jdk-24/src/hotspot/share/compiler/compilationPolicy.cpp
2020-09-18 05:48:14 +00:00

504 lines
19 KiB
C++

/*
* Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoaderDataGraph.inline.hpp"
#include "code/compiledIC.hpp"
#include "code/nmethod.hpp"
#include "code/scopeDesc.hpp"
#include "compiler/compilationPolicy.hpp"
#include "compiler/tieredThresholdPolicy.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "oops/methodData.hpp"
#include "oops/method.inline.hpp"
#include "oops/oop.inline.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/frame.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.hpp"
#include "runtime/vframe.hpp"
#include "runtime/vmOperations.hpp"
#include "utilities/events.hpp"
#include "utilities/globalDefinitions.hpp"
#ifdef COMPILER1
#include "c1/c1_Compiler.hpp"
#endif
#ifdef COMPILER2
#include "opto/c2compiler.hpp"
#endif
CompilationPolicy* CompilationPolicy::_policy;
// Determine compilation policy based on command line argument
void compilationPolicy_init() {
#ifdef TIERED
if (TieredCompilation) {
CompilationPolicy::set_policy(new TieredThresholdPolicy());
} else {
CompilationPolicy::set_policy(new SimpleCompPolicy());
}
#else
CompilationPolicy::set_policy(new SimpleCompPolicy());
#endif
CompilationPolicy::policy()->initialize();
}
// Returns true if m must be compiled before executing it
// This is intended to force compiles for methods (usually for
// debugging) that would otherwise be interpreted for some reason.
bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
// Don't allow Xcomp to cause compiles in replay mode
if (ReplayCompiles) return false;
if (m->has_compiled_code()) return false; // already compiled
if (!can_be_compiled(m, comp_level)) return false;
return !UseInterpreter || // must compile all methods
(UseCompiler && AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
}
void CompilationPolicy::compile_if_required(const methodHandle& selected_method, TRAPS) {
if (must_be_compiled(selected_method)) {
// This path is unusual, mostly used by the '-Xcomp' stress test mode.
// Note: with several active threads, the must_be_compiled may be true
// while can_be_compiled is false; remove assert
// assert(CompilationPolicy::can_be_compiled(selected_method), "cannot compile");
if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
// don't force compilation, resolve was on behalf of compiler
return;
}
if (selected_method->method_holder()->is_not_initialized()) {
// 'is_not_initialized' means not only '!is_initialized', but also that
// initialization has not been started yet ('!being_initialized')
// Do not force compilation of methods in uninitialized classes.
// Note that doing this would throw an assert later,
// in CompileBroker::compile_method.
// We sometimes use the link resolver to do reflective lookups
// even before classes are initialized.
return;
}
CompileBroker::compile_method(selected_method, InvocationEntryBci,
CompilationPolicy::policy()->initial_compile_level(selected_method),
methodHandle(), 0, CompileTask::Reason_MustBeCompiled, THREAD);
}
}
// Returns true if m is allowed to be compiled
bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
// allow any levels for WhiteBox
assert(WhiteBoxAPI || comp_level == CompLevel_all || is_compile(comp_level), "illegal compilation level");
if (m->is_abstract()) return false;
if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
// Math intrinsics should never be compiled as this can lead to
// monotonicity problems because the interpreter will prefer the
// compiled code to the intrinsic version. This can't happen in
// production because the invocation counter can't be incremented
// but we shouldn't expose the system to this problem in testing
// modes.
