73c9088b81
Reviewed-by: dholmes, iveresov
504 lines
19 KiB
C++
504 lines
19 KiB
C++
/*
|
|
* Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/classLoaderDataGraph.inline.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "code/scopeDesc.hpp"
|
|
#include "compiler/compilationPolicy.hpp"
|
|
#include "compiler/tieredThresholdPolicy.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/methodData.hpp"
|
|
#include "oops/method.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "prims/nativeLookup.hpp"
|
|
#include "runtime/frame.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.hpp"
|
|
#include "runtime/vframe.hpp"
|
|
#include "runtime/vmOperations.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Compiler.hpp"
|
|
#endif
|
|
#ifdef COMPILER2
|
|
#include "opto/c2compiler.hpp"
|
|
#endif
|
|
|
|
CompilationPolicy* CompilationPolicy::_policy;
|
|
|
|
// Determine compilation policy based on command line argument
|
|
void compilationPolicy_init() {
|
|
#ifdef TIERED
|
|
if (TieredCompilation) {
|
|
CompilationPolicy::set_policy(new TieredThresholdPolicy());
|
|
} else {
|
|
CompilationPolicy::set_policy(new SimpleCompPolicy());
|
|
}
|
|
#else
|
|
CompilationPolicy::set_policy(new SimpleCompPolicy());
|
|
#endif
|
|
|
|
CompilationPolicy::policy()->initialize();
|
|
}
|
|
|
|
// Returns true if m must be compiled before executing it
|
|
// This is intended to force compiles for methods (usually for
|
|
// debugging) that would otherwise be interpreted for some reason.
|
|
bool CompilationPolicy::must_be_compiled(const methodHandle& m, int comp_level) {
|
|
// Don't allow Xcomp to cause compiles in replay mode
|
|
if (ReplayCompiles) return false;
|
|
|
|
if (m->has_compiled_code()) return false; // already compiled
|
|
if (!can_be_compiled(m, comp_level)) return false;
|
|
|
|
return !UseInterpreter || // must compile all methods
|
|
(UseCompiler && AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
|
|
}
|
|
|
|
void CompilationPolicy::compile_if_required(const methodHandle& selected_method, TRAPS) {
|
|
if (must_be_compiled(selected_method)) {
|
|
// This path is unusual, mostly used by the '-Xcomp' stress test mode.
|
|
|
|
// Note: with several active threads, the must_be_compiled may be true
|
|
// while can_be_compiled is false; remove assert
|
|
// assert(CompilationPolicy::can_be_compiled(selected_method), "cannot compile");
|
|
if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
|
|
// don't force compilation, resolve was on behalf of compiler
|
|
return;
|
|
}
|
|
if (selected_method->method_holder()->is_not_initialized()) {
|
|
// 'is_not_initialized' means not only '!is_initialized', but also that
|
|
// initialization has not been started yet ('!being_initialized')
|
|
// Do not force compilation of methods in uninitialized classes.
|
|
// Note that doing this would throw an assert later,
|
|
// in CompileBroker::compile_method.
|
|
// We sometimes use the link resolver to do reflective lookups
|
|
// even before classes are initialized.
|
|
return;
|
|
}
|
|
CompileBroker::compile_method(selected_method, InvocationEntryBci,
|
|
CompilationPolicy::policy()->initial_compile_level(selected_method),
|
|
methodHandle(), 0, CompileTask::Reason_MustBeCompiled, THREAD);
|
|
}
|
|
}
|
|
|
|
// Returns true if m is allowed to be compiled
|
|
bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
|
|
// allow any levels for WhiteBox
|
|
assert(WhiteBoxAPI || comp_level == CompLevel_all || is_compile(comp_level), "illegal compilation level");
|
|
|
|
if (m->is_abstract()) return false;
|
|
if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
|
|
|
|
// Math intrinsics should never be compiled as this can lead to
|
|
// monotonicity problems because the interpreter will prefer the
|
|
// compiled code to the intrinsic version. This can't happen in
|
|
// production because the invocation counter can't be incremented
|
|
// but we shouldn't expose the system to this problem in testing
|
|
// modes.
