b35a3bdee9
Rewrite and inline BitMap::iterate. Reviewed-by: stuefe, dholmes, tschatzl
322 lines
11 KiB
C++
322 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_UTILITIES_BITMAP_INLINE_HPP
|
|
#define SHARE_UTILITIES_BITMAP_INLINE_HPP
|
|
|
|
#include "runtime/atomic.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/bitMap.hpp"
|
|
#include "utilities/count_trailing_zeros.hpp"
|
|
|
|
inline void BitMap::set_bit(idx_t bit) {
|
|
verify_index(bit);
|
|
*word_addr(bit) |= bit_mask(bit);
|
|
}
|
|
|
|
inline void BitMap::clear_bit(idx_t bit) {
|
|
verify_index(bit);
|
|
*word_addr(bit) &= ~bit_mask(bit);
|
|
}
|
|
|
|
inline const BitMap::bm_word_t BitMap::load_word_ordered(const volatile bm_word_t* const addr, atomic_memory_order memory_order) {
|
|
if (memory_order == memory_order_relaxed || memory_order == memory_order_release) {
|
|
return Atomic::load(addr);
|
|
} else {
|
|
assert(memory_order == memory_order_acq_rel ||
|
|
memory_order == memory_order_acquire ||
|
|
memory_order == memory_order_conservative,
|
|
"unexpected memory ordering");
|
|
return Atomic::load_acquire(addr);
|
|
}
|
|
}
|
|
|
|
inline bool BitMap::par_at(idx_t index, atomic_memory_order memory_order) const {
|
|
verify_index(index);
|
|
assert(memory_order == memory_order_acquire ||
|
|
memory_order == memory_order_relaxed,
|
|
"unexpected memory ordering");
|
|
const volatile bm_word_t* const addr = word_addr(index);
|
|
return (load_word_ordered(addr, memory_order) & bit_mask(index)) != 0;
|
|
}
|
|
|
|
inline bool BitMap::par_set_bit(idx_t bit, atomic_memory_order memory_order) {
|
|
verify_index(bit);
|
|
volatile bm_word_t* const addr = word_addr(bit);
|
|
const bm_word_t mask = bit_mask(bit);
|
|
bm_word_t old_val = load_word_ordered(addr, memory_order);
|
|
|
|
do {
|
|
const bm_word_t new_val = old_val | mask;
|
|
if (new_val == old_val) {
|
|
return false; // Someone else beat us to it.
|
|
}
|
|
const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
|
|
if (cur_val == old_val) {
|
|
return true; // Success.
|
|
}
|
|
old_val = cur_val; // The value changed, try again.
|
|
} while (true);
|
|
}
|
|
|
|
inline bool BitMap::par_clear_bit(idx_t bit, atomic_memory_order memory_order) {
|
|
verify_index(bit);
|
|
volatile bm_word_t* const addr = word_addr(bit);
|
|
const bm_word_t mask = ~bit_mask(bit);
|
|
bm_word_t old_val = load_word_ordered(addr, memory_order);
|
|
|
|
do {
|
|
const bm_word_t new_val = old_val & mask;
|
|
if (new_val == old_val) {
|
|
return false; // Someone else beat us to it.
|
|
}
|
|
const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
|
|
if (cur_val == old_val) {
|
|
return true; // Success.
|
|
}
|
|
old_val = cur_val; // The value changed, try again.
|
|
} while (true);
|
|
}
|
|
|
|
inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
if (hint == small_range && end - beg == 1) {
|
|
set_bit(beg);
|
|
} else {
|
|
if (hint == large_range) {
|
|
set_large_range(beg, end);
|
|
} else {
|
|
set_range(beg, end);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
if (end - beg == 1) {
|
|
clear_bit(beg);
|
|
} else {
|
|
if (hint == large_range) {
|
|
clear_large_range(beg, end);
|
|
} else {
|
|
clear_range(beg, end);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
if (hint == small_range && end - beg == 1) {
|
|
par_at_put(beg, true);
|
|
} else {
|
|
if (hint == large_range) {
|
|
par_at_put_large_range(beg, end, true);
|
|
} else {
|
|
par_at_put_range(beg, end, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
|
|
bm_word_t* map = _map;
|
|
for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0;
|
|
}
|
|
|
|
inline void BitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) {
|
|
for (idx_t i = beg; i < end; ++i) map[i] = 0;
|
|
}
|
|
|
|
inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
|
|
clear_range_of_words(_map, beg, end);
|
|
}
|
|
|
|
inline void BitMap::clear() {
|
|
clear_range_of_words(0, size_in_words());
|
|
}
|
|
|
|
inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
if (hint == small_range && end - beg == 1) {
|
|
par_at_put(beg, false);
|
|
} else {
|
|
if (hint == large_range) {
|
|
par_at_put_large_range(beg, end, false);
|
|
} else {
|
|
par_at_put_range(beg, end, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<BitMap::bm_word_t flip, bool aligned_right>
|
|
inline BitMap::idx_t BitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const {
|
|
STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
|
|
verify_range(l_index, r_index);
|
|
assert(!aligned_right || is_aligned(r_index, BitsPerWord), "r_index not aligned");
|
|
|
|
// The first word often contains an interesting bit, either due to
|
|
// density or because of features of the calling algorithm. So it's
|
|
// important to examine that first word with a minimum of fuss,
|
|
// minimizing setup time for later words that will be wasted if the
|
|
// first word is indeed interesting.
|
|
|
|
// The benefit from aligned_right being true is relatively small.
|
|
// It saves an operation in the setup for the word search loop.
|
|
// It also eliminates the range check on the final result.
|
|
// However, callers often have a comparison with r_index, and
|
|
// inlining often allows the two comparisons to be combined; it is
|
|
// important when !aligned_right that return paths either return
|
|
// r_index or a value dominated by a comparison with r_index.
