jdk-24/src/hotspot/share/opto/vectornode.cpp
Paul Sandoz 0c99b19258 8223347: Integration of Vector API (Incubator)
Co-authored-by: Vivek Deshpande <vdeshpande@openjdk.org>
Co-authored-by: Qi Feng <qfeng@openjdk.org>
Co-authored-by: Ian Graves <igraves@openjdk.org>
Co-authored-by: Jean-Philippe Halimi <jphalimi@openjdk.org>
Co-authored-by: Vladimir Ivanov <vlivanov@openjdk.org>
Co-authored-by: Ningsheng Jian <njian@openjdk.org>
Co-authored-by: Razvan Lupusoru <rlupusoru@openjdk.org>
Co-authored-by: Smita Kamath <svkamath@openjdk.org>
Co-authored-by: Rahul Kandu <rkandu@openjdk.org>
Co-authored-by: Kishor Kharbas <kkharbas@openjdk.org>
Co-authored-by: Eric Liu <Eric.Liu2@arm.com>
Co-authored-by: Aaloan Miftah <someusername3@gmail.com>
Co-authored-by: John R Rose <jrose@openjdk.org>
Co-authored-by: Shravya Rukmannagari <srukmannagar@openjdk.org>
Co-authored-by: Paul Sandoz <psandoz@openjdk.org>
Co-authored-by: Sandhya Viswanathan <sviswanathan@openjdk.org>
Co-authored-by: Lauren Walkowski <lauren.walkowski@arm.com>
Co-authored-by: Yang Zang <Yang.Zhang@arm.com>
Co-authored-by: Joshua Zhu <jzhu@openjdk.org>
Co-authored-by: Wang Zhuo <wzhuo@openjdk.org>
Co-authored-by: Jatin Bhateja <jbhateja@openjdk.org>
Reviewed-by: erikj, chegar, kvn, darcy, forax, briangoetz, aph, epavlova, coleenp
2020-10-14 20:02:46 +00:00

1213 lines
36 KiB
C++

/*
* Copyright (c) 2007, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/connode.hpp"
#include "opto/mulnode.hpp"
#include "opto/subnode.hpp"
#include "opto/vectornode.hpp"
#include "utilities/powerOfTwo.hpp"
#include "utilities/globalDefinitions.hpp"
//------------------------------VectorNode--------------------------------------
// Return the vector operator for the specified scalar operation
// and vector length.
int VectorNode::opcode(int sopc, BasicType bt) {
switch (sopc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_AddVB;
case T_CHAR:
case T_SHORT: return Op_AddVS;
case T_INT: return Op_AddVI;
default: ShouldNotReachHere(); return 0;
}
case Op_AddL:
assert(bt == T_LONG, "must be");
return Op_AddVL;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
return Op_AddVF;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
return Op_AddVD;
case Op_SubI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_SubVB;
case T_CHAR:
case T_SHORT: return Op_SubVS;
case T_INT: return Op_SubVI;
default: ShouldNotReachHere(); return 0;
}
case Op_SubL:
assert(bt == T_LONG, "must be");
return Op_SubVL;
case Op_SubF:
assert(bt == T_FLOAT, "must be");
return Op_SubVF;
case Op_SubD:
assert(bt == T_DOUBLE, "must be");
return Op_SubVD;
case Op_MulI:
switch (bt) {
case T_BOOLEAN:return 0;
case T_BYTE: return Op_MulVB;
case T_CHAR:
case T_SHORT: return Op_MulVS;
case T_INT: return Op_MulVI;
default: ShouldNotReachHere(); return 0;
}
case Op_MulL:
assert(bt == T_LONG, "must be");
return Op_MulVL;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
return Op_MulVF;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
return Op_MulVD;
case Op_FmaD:
assert(bt == T_DOUBLE, "must be");
return Op_FmaVD;
case Op_FmaF:
assert(bt == T_FLOAT, "must be");
return Op_FmaVF;
case Op_CMoveF:
assert(bt == T_FLOAT, "must be");