if (!AbstractInterpreter::can_be_compiled(m)) {
return false;
}
if (comp_level == CompLevel_all) {
if (TieredCompilation) {
// enough to be compilable at any level for tiered
return !m->is_not_compilable(CompLevel_simple) || !m->is_not_compilable(CompLevel_full_optimization);
} else {
// must be compilable at available level for non-tiered
return !m->is_not_compilable(CompLevel_highest_tier);
}
} else if (is_compile(comp_level)) {
return !m->is_not_compilable(comp_level);
}
return false;
}
// Returns true if m is allowed to be osr compiled
bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
bool result = false;
if (comp_level == CompLevel_all) {
if (TieredCompilation) {
// enough to be osr compilable at any level for tiered
result = !m->is_not_osr_compilable(CompLevel_simple) || !m->is_not_osr_compilable(CompLevel_full_optimization);
} else {
// must be osr compilable at available level for non-tiered
result = !m->is_not_osr_compilable(CompLevel_highest_tier);
}
} else if (is_compile(comp_level)) {
result = !m->is_not_osr_compilable(comp_level);
}
return (result && can_be_compiled(m, comp_level));
}
bool CompilationPolicy::is_compilation_enabled() {
// NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
return CompileBroker::should_compile_new_jobs();
}
CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
// Remove unloaded methods from the queue
for (CompileTask* task = compile_queue->first(); task != NULL; ) {
CompileTask* next = task->next();
if (task->is_unloaded()) {
compile_queue->remove_and_mark_stale(task);
}
task = next;
}
#if INCLUDE_JVMCI
if (UseJVMCICompiler && !BackgroundCompilation) {
/*
* In blocking compilation mode, the CompileBroker will make
* compilations submitted by a JVMCI compiler thread non-blocking. These
* compilations should be scheduled after all blocking compilations
* to service non-compiler related compilations sooner and reduce the
* chance of such compilations timing out.
*/
for (CompileTask* task = compile_queue->first(); task != NULL; task = task->next()) {
if (task->is_blocking()) {
return task;
}
}
}
#endif
return compile_queue->first();
}
//
// CounterDecay for SimpleCompPolicy
//
// Iterates through invocation counters and decrements them. This
// is done at each safepoint.
//
class CounterDecay : public AllStatic {
static jlong _last_timestamp;
static void do_method(Method* m) {
MethodCounters* mcs = m->method_counters();
if (mcs != NULL) {
mcs->invocation_counter()->decay();
}
}
public:
static void decay();
static bool is_decay_needed() {
return nanos_to_millis(os::javaTimeNanos() - _last_timestamp) > CounterDecayMinIntervalLength;
}
static void update_last_timestamp() { _last_timestamp = os::javaTimeNanos(); }
};
jlong CounterDecay::_last_timestamp = 0;
void CounterDecay::decay() {
update_last_timestamp();
// This operation is going to be performed only at the end of a safepoint
// and hence GC's will not be going on, all Java mutators are suspended
// at this point and hence SystemDictionary_lock is also not needed.
assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
size_t nclasses = ClassLoaderDataGraph::num_instance_classes();
size_t classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
CounterHalfLifeTime);
for (size_t i = 0; i < classes_per_tick; i++) {
InstanceKlass* k = ClassLoaderDataGraph::try_get_next_class();
if (k != NULL) {
k->methods_do(do_method);
}
}
}
#ifndef PRODUCT
void SimpleCompPolicy::trace_osr_completion(nmethod* osr_nm) {
if (TraceOnStackReplacement) {
if (osr_nm == NULL) tty->print_cr("compilation failed");
else tty->print_cr("nmethod " INTPTR_FORMAT, p2i(osr_nm));
}
}
#endif // !PRODUCT
void SimpleCompPolicy::initialize() {
// Setup the compiler thread numbers
if (CICompilerCountPerCPU) {
// Example: if CICompilerCountPerCPU is true, then we get
// max(log2(8)-1,1) = 2 compiler threads on an 8-way machine.
// May help big-app startup time.
_compiler_count = MAX2(log2_int(os::active_processor_count())-1,1);
// Make sure there is enough space in the code cache to hold all the compiler buffers
size_t buffer_size = 1;
#ifdef COMPILER1
buffer_size = is_client_compilation_mode_vm() ? Compiler::code_buffer_size() : buffer_size;
#endif
#ifdef COMPILER2
buffer_size = is_server_compilation_mode_vm() ? C2Compiler::initial_code_buffer_size() : buffer_size;
#endif
int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
if (_compiler_count > max_count) {
// Lower the compiler count such that all buffers fit into the code cache
_compiler_count = MAX2(max_count, 1);
}
FLAG_SET_ERGO(CICompilerCount, _compiler_count);
} else {
_compiler_count = CICompilerCount;
}
CounterDecay::update_last_timestamp();
}
// Note: this policy is used ONLY if TieredCompilation is off.