|
|
// aligned_right is still helpful when the caller doesn't have a
|
|
// range check because features of the calling algorithm guarantee
|
|
// an interesting bit will be present.
|
|
|
|
if (l_index < r_index) {
|
|
// Get the word containing l_index, and shift out low bits.
|
|
idx_t index = to_words_align_down(l_index);
|
|
bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index);
|
|
if ((cword & 1) != 0) {
|
|
// The first bit is similarly often interesting. When it matters
|
|
// (density or features of the calling algorithm make it likely
|
|
// the first bit is set), going straight to the next clause compares
|
|
// poorly with doing this check first; count_trailing_zeros can be
|
|
// relatively expensive, plus there is the additional range check.
|
|
// But when the first bit isn't set, the cost of having tested for
|
|
// it is relatively small compared to the rest of the search.
|
|
return l_index;
|
|
} else if (cword != 0) {
|
|
// Flipped and shifted first word is non-zero.
|
|
idx_t result = l_index + count_trailing_zeros(cword);
|
|
if (aligned_right || (result < r_index)) return result;
|
|
// Result is beyond range bound; return r_index.
|
|
} else {
|
|
// Flipped and shifted first word is zero. Word search through
|
|
// aligned up r_index for a non-zero flipped word.
|
|
idx_t limit = aligned_right
|
|
? to_words_align_down(r_index) // Miniscule savings when aligned.
|
|
: to_words_align_up(r_index);
|
|
while (++index < limit) {
|
|
cword = map(index) ^ flip;
|
|
if (cword != 0) {
|
|
idx_t result = bit_index(index) + count_trailing_zeros(cword);
|
|
if (aligned_right || (result < r_index)) return result;
|
|
// Result is beyond range bound; return r_index.
|
|
assert((index + 1) == limit, "invariant");
|
|
break;
|
|
}
|
|
}
|
|
// No bits in range; return r_index.
|
|
}
|
|
}
|
|
return r_index;
|
|
}
|
|
|
|
inline BitMap::idx_t
|
|
BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const {
|
|
return get_next_bit_impl<find_ones_flip, false>(l_offset, r_offset);
|
|
}
|
|
|
|
inline BitMap::idx_t
|
|
BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const {
|
|
return get_next_bit_impl<find_zeros_flip, false>(l_offset, r_offset);
|
|
}
|
|
|
|
inline BitMap::idx_t
|
|
BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const {
|
|
return get_next_bit_impl<find_ones_flip, true>(l_offset, r_offset);
|
|
}
|
|
|
|
inline bool BitMap::iterate(BitMapClosure* cl, idx_t beg, idx_t end) {
|
|
for (idx_t index = beg; true; ++index) {
|
|
index = get_next_one_offset(index, end);
|
|
if (index >= end) {
|
|
return true;
|
|
} else if (!cl->do_bit(index)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool BitMap::iterate(BitMapClosure* cl) {
|
|
return iterate(cl, 0, size());
|
|
}
|
|
|
|
// Returns a bit mask for a range of bits [beg, end) within a single word. Each
|
|
// bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
|
|
// returned mask can be used directly to clear the range, or inverted to set the
|
|
// range. Note: end must not be 0.
|
|
inline BitMap::bm_word_t
|
|
BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
|
|
assert(end != 0, "does not work when end == 0");
|
|
assert(beg == end || to_words_align_down(beg) == to_words_align_down(end - 1),
|
|
"must be a single-word range");
|
|
bm_word_t mask = bit_mask(beg) - 1; // low (right) bits
|
|
if (bit_in_word(end) != 0) {
|
|
mask |= ~(bit_mask(end) - 1); // high (left) bits
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
|
|
assert(beg <= end, "underflow");
|
|
memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t));
|
|
}
|
|
|
|
inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
|
|
assert(beg <= end, "underflow");
|
|
memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t));
|
|
}
|
|
|
|
inline bool BitMap2D::is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) {
|
|
verify_bit_within_slot_index(bit_within_slot_index);
|
|
return (bit_index(slot_index, bit_within_slot_index) < size_in_bits());
|
|
}
|
|
|
|
inline bool BitMap2D::at(idx_t slot_index, idx_t bit_within_slot_index) const {
|
|
verify_bit_within_slot_index(bit_within_slot_index);
|
|
return _map.at(bit_index(slot_index, bit_within_slot_index));
|
|
}
|
|
|
|
inline void BitMap2D::set_bit(idx_t slot_index, idx_t bit_within_slot_index) {
|
|
verify_bit_within_slot_index(bit_within_slot_index);
|
|
_map.set_bit(bit_index(slot_index, bit_within_slot_index));
|
|
}
|
|
|
|
inline void BitMap2D::clear_bit(idx_t slot_index, idx_t bit_within_slot_index) {
|
|
verify_bit_within_slot_index(bit_within_slot_index);
|
|
_map.clear_bit(bit_index(slot_index, bit_within_slot_index));
|
|
}
|
|
|
|
inline void BitMap2D::at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
|
|
verify_bit_within_slot_index(bit_within_slot_index);
|
|
_map.at_put(bit_index(slot_index, bit_within_slot_index), value);
|
|
}
|
|
|
|
inline void BitMap2D::at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
|
|
verify_bit_within_slot_index(bit_within_slot_index);
|
|
|
|
idx_t bit = bit_index(slot_index, bit_within_slot_index);
|
|
if (bit >= _map.size()) {
|
|
_map.resize(2 * MAX2(_map.size(), bit));
|
|
}
|
|
_map.at_put(bit, value);
|
|
}
|
|
|
|
#endif // SHARE_UTILITIES_BITMAP_INLINE_HPP
|