
|
return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Determine is a method is mature.
|
|
bool CompilationPolicy::is_mature(Method* method) {
|
|
methodHandle mh(Thread::current(), method);
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
int i = mdo->invocation_count();
|
|
int b = mdo->backedge_count();
|
|
double k = ProfileMaturityPercentage / 100.0;
|
|
return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If a method is old enough and is still in the interpreter we would want to
|
|
// start profiling without waiting for the compiled method to arrive.
|
|
// We also take the load on compilers into the account.
|
|
bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
|
|
if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
|
|
return false;
|
|
}
|
|
int i = method->invocation_count();
|
|
int b = method->backedge_count();
|
|
double k = Tier0ProfilingStartPercentage / 100.0;
|
|
|
|
// If the top level compiler is not keeping up, delay profiling.
|
|
if (CompileBroker::queue_size(CompLevel_full_optimization) <= Tier0Delay * compiler_count(CompLevel_full_optimization)) {
|
|
return CallPredicate::apply_scaled(method, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(method, CompLevel_full_profile, i, b, k);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Inlining control: if we're compiling a profiled method with C1 and the callee
|
|
// is known to have OSRed in a C2 version, don't inline it.
|
|
bool CompilationPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
|
|
CompLevel comp_level = (CompLevel)env->comp_level();
|
|
if (comp_level == CompLevel_full_profile ||
|
|
comp_level == CompLevel_limited_profile) {
|
|
return callee->highest_osr_comp_level() == CompLevel_full_optimization;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Create MDO if necessary.
|
|
void CompilationPolicy::create_mdo(const methodHandle& mh, Thread* THREAD) {
|
|
if (mh->is_native() ||
|
|
mh->is_abstract() ||
|
|
mh->is_accessor() ||
|
|
mh->is_constant_getter()) {
|
|
return;
|
|
}
|
|
if (mh->method_data() == NULL) {
|
|
Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
|
|
}
|
|
if (ProfileInterpreter) {
|
|
MethodData* mdo = mh->method_data();
|
|
if (mdo != NULL) {
|
|
JavaThread* jt = THREAD->as_Java_thread();
|
|
frame last_frame = jt->last_frame();
|
|
if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
|
|
int bci = last_frame.interpreter_frame_bci();
|
|
address dp = mdo->bci_to_dp(bci);
|
|
last_frame.interpreter_frame_set_mdp(dp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Method states:
|
|
* 0 - interpreter (CompLevel_none)
|
|
* 1 - pure C1 (CompLevel_simple)
|
|
* 2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
|
|
* 3 - C1 with full profiling (CompLevel_full_profile)
|
|
* 4 - C2 or Graal (CompLevel_full_optimization)
|
|
*
|
|
* Common state transition patterns:
|
|
* a. 0 -> 3 -> 4.
|
|
* The most common path. But note that even in this straightforward case
|
|
* profiling can start at level 0 and finish at level 3.
|
|
*
|
|
* b. 0 -> 2 -> 3 -> 4.
|
|
* This case occurs when the load on C2 is deemed too high. So, instead of transitioning
|
|
* into state 3 directly and over-profiling while a method is in the C2 queue we transition to
|
|
* level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
|
|
*
|
|
* c. 0 -> (3->2) -> 4.
|
|
* In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
|
|
* to enable the profiling to fully occur at level 0. In this case we change the compilation level
|
|
* of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
|
|
* without full profiling while c2 is compiling.
|
|
*
|
|
* d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
|
|
* After a method was once compiled with C1 it can be identified as trivial and be compiled to
|
|
* level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
|
|
*
|
|
* e. 0 -> 4.
|
|
* This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
|
|
* or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
|
|
* the compiled version already exists).
|
|
*
|
|
* Note that since state 0 can be reached from any other state via deoptimization different loops
|
|
* are possible.
|
|
*
|
|
*/
|
|
|
|
// Common transition function. Given a predicate determines if a method should transition to another level.
|
|
template<typename Predicate>
|
|
CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
|
|
CompLevel next_level = cur_level;
|
|
int i = method->invocation_count();
|
|
int b = method->backedge_count();
|
|
|
|
if (force_comp_at_level_simple(method)) {
|
|
next_level = CompLevel_simple;
|
|
} else {
|
|
if (is_trivial(method())) {
|
|
next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
|
|
} else {
|
|
switch(cur_level) {
|
|
default: break;
|
|
case CompLevel_aot:
|
|
// If we were at full profile level, would we switch to full opt?