|
|
if (!AbstractInterpreter::can_be_compiled(m)) {
|
|
return false;
|
|
}
|
|
if (comp_level == CompLevel_all) {
|
|
if (TieredCompilation) {
|
|
// enough to be compilable at any level for tiered
|
|
return !m->is_not_compilable(CompLevel_simple) || !m->is_not_compilable(CompLevel_full_optimization);
|
|
} else {
|
|
// must be compilable at available level for non-tiered
|
|
return !m->is_not_compilable(CompLevel_highest_tier);
|
|
}
|
|
} else if (is_compile(comp_level)) {
|
|
return !m->is_not_compilable(comp_level);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if m is allowed to be osr compiled
|
|
bool CompilationPolicy::can_be_osr_compiled(const methodHandle& m, int comp_level) {
|
|
bool result = false;
|
|
if (comp_level == CompLevel_all) {
|
|
if (TieredCompilation) {
|
|
// enough to be osr compilable at any level for tiered
|
|
result = !m->is_not_osr_compilable(CompLevel_simple) || !m->is_not_osr_compilable(CompLevel_full_optimization);
|
|
} else {
|
|
// must be osr compilable at available level for non-tiered
|
|
result = !m->is_not_osr_compilable(CompLevel_highest_tier);
|
|
}
|
|
} else if (is_compile(comp_level)) {
|
|
result = !m->is_not_osr_compilable(comp_level);
|
|
}
|
|
return (result && can_be_compiled(m, comp_level));
|
|
}
|
|
|
|
bool CompilationPolicy::is_compilation_enabled() {
|
|
// NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
|
|
return CompileBroker::should_compile_new_jobs();
|
|
}
|
|
|
|
CompileTask* CompilationPolicy::select_task_helper(CompileQueue* compile_queue) {
|
|
// Remove unloaded methods from the queue
|
|
for (CompileTask* task = compile_queue->first(); task != NULL; ) {
|
|
CompileTask* next = task->next();
|
|
if (task->is_unloaded()) {
|
|
compile_queue->remove_and_mark_stale(task);
|
|
}
|
|
task = next;
|
|
}
|
|
#if INCLUDE_JVMCI
|
|
if (UseJVMCICompiler && !BackgroundCompilation) {
|
|
/*
|
|
* In blocking compilation mode, the CompileBroker will make
|
|
* compilations submitted by a JVMCI compiler thread non-blocking. These
|
|
* compilations should be scheduled after all blocking compilations
|
|
* to service non-compiler related compilations sooner and reduce the
|
|
* chance of such compilations timing out.
|
|
*/
|
|
for (CompileTask* task = compile_queue->first(); task != NULL; task = task->next()) {
|
|
if (task->is_blocking()) {
|
|
return task;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return compile_queue->first();
|
|
}
|
|
|
|
|
|
//
|
|
// CounterDecay for SimpleCompPolicy
|
|
//
|
|
// Iterates through invocation counters and decrements them. This
|
|
// is done at each safepoint.
|
|
//
|
|
class CounterDecay : public AllStatic {
|
|
static jlong _last_timestamp;
|
|
static void do_method(Method* m) {
|
|
MethodCounters* mcs = m->method_counters();
|
|
if (mcs != NULL) {
|
|
mcs->invocation_counter()->decay();
|
|
}
|
|
}
|
|
public:
|
|
static void decay();
|
|
static bool is_decay_needed() {
|
|
return nanos_to_millis(os::javaTimeNanos() - _last_timestamp) > CounterDecayMinIntervalLength;
|
|
}
|
|
static void update_last_timestamp() { _last_timestamp = os::javaTimeNanos(); }
|
|
};
|
|
|
|
jlong CounterDecay::_last_timestamp = 0;
|
|
|
|
void CounterDecay::decay() {
|
|
update_last_timestamp();
|
|
|
|
// This operation is going to be performed only at the end of a safepoint
|
|
// and hence GC's will not be going on, all Java mutators are suspended
|
|
// at this point and hence SystemDictionary_lock is also not needed.