return Op_CMoveVF;
case Op_CMoveD:
assert(bt == T_DOUBLE, "must be");
return Op_CMoveVD;
case Op_DivF:
assert(bt == T_FLOAT, "must be");
return Op_DivVF;
case Op_DivD:
assert(bt == T_DOUBLE, "must be");
return Op_DivVD;
case Op_AbsI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0; // abs does not make sense for unsigned
case T_BYTE: return Op_AbsVB;
case T_SHORT: return Op_AbsVS;
case T_INT: return Op_AbsVI;
default: ShouldNotReachHere(); return 0;
}
case Op_AbsL:
assert(bt == T_LONG, "must be");
return Op_AbsVL;
case Op_MinI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT: return Op_MinV;
default: ShouldNotReachHere(); return 0;
}
case Op_MinL:
assert(bt == T_LONG, "must be");
return Op_MinV;
case Op_MinF:
assert(bt == T_FLOAT, "must be");
return Op_MinV;
case Op_MinD:
assert(bt == T_DOUBLE, "must be");
return Op_MinV;
case Op_MaxI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT: return Op_MaxV;
default: ShouldNotReachHere(); return 0;
}
case Op_MaxL:
assert(bt == T_LONG, "must be");
return Op_MaxV;
case Op_MaxF:
assert(bt == T_FLOAT, "must be");
return Op_MaxV;
case Op_MaxD:
assert(bt == T_DOUBLE, "must be");
return Op_MaxV;
case Op_AbsF:
assert(bt == T_FLOAT, "must be");
return Op_AbsVF;
case Op_AbsD:
assert(bt == T_DOUBLE, "must be");
return Op_AbsVD;
case Op_NegI:
assert(bt == T_INT, "must be");
return Op_NegVI;
case Op_NegF:
assert(bt == T_FLOAT, "must be");
return Op_NegVF;
case Op_NegD:
assert(bt == T_DOUBLE, "must be");
return Op_NegVD;
case Op_RoundDoubleMode:
assert(bt == T_DOUBLE, "must be");
return Op_RoundDoubleModeV;
case Op_RotateLeft:
assert(bt == T_LONG || bt == T_INT, "must be");
return Op_RotateLeftV;
case Op_RotateRight:
assert(bt == T_LONG || bt == T_INT, "must be");
return Op_RotateRightV;
case Op_SqrtF:
assert(bt == T_FLOAT, "must be");
return Op_SqrtVF;
case Op_SqrtD:
assert(bt == T_DOUBLE, "must be");
return Op_SqrtVD;
case Op_PopCountI:
if (bt == T_INT) {
return Op_PopCountVI;
}
// Unimplemented for subword types since bit count changes
// depending on size of lane (and sign bit).
return 0;
case Op_LShiftI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_LShiftVB;
case T_CHAR:
case T_SHORT: return Op_LShiftVS;
case T_INT: return Op_LShiftVI;
default: ShouldNotReachHere(); return 0;
}
case Op_LShiftL:
assert(bt == T_LONG, "must be");
return Op_LShiftVL;
case Op_RShiftI:
switch (bt) {
case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
case T_CHAR: return Op_URShiftVS; // char is unsigned value
case T_BYTE: return Op_RShiftVB;
case T_SHORT: return Op_RShiftVS;
case T_INT: return Op_RShiftVI;
default: ShouldNotReachHere(); return 0;
}
case Op_RShiftL:
assert(bt == T_LONG, "must be");
return Op_RShiftVL;
case Op_URShiftB:
assert(bt == T_BYTE, "must be");
return Op_URShiftVB;
case Op_URShiftS:
assert(bt == T_SHORT, "must be");
return Op_URShiftVS;
case Op_URShiftI:
switch (bt) {
case T_BOOLEAN:return Op_URShiftVB;
case T_CHAR: return Op_URShiftVS;
case T_BYTE:
case T_SHORT: return 0; // Vector logical right shift for signed short
// values produces incorrect Java result for
// negative data because java code should convert
// a short value into int value with sign
// extension before a shift.
