d90a333e5b
Changed the chunk size to a smaller fixed number. Reviewed-by: tschatzl, mgerdin
129 lines
4.3 KiB
C++
129 lines
4.3 KiB
C++
/*
|
|
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1HOTCARDCACHE_HPP
|
|
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1HOTCARDCACHE_HPP
|
|
|
|
#include "gc_implementation/g1/g1_globals.hpp"
|
|
#include "gc_implementation/g1/g1CardCounts.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
|
|
class DirtyCardQueue;
|
|
class G1CollectedHeap;
|
|
class G1RemSet;
|
|
class HeapRegion;
|
|
|
|
// An evicting cache of cards that have been logged by the G1 post
|
|
// write barrier. Placing a card in the cache delays the refinement
|
|
// of the card until the card is evicted, or the cache is drained
|
|
// during the next evacuation pause.
|
|
//
|
|
// The first thing the G1 post write barrier does is to check whether
|
|
// the card containing the updated pointer is already dirty and, if
|
|
// so, skips the remaining code in the barrier.
|
|
//
|
|
// Delaying the refinement of a card will make the card fail the
|
|
// first is_dirty check in the write barrier, skipping the remainder
|
|
// of the write barrier.
|
|
//
|
|
// This can significantly reduce the overhead of the write barrier
|
|
// code, increasing throughput.
|
|
|
|
class G1HotCardCache: public CHeapObj<mtGC> {
|
|
G1CollectedHeap* _g1h;
|
|
|
|
// The card cache table
|
|
jbyte** _hot_cache;
|
|
|
|
int _hot_cache_size;
|
|
int _n_hot;
|
|
int _hot_cache_idx;
|
|
|
|
int _hot_cache_par_chunk_size;
|
|
volatile int _hot_cache_par_claimed_idx;
|
|
|
|
bool _use_cache;
|
|
|
|
G1CardCounts _card_counts;
|
|
|
|
// The number of cached cards a thread claims when flushing the cache
|
|
static const int ClaimChunkSize = 32;
|
|
|
|
bool default_use_cache() const {
|
|
return (G1ConcRSLogCacheSize > 0);
|
|
}
|
|
|
|
public:
|
|
G1HotCardCache(G1CollectedHeap* g1h);
|
|
~G1HotCardCache();
|
|
|
|
void initialize(G1RegionToSpaceMapper* card_counts_storage);
|
|
|
|
bool use_cache() { return _use_cache; }
|
|
|
|
void set_use_cache(bool b) {
|
|
_use_cache = (b ? default_use_cache() : false);
|
|
}
|
|
|
|
// Returns the card to be refined or NULL.
|
|
//
|
|
// Increments the count for given the card. if the card is not 'hot',
|
|
// it is returned for immediate refining. Otherwise the card is
|
|
// added to the hot card cache.
|
|
// If there is enough room in the hot card cache for the card we're
|
|
// adding, NULL is returned and no further action in needed.
|
|
// If we evict a card from the cache to make room for the new card,
|
|
// the evicted card is then returned for refinement.
|
|
jbyte* insert(jbyte* card_ptr);
|
|
|
|
// Refine the cards that have delayed as a result of
|
|
// being in the cache.
|
|
void drain(uint worker_i, G1RemSet* g1rs, DirtyCardQueue* into_cset_dcq);
|
|
|
|
// Set up for parallel processing of the cards in the hot cache
|
|
void reset_hot_cache_claimed_index() {
|
|
_hot_cache_par_claimed_idx = 0;
|
|
}
|
|
|
|
// Resets the hot card cache and discards the entries.
|
|
void reset_hot_cache() {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "Should be at a safepoint");
|
|
assert(Thread::current()->is_VM_thread(), "Current thread should be the VMthread");
|
|
_hot_cache_idx = 0; _n_hot = 0;
|
|
}
|
|
|
|
bool hot_cache_is_empty() { return _n_hot == 0; }
|
|
|
|
// Zeros the values in the card counts table for entire committed heap
|
|
void reset_card_counts();
|
|
|
|
// Zeros the values in the card counts table for the given region
|
|
void reset_card_counts(HeapRegion* hr);
|
|
};
|
|
|
|
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1HOTCARDCACHE_HPP
|