|
|
assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
|
|
size_t nclasses = ClassLoaderDataGraph::num_instance_classes();
|
|
size_t classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
|
|
CounterHalfLifeTime);
|
|
for (size_t i = 0; i < classes_per_tick; i++) {
|
|
InstanceKlass* k = ClassLoaderDataGraph::try_get_next_class();
|
|
if (k != NULL) {
|
|
k->methods_do(do_method);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
void SimpleCompPolicy::trace_osr_completion(nmethod* osr_nm) {
|
|
if (TraceOnStackReplacement) {
|
|
if (osr_nm == NULL) tty->print_cr("compilation failed");
|
|
else tty->print_cr("nmethod " INTPTR_FORMAT, p2i(osr_nm));
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
void SimpleCompPolicy::initialize() {
|
|
// Setup the compiler thread numbers
|
|
if (CICompilerCountPerCPU) {
|
|
// Example: if CICompilerCountPerCPU is true, then we get
|
|
// max(log2(8)-1,1) = 2 compiler threads on an 8-way machine.
|
|
// May help big-app startup time.
|
|
_compiler_count = MAX2(log2_int(os::active_processor_count())-1,1);
|
|
// Make sure there is enough space in the code cache to hold all the compiler buffers
|
|
size_t buffer_size = 1;
|
|
#ifdef COMPILER1
|
|
buffer_size = is_client_compilation_mode_vm() ? Compiler::code_buffer_size() : buffer_size;
|
|
#endif
|
|
#ifdef COMPILER2
|
|
buffer_size = is_server_compilation_mode_vm() ? C2Compiler::initial_code_buffer_size() : buffer_size;
|
|
#endif
|
|
int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
|
|
if (_compiler_count > max_count) {
|
|
// Lower the compiler count such that all buffers fit into the code cache
|
|
_compiler_count = MAX2(max_count, 1);
|
|
}
|
|
FLAG_SET_ERGO(CICompilerCount, _compiler_count);
|
|
} else {
|
|
_compiler_count = CICompilerCount;
|
|
}
|
|
CounterDecay::update_last_timestamp();
|
|
}
|
|
|
|
// Note: this policy is used ONLY if TieredCompilation is off.
|
|
// compiler_count() behaves the following way:
|
|
// - with TIERED build (with both COMPILER1 and COMPILER2 defined) it should return
|
|
// zero for the c1 compilation levels in server compilation mode runs
|
|
// and c2 compilation levels in client compilation mode runs.
|
|
// - with COMPILER2 not defined it should return zero for c2 compilation levels.
|
|
// - with COMPILER1 not defined it should return zero for c1 compilation levels.
|
|
// - if neither is defined - always return zero.
|
|
int SimpleCompPolicy::compiler_count(CompLevel comp_level) {
|
|
assert(!TieredCompilation, "This policy should not be used with TieredCompilation");
|
|
if (COMPILER2_PRESENT(is_server_compilation_mode_vm() && is_c2_compile(comp_level) ||)
|
|
is_client_compilation_mode_vm() && is_c1_compile(comp_level)) {
|
|
return _compiler_count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void SimpleCompPolicy::reset_counter_for_invocation_event(const methodHandle& m) {
|
|
// Make sure invocation and backedge counter doesn't overflow again right away
|
|
// as would be the case for native methods.
|
|
|
|
// BUT also make sure the method doesn't look like it was never executed.
|
|
// Set carry bit and reduce counter's value to min(count, CompileThreshold/2).
|
|
MethodCounters* mcs = m->method_counters();
|
|
assert(mcs != NULL, "MethodCounters cannot be NULL for profiling");
|
|
mcs->invocation_counter()->set_carry_and_reduce();
|
|
mcs->backedge_counter()->set_carry_and_reduce();
|
|
|
|
assert(!m->was_never_executed(), "don't reset to 0 -- could be mistaken for never-executed");
|
|
}
|
|
|
|
void SimpleCompPolicy::reset_counter_for_back_branch_event(const methodHandle& m) {
|
|
// Delay next back-branch event but pump up invocation counter to trigger
|
|
// whole method compilation.