case T_INT: return Op_URShiftVI;
default: ShouldNotReachHere(); return 0;
}
case Op_URShiftL:
assert(bt == T_LONG, "must be");
return Op_URShiftVL;
case Op_AndI:
case Op_AndL:
return Op_AndV;
case Op_OrI:
case Op_OrL:
return Op_OrV;
case Op_XorI:
case Op_XorL:
return Op_XorV;
case Op_LoadB:
case Op_LoadUB:
case Op_LoadUS:
case Op_LoadS:
case Op_LoadI:
case Op_LoadL:
case Op_LoadF:
case Op_LoadD:
return Op_LoadVector;
case Op_StoreB:
case Op_StoreC:
case Op_StoreI:
case Op_StoreL:
case Op_StoreF:
case Op_StoreD:
return Op_StoreVector;
case Op_MulAddS2I:
return Op_MulAddVS2VI;
default:
return 0; // Unimplemented
}
}
int VectorNode::replicate_opcode(BasicType bt) {
switch(bt) {
case T_BOOLEAN:
case T_BYTE:
return Op_ReplicateB;
case T_SHORT:
case T_CHAR:
return Op_ReplicateS;
case T_INT:
return Op_ReplicateI;
case T_LONG:
return Op_ReplicateL;
case T_FLOAT:
return Op_ReplicateF;
case T_DOUBLE:
return Op_ReplicateD;
default:
assert(false, "wrong type: %s", type2name(bt));
return 0;
}
}
// Also used to check if the code generator
// supports the vector operation.
bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
Matcher::vector_size_supported(bt, vlen)) {
int vopc = VectorNode::opcode(opc, bt);
// For rotate operation we will do a lazy de-generation into
// OrV/LShiftV/URShiftV pattern if the target does not support
// vector rotation instruction.
if (vopc == Op_RotateLeftV || vopc == Op_RotateRightV) {
return is_vector_rotate_supported(vopc, vlen, bt);
}
return vopc > 0 && Matcher::match_rule_supported_vector(vopc, vlen, bt);
}
return false;
}
bool VectorNode::is_type_transition_short_to_int(Node* n) {
switch (n->Opcode()) {
case Op_MulAddS2I:
return true;
}
return false;
}
bool VectorNode::is_type_transition_to_int(Node* n) {
return is_type_transition_short_to_int(n);
}
bool VectorNode::is_muladds2i(Node* n) {
if (n->Opcode() == Op_MulAddS2I) {
return true;
}
return false;
}
bool VectorNode::is_roundopD(Node* n) {
if (n->Opcode() == Op_RoundDoubleMode) {
return true;
}
return false;
}
bool VectorNode::is_scalar_rotate(Node* n) {
if (n->Opcode() == Op_RotateLeft || n->Opcode() == Op_RotateRight) {
return true;
}
return false;
}
bool VectorNode::is_vector_rotate_supported(int vopc, uint vlen, BasicType bt) {
assert(vopc == Op_RotateLeftV || vopc == Op_RotateRightV, "wrong opcode");
// If target defines vector rotation patterns then no
// need for degeneration.
if (Matcher::match_rule_supported_vector(vopc, vlen, bt)) {
return true;
}
// Validate existence of nodes created in case of rotate degeneration.
switch (bt) {
case T_INT:
return Matcher::match_rule_supported_vector(Op_OrV, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_LShiftVI, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_URShiftVI, vlen, bt);
case T_LONG:
return Matcher::match_rule_supported_vector(Op_OrV, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_LShiftVL, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_URShiftVL, vlen, bt);
default:
assert(false, "not supported: %s", type2name(bt));
return false;
}
}
bool VectorNode::is_shift(Node* n) {
switch (n->Opcode()) {
case Op_LShiftI:
case Op_LShiftL:
case Op_RShiftI:
case Op_RShiftL:
case Op_URShiftI:
case Op_URShiftL:
return true;
default:
return false;
}
}
bool VectorNode::is_vshift_cnt(Node* n) {
switch (n->Opcode()) {
case Op_LShiftCntV:
case Op_RShiftCntV:
return true;
default:
return false;
}
}
// Check if input is loop invariant vector.
bool VectorNode::is_invariant_vector(Node* n) {
// Only Replicate vector nodes are loop invariant for now.