|
|
if (common<Predicate>(method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
|
|
next_level = CompLevel_full_optimization;
|
|
} else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
|
|
Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
|
|
Predicate::apply(i, b, cur_level, method))) {
|
|
next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_none : CompLevel_full_profile;
|
|
}
|
|
break;
|
|
case CompLevel_none:
|
|
// If we were at full profile level, would we switch to full opt?
|
|
if (common<Predicate>(method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
|
|
next_level = CompLevel_full_optimization;
|
|
} else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(i, b, cur_level, method)) {
|
|
#if INCLUDE_JVMCI
|
|
if (EnableJVMCI && UseJVMCICompiler) {
|
|
// Since JVMCI takes a while to warm up, its queue inevitably backs up during
|
|
// early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
|
|
// compilation method and all potential inlinees have mature profiles (which
|
|
// includes type profiling). If it sees immature profiles, JVMCI's inliner
|
|
// can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
|
|
// exploring/inlining too many graphs). Since a rewrite of the inliner is
|
|
// in progress, we simply disable the dialing back heuristic for now and will
|
|
// revisit this decision once the new inliner is completed.
|
|
next_level = CompLevel_full_profile;
|
|
} else
|
|
#endif
|
|
{
|
|
// C1-generated fully profiled code is about 30% slower than the limited profile
|
|
// code that has only invocation and backedge counters. The observation is that
|
|
// if C2 queue is large enough we can spend too much time in the fully profiled code
|
|
// while waiting for C2 to pick the method from the queue. To alleviate this problem
|
|
// we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
|
|
// we choose to compile a limited profiled version and then recompile with full profiling
|
|
// when the load on C2 goes down.
|
|
if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
|
|
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
|
|
next_level = CompLevel_limited_profile;
|
|
} else {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case CompLevel_limited_profile:
|
|
if (is_method_profiled(method)) {
|
|
// Special case: we got here because this method was fully profiled in the interpreter.
|
|
next_level = CompLevel_full_optimization;
|
|
} else {
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
if (mdo->would_profile()) {
|
|
if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
|
|
Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
|
|
Predicate::apply(i, b, cur_level, method))) {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
} else {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
} else {
|
|
// If there is no MDO we need to profile
|
|
if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
|
|
Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
|
|
Predicate::apply(i, b, cur_level, method))) {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case CompLevel_full_profile:
|
|
{
|
|
MethodData* mdo = method->method_data();
|
|
if (mdo != NULL) {
|
|
if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
|
|
int mdo_i = mdo->invocation_count_delta();
|
|
int mdo_b = mdo->backedge_count_delta();
|
|
if (Predicate::apply(mdo_i, mdo_b, cur_level, method)) {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
} else {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return (next_level != cur_level) ? limit_level(next_level) : next_level;
|
|
}
|
|
|
|
|
|
|
|
// Determine if a method should be compiled with a normal entry point at a different level.
|
|
CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, Thread* thread) {
|
|
CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, true));
|
|
CompLevel next_level = common<CallPredicate>(method, cur_level);
|
|
|
|
// If OSR method level is greater than the regular method level, the levels should be
|
|
// equalized by raising the regular method level in order to avoid OSRs during each
|
|
// invocation of the method.
|
|
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
|
|
MethodData* mdo = method->method_data();
|
|
guarantee(mdo != NULL, "MDO should not be NULL");
|
|
if (mdo->invocation_count() >= 1) {
|
|
next_level = CompLevel_full_optimization;
|
|
}
|
|
} else {
|
|
next_level = MAX2(osr_level, next_level);
|
|
}
|
|
return next_level;
|
|
}
|
|
|
|
// Determine if we should do an OSR compilation of a given method.
|
|
CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, Thread* thread) {
|
|
CompLevel next_level = common<LoopPredicate>(method, cur_level, true);
|
|
if (cur_level == CompLevel_none) {
|
|
// If there is a live OSR method that means that we deopted to the interpreter
|
|
// for the transition.