|
|
MethodCounters* mcs = m->method_counters();
|
|
assert(mcs != NULL, "MethodCounters cannot be NULL for profiling");
|
|
InvocationCounter* i = mcs->invocation_counter();
|
|
InvocationCounter* b = mcs->backedge_counter();
|
|
|
|
// Don't set invocation_counter's value too low otherwise the method will
|
|
// look like immature (ic < ~5300) which prevents the inlining based on
|
|
// the type profiling.
|
|
i->set(CompileThreshold);
|
|
// Don't reset counter too low - it is used to check if OSR method is ready.
|
|
b->set(CompileThreshold / 2);
|
|
}
|
|
|
|
// Called at the end of the safepoint
|
|
void SimpleCompPolicy::do_safepoint_work() {
|
|
if(UseCounterDecay && CounterDecay::is_decay_needed()) {
|
|
CounterDecay::decay();
|
|
}
|
|
}
|
|
|
|
void SimpleCompPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
|
|
ScopeDesc* sd = trap_scope;
|
|
MethodCounters* mcs;
|
|
InvocationCounter* c;
|
|
for (; !sd->is_top(); sd = sd->sender()) {
|
|
mcs = sd->method()->method_counters();
|
|
if (mcs != NULL) {
|
|
// Reset ICs of inlined methods, since they can trigger compilations also.
|
|
mcs->invocation_counter()->reset();
|
|
}
|
|
}
|
|
mcs = sd->method()->method_counters();
|
|
if (mcs != NULL) {
|
|
c = mcs->invocation_counter();
|
|
if (is_osr) {
|
|
// It was an OSR method, so bump the count higher.
|
|
c->set(CompileThreshold);
|
|
} else {
|
|
c->reset();
|
|
}
|
|
mcs->backedge_counter()->reset();
|
|
}
|
|
}
|
|
|
|
// This method can be called by any component of the runtime to notify the policy
|
|
// that it's recommended to delay the compilation of this method.
|
|
void SimpleCompPolicy::delay_compilation(Method* method) {
|
|
MethodCounters* mcs = method->method_counters();
|
|
if (mcs != NULL) {
|
|
mcs->invocation_counter()->decay();
|
|
mcs->backedge_counter()->decay();
|
|
}
|
|
}
|
|
|
|
CompileTask* SimpleCompPolicy::select_task(CompileQueue* compile_queue) {
|
|
return select_task_helper(compile_queue);
|
|
}
|
|
|
|
bool SimpleCompPolicy::is_mature(Method* method) {
|
|
MethodData* mdo = method->method_data();
|
|
assert(mdo != NULL, "Should be");
|
|
uint current = mdo->mileage_of(method);
|
|
uint initial = mdo->creation_mileage();
|
|
if (current < initial)
|
|
return true; // some sort of overflow
|
|
uint target;
|
|
if (ProfileMaturityPercentage <= 0)
|
|
target = (uint) -ProfileMaturityPercentage; // absolute value
|
|
else
|
|
target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 );
|
|
return (current >= initial + target);
|
|
}
|
|
|
|
nmethod* SimpleCompPolicy::event(const methodHandle& method, const methodHandle& inlinee, int branch_bci,
|
|
int bci, CompLevel comp_level, CompiledMethod* nm, TRAPS) {
|
|
assert(comp_level == CompLevel_none, "This should be only called from the interpreter");
|
|
NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci));
|
|
if (JvmtiExport::can_post_interpreter_events() && THREAD->as_Java_thread()->is_interp_only_mode()) {
|
|
// If certain JVMTI events (e.g. frame pop event) are requested then the
|
|
// thread is forced to remain in interpreted code. This is
|
|
// implemented partly by a check in the run_compiled_code
|
|
// section of the interpreter whether we should skip running
|
|
// compiled code, and partly by skipping OSR compiles for
|
|
// interpreted-only threads.