// compiler_count() behaves the following way:
// - with TIERED build (with both COMPILER1 and COMPILER2 defined) it should return
// zero for the c1 compilation levels in server compilation mode runs
// and c2 compilation levels in client compilation mode runs.
// - with COMPILER2 not defined it should return zero for c2 compilation levels.
// - with COMPILER1 not defined it should return zero for c1 compilation levels.
// - if neither is defined - always return zero.
int SimpleCompPolicy::compiler_count(CompLevel comp_level) {
assert(!TieredCompilation, "This policy should not be used with TieredCompilation");
if (COMPILER2_PRESENT(is_server_compilation_mode_vm() && is_c2_compile(comp_level) ||)
is_client_compilation_mode_vm() && is_c1_compile(comp_level)) {
return _compiler_count;
}
return 0;
}
void SimpleCompPolicy::reset_counter_for_invocation_event(const methodHandle& m) {
// Make sure invocation and backedge counter doesn't overflow again right away
// as would be the case for native methods.
// BUT also make sure the method doesn't look like it was never executed.
// Set carry bit and reduce counter's value to min(count, CompileThreshold/2).
MethodCounters* mcs = m->method_counters();
assert(mcs != NULL, "MethodCounters cannot be NULL for profiling");
mcs->invocation_counter()->set_carry_and_reduce();
mcs->backedge_counter()->set_carry_and_reduce();
assert(!m->was_never_executed(), "don't reset to 0 -- could be mistaken for never-executed");
}
void SimpleCompPolicy::reset_counter_for_back_branch_event(const methodHandle& m) {
// Delay next back-branch event but pump up invocation counter to trigger
// whole method compilation.
MethodCounters* mcs = m->method_counters();
assert(mcs != NULL, "MethodCounters cannot be NULL for profiling");
InvocationCounter* i = mcs->invocation_counter();
InvocationCounter* b = mcs->backedge_counter();
// Don't set invocation_counter's value too low otherwise the method will
// look like immature (ic < ~5300) which prevents the inlining based on
// the type profiling.
i->set(CompileThreshold);
// Don't reset counter too low - it is used to check if OSR method is ready.
b->set(CompileThreshold / 2);
}
// Called at the end of the safepoint
void SimpleCompPolicy::do_safepoint_work() {
if(UseCounterDecay && CounterDecay::is_decay_needed()) {
CounterDecay::decay();
}
}
void SimpleCompPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
ScopeDesc* sd = trap_scope;
MethodCounters* mcs;
InvocationCounter* c;
for (; !sd->is_top(); sd = sd->sender()) {
mcs = sd->method()->method_counters();
if (mcs != NULL) {
// Reset ICs of inlined methods, since they can trigger compilations also.
mcs->invocation_counter()->reset();
}
}
mcs = sd->method()->method_counters();
if (mcs != NULL) {
c = mcs->invocation_counter();
if (is_osr) {
// It was an OSR method, so bump the count higher.
c->set(CompileThreshold);
} else {
c->reset();
}
mcs->backedge_counter()->reset();
}
}
// This method can be called by any component of the runtime to notify the policy
// that it's recommended to delay the compilation of this method.
void SimpleCompPolicy::delay_compilation(Method* method) {
MethodCounters* mcs = method->method_counters();
if (mcs != NULL) {
mcs->invocation_counter()->decay();
mcs->backedge_counter()->decay();
}
}
CompileTask* SimpleCompPolicy::select_task(CompileQueue* compile_queue) {
return select_task_helper(compile_queue);
}
bool SimpleCompPolicy::is_mature(Method* method) {
MethodData* mdo = method->method_data();
assert(mdo != NULL, "Should be");
uint current = mdo->mileage_of(method);
uint initial = mdo->creation_mileage();
if (current < initial)
return true; // some sort of overflow
uint target;
if (ProfileMaturityPercentage <= 0)
target = (uint) -ProfileMaturityPercentage; // absolute value
else
target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 );
return (current >= initial + target);
}
nmethod* SimpleCompPolicy::event(const methodHandle& method, const methodHandle& inlinee, int branch_bci,
int bci, CompLevel comp_level, CompiledMethod* nm, TRAPS) {
assert(comp_level == CompLevel_none, "This should be only called from the interpreter");
NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci));
if (JvmtiExport::can_post_interpreter_events() && THREAD->as_Java_thread()->is_interp_only_mode()) {
// If certain JVMTI events (e.g. frame pop event) are requested then the
// thread is forced to remain in interpreted code. This is
// implemented partly by a check in the run_compiled_code
// section of the interpreter whether we should skip running
// compiled code, and partly by skipping OSR compiles for
// interpreted-only threads.