|
|
CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
|
|
if (osr_level > CompLevel_none) {
|
|
return osr_level;
|
|
}
|
|
}
|
|
return next_level;
|
|
}
|
|
|
|
bool CompilationPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, Thread* thread) {
|
|
if (UseAOT) {
|
|
if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
|
|
// If the current level is full profile or interpreter and we're switching to any other level,
|
|
// activate the AOT code back first so that we won't waste time overprofiling.
|
|
compile(mh, InvocationEntryBci, CompLevel_aot, thread);
|
|
// Fall through for JIT compilation.
|
|
}
|
|
if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
|
|
// If the next level is limited profile, use the aot code (if there is any),
|
|
// since it's essentially the same thing.
|
|
compile(mh, InvocationEntryBci, CompLevel_aot, thread);
|
|
// Not need to JIT, we're done.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Handle the invocation event.
|
|
void CompilationPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
|
|
CompLevel level, CompiledMethod* nm, TRAPS) {
|
|
if (should_create_mdo(mh, level)) {
|
|
create_mdo(mh, THREAD);
|
|
}
|
|
CompLevel next_level = call_event(mh, level, THREAD);
|
|
if (next_level != level) {
|
|
if (maybe_switch_to_aot(mh, level, next_level, THREAD)) {
|
|
// No JITting necessary
|
|
return;
|
|
}
|
|
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
|
|
compile(mh, InvocationEntryBci, next_level, THREAD);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle the back branch event. Notice that we can compile the method
|
|
// with a regular entry from here.
|
|
void CompilationPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
|
|
int bci, CompLevel level, CompiledMethod* nm, TRAPS) {
|
|
if (should_create_mdo(mh, level)) {
|
|
create_mdo(mh, THREAD);
|
|
}
|
|
// Check if MDO should be created for the inlined method
|
|
if (should_create_mdo(imh, level)) {
|
|
create_mdo(imh, THREAD);
|
|
}
|
|
|
|
if (is_compilation_enabled()) {
|
|
CompLevel next_osr_level = loop_event(imh, level, THREAD);
|
|
CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
|
|
// At the very least compile the OSR version
|
|
if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
|
|
compile(imh, bci, next_osr_level, CHECK);
|
|
}
|
|
|
|
// Use loop event as an opportunity to also check if there's been
|
|
// enough calls.
|
|
CompLevel cur_level, next_level;
|
|
if (mh() != imh()) { // If there is an enclosing method
|
|
if (level == CompLevel_aot) {
|
|
// Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
|
|
if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
|
|
CompLevel enclosing_level = limit_level(CompLevel_full_profile);
|
|
compile(mh, InvocationEntryBci, enclosing_level, THREAD);
|
|
}
|
|
} else {
|
|
// Current loop event level is not AOT
|
|
guarantee(nm != NULL, "Should have nmethod here");
|
|
cur_level = comp_level(mh());
|
|
next_level = call_event(mh, cur_level, THREAD);
|
|
|
|
if (max_osr_level == CompLevel_full_optimization) {
|
|
// The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
|
|
bool make_not_entrant = false;
|
|
if (nm->is_osr_method()) {
|
|
// This is an osr method, just make it not entrant and recompile later if needed
|
|
make_not_entrant = true;
|
|
} else {
|
|
if (next_level != CompLevel_full_optimization) {
|
|
// next_level is not full opt, so we need to recompile the
|
|
// enclosing method without the inlinee
|
|
cur_level = CompLevel_none;
|
|
make_not_entrant = true;
|
|
}
|
|
}
|
|
if (make_not_entrant) {
|
|
if (PrintTieredEvents) {
|
|
int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
|
|
print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
|
|
}
|
|
nm->make_not_entrant();
|
|
}
|
|
}
|
|
// Fix up next_level if necessary to avoid deopts
|
|
if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
|
|
next_level = CompLevel_full_profile;
|
|
}
|
|
if (cur_level != next_level) {
|
|
if (!maybe_switch_to_aot(mh, cur_level, next_level, THREAD) && !CompileBroker::compilation_is_in_queue(mh)) {
|
|
compile(mh, InvocationEntryBci, next_level, THREAD);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
cur_level = comp_level(mh());
|
|
next_level = call_event(mh, cur_level, THREAD);
|
|
if (next_level != cur_level) {
|
|
if (!maybe_switch_to_aot(mh, cur_level, next_level, THREAD) && !CompileBroker::compilation_is_in_queue(mh)) {
|
|
compile(mh, InvocationEntryBci, next_level, THREAD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|