|
|
if (bci != InvocationEntryBci) {
|
|
reset_counter_for_back_branch_event(method);
|
|
return NULL;
|
|
}
|
|
}
|
|
if (ReplayCompiles) {
|
|
// Don't trigger other compiles in testing mode
|
|
if (bci == InvocationEntryBci) {
|
|
reset_counter_for_invocation_event(method);
|
|
} else {
|
|
reset_counter_for_back_branch_event(method);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (bci == InvocationEntryBci) {
|
|
// when code cache is full, compilation gets switched off, UseCompiler
|
|
// is set to false
|
|
if (!method->has_compiled_code() && UseCompiler) {
|
|
method_invocation_event(method, THREAD);
|
|
} else {
|
|
// Force counter overflow on method entry, even if no compilation
|
|
// happened. (The method_invocation_event call does this also.)
|
|
reset_counter_for_invocation_event(method);
|
|
}
|
|
// compilation at an invocation overflow no longer goes and retries test for
|
|
// compiled method. We always run the loser of the race as interpreted.
|
|
// so return NULL
|
|
return NULL;
|
|
} else {
|
|
// counter overflow in a loop => try to do on-stack-replacement
|
|
nmethod* osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true);
|
|
NOT_PRODUCT(trace_osr_request(method, osr_nm, bci));
|
|
// when code cache is full, we should not compile any more...
|
|
if (osr_nm == NULL && UseCompiler) {
|
|
method_back_branch_event(method, bci, THREAD);
|
|
osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true);
|
|
}
|
|
if (osr_nm == NULL) {
|
|
reset_counter_for_back_branch_event(method);
|
|
return NULL;
|
|
}
|
|
return osr_nm;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void SimpleCompPolicy::trace_frequency_counter_overflow(const methodHandle& m, int branch_bci, int bci) {
|
|
if (TraceInvocationCounterOverflow) {
|
|
MethodCounters* mcs = m->method_counters();
|
|
assert(mcs != NULL, "MethodCounters cannot be NULL for profiling");
|
|
InvocationCounter* ic = mcs->invocation_counter();
|
|
InvocationCounter* bc = mcs->backedge_counter();
|
|
ResourceMark rm;
|
|
if (bci == InvocationEntryBci) {
|
|
tty->print("comp-policy cntr ovfl @ %d in entry of ", bci);
|
|
} else {
|
|
tty->print("comp-policy cntr ovfl @ %d in loop of ", bci);
|
|
}
|
|
m->print_value();
|
|
tty->cr();
|
|
ic->print();
|
|
bc->print();
|
|
if (ProfileInterpreter) {
|
|
if (bci != InvocationEntryBci) {
|
|
MethodData* mdo = m->method_data();
|
|
if (mdo != NULL) {
|
|
ProfileData *pd = mdo->bci_to_data(branch_bci);
|
|
if (pd == NULL) {
|
|
tty->print_cr("back branch count = N/A (missing ProfileData)");
|
|
} else {
|
|
tty->print_cr("back branch count = %d", pd->as_JumpData()->taken());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimpleCompPolicy::trace_osr_request(const methodHandle& method, nmethod* osr, int bci) {
|
|
if (TraceOnStackReplacement) {
|
|
ResourceMark rm;
|
|
tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for ");
|
|
method->print_short_name(tty);
|
|
tty->print_cr(" at bci %d", bci);
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
void SimpleCompPolicy::method_invocation_event(const methodHandle& m, TRAPS) {
|
|
const int comp_level = CompLevel_highest_tier;
|
|
const int hot_count = m->invocation_count();
|
|
reset_counter_for_invocation_event(m);
|
|
|
|
if (is_compilation_enabled() && can_be_compiled(m, comp_level)) {
|
|
CompiledMethod* nm = m->code();
|
|
if (nm == NULL ) {
|
|
CompileBroker::compile_method(m, InvocationEntryBci, comp_level, m, hot_count, CompileTask::Reason_InvocationCount, THREAD);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SimpleCompPolicy::method_back_branch_event(const methodHandle& m, int bci, TRAPS) {
|
|
const int comp_level = CompLevel_highest_tier;
|
|
const int hot_count = m->backedge_count();
|
|
|
|
if (is_compilation_enabled() && can_be_osr_compiled(m, comp_level)) {
|
|
CompileBroker::compile_method(m, bci, comp_level, m, hot_count, CompileTask::Reason_BackedgeCount, THREAD);
|
|
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));)
|
|
}
|
|
}
|