if (bci != InvocationEntryBci) {
reset_counter_for_back_branch_event(method);
return NULL;
}
}
if (ReplayCompiles) {
// Don't trigger other compiles in testing mode
if (bci == InvocationEntryBci) {
reset_counter_for_invocation_event(method);
} else {
reset_counter_for_back_branch_event(method);
}
return NULL;
}
if (bci == InvocationEntryBci) {
// when code cache is full, compilation gets switched off, UseCompiler
// is set to false
if (!method->has_compiled_code() && UseCompiler) {
method_invocation_event(method, THREAD);
} else {
// Force counter overflow on method entry, even if no compilation
// happened. (The method_invocation_event call does this also.)
reset_counter_for_invocation_event(method);
}
// compilation at an invocation overflow no longer goes and retries test for
// compiled method. We always run the loser of the race as interpreted.
// so return NULL
return NULL;
} else {
// counter overflow in a loop => try to do on-stack-replacement
nmethod* osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true);
NOT_PRODUCT(trace_osr_request(method, osr_nm, bci));
// when code cache is full, we should not compile any more...
if (osr_nm == NULL && UseCompiler) {
method_back_branch_event(method, bci, THREAD);
osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true);
}
if (osr_nm == NULL) {
reset_counter_for_back_branch_event(method);
return NULL;
}
return osr_nm;
}
return NULL;
}
#ifndef PRODUCT
void SimpleCompPolicy::trace_frequency_counter_overflow(const methodHandle& m, int branch_bci, int bci) {
if (TraceInvocationCounterOverflow) {
MethodCounters* mcs = m->method_counters();
assert(mcs != NULL, "MethodCounters cannot be NULL for profiling");
InvocationCounter* ic = mcs->invocation_counter();
InvocationCounter* bc = mcs->backedge_counter();
ResourceMark rm;
if (bci == InvocationEntryBci) {
tty->print("comp-policy cntr ovfl @ %d in entry of ", bci);
} else {
tty->print("comp-policy cntr ovfl @ %d in loop of ", bci);
}
m->print_value();
tty->cr();
ic->print();
bc->print();
if (ProfileInterpreter) {
if (bci != InvocationEntryBci) {
MethodData* mdo = m->method_data();
if (mdo != NULL) {
ProfileData *pd = mdo->bci_to_data(branch_bci);
if (pd == NULL) {
tty->print_cr("back branch count = N/A (missing ProfileData)");
} else {
tty->print_cr("back branch count = %d", pd->as_JumpData()->taken());
}
}
}
}
}
}
void SimpleCompPolicy::trace_osr_request(const methodHandle& method, nmethod* osr, int bci) {
if (TraceOnStackReplacement) {
ResourceMark rm;
tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for ");
method->print_short_name(tty);
tty->print_cr(" at bci %d", bci);
}
}
#endif // !PRODUCT
void SimpleCompPolicy::method_invocation_event(const methodHandle& m, TRAPS) {
const int comp_level = CompLevel_highest_tier;
const int hot_count = m->invocation_count();
reset_counter_for_invocation_event(m);
if (is_compilation_enabled() && can_be_compiled(m, comp_level)) {
CompiledMethod* nm = m->code();
if (nm == NULL ) {
CompileBroker::compile_method(m, InvocationEntryBci, comp_level, m, hot_count, CompileTask::Reason_InvocationCount, THREAD);
}
}
}
void SimpleCompPolicy::method_back_branch_event(const methodHandle& m, int bci, TRAPS) {
const int comp_level = CompLevel_highest_tier;
const int hot_count = m->backedge_count();
if (is_compilation_enabled() && can_be_osr_compiled(m, comp_level)) {
CompileBroker::compile_method(m, bci, comp_level, m, hot_count, CompileTask::Reason_BackedgeCount, THREAD);
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));)
}
}