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
case Op_ReplicateF:
case Op_ReplicateD:
return true;
default:
return false;
}
}
// [Start, end) half-open range defining which operands are vectors
void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
switch (n->Opcode()) {
case Op_LoadB: case Op_LoadUB:
case Op_LoadS: case Op_LoadUS:
case Op_LoadI: case Op_LoadL:
case Op_LoadF: case Op_LoadD:
case Op_LoadP: case Op_LoadN:
*start = 0;
*end = 0; // no vector operands
break;
case Op_StoreB: case Op_StoreC:
case Op_StoreI: case Op_StoreL:
case Op_StoreF: case Op_StoreD:
case Op_StoreP: case Op_StoreN:
*start = MemNode::ValueIn;
*end = MemNode::ValueIn + 1; // 1 vector operand
break;
case Op_LShiftI: case Op_LShiftL:
case Op_RShiftI: case Op_RShiftL:
case Op_URShiftI: case Op_URShiftL:
*start = 1;
*end = 2; // 1 vector operand
break;
case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
case Op_DivF: case Op_DivD:
case Op_AndI: case Op_AndL:
case Op_OrI: case Op_OrL:
case Op_XorI: case Op_XorL:
case Op_MulAddS2I:
*start = 1;
*end = 3; // 2 vector operands
break;
case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
*start = 2;
*end = n->req();
break;
case Op_FmaD:
case Op_FmaF:
*start = 1;
*end = 4; // 3 vector operands
break;
default:
*start = 1;
*end = n->req(); // default is all operands
}
}
// Make a vector node for binary operation
VectorNode* VectorNode::make(int vopc, Node* n1, Node* n2, const TypeVect* vt) {
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "vopc must be > 0");
switch (vopc) {
case Op_AddVB: return new AddVBNode(n1, n2, vt);
case Op_AddVS: return new AddVSNode(n1, n2, vt);
case Op_AddVI: return new AddVINode(n1, n2, vt);
case Op_AddVL: return new AddVLNode(n1, n2, vt);
case Op_AddVF: return new AddVFNode(n1, n2, vt);
case Op_AddVD: return new AddVDNode(n1, n2, vt);
case Op_SubVB: return new SubVBNode(n1, n2, vt);
case Op_SubVS: return new SubVSNode(n1, n2, vt);
case Op_SubVI: return new SubVINode(n1, n2, vt);
case Op_SubVL: return new SubVLNode(n1, n2, vt);
case Op_SubVF: return new SubVFNode(n1, n2, vt);
case Op_SubVD: return new SubVDNode(n1, n2, vt);
case Op_MulVB: return new MulVBNode(n1, n2, vt);
case Op_MulVS: return new MulVSNode(n1, n2, vt);
case Op_MulVI: return new MulVINode(n1, n2, vt);
case Op_MulVL: return new MulVLNode(n1, n2, vt);
case Op_MulVF: return new MulVFNode(n1, n2, vt);
case Op_MulVD: return new MulVDNode(n1, n2, vt);
case Op_DivVF: return new DivVFNode(n1, n2, vt);
case Op_DivVD: return new DivVDNode(n1, n2, vt);
case Op_MinV: return new MinVNode(n1, n2, vt);
case Op_MaxV: return new MaxVNode(n1, n2, vt);
case Op_AbsVF: return new AbsVFNode(n1, vt);
case Op_AbsVD: return new AbsVDNode(n1, vt);
case Op_AbsVB: return new AbsVBNode(n1, vt);
case Op_AbsVS: return new AbsVSNode(n1, vt);
case Op_AbsVI: return new AbsVINode(n1, vt);
case Op_AbsVL: return new AbsVLNode(n1, vt);
case Op_NegVI: return new NegVINode(n1, vt);
case Op_NegVF: return new NegVFNode(n1, vt);
case Op_NegVD: return new NegVDNode(n1, vt);
case Op_SqrtVF: return new SqrtVFNode(n1, vt);
case Op_SqrtVD: return new SqrtVDNode(n1, vt);
case Op_PopCountVI: return new PopCountVINode(n1, vt);
case Op_RotateLeftV: return new RotateLeftVNode(n1, n2, vt);
case Op_RotateRightV: return new RotateRightVNode(n1, n2, vt);
case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt);
case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt);
case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt);
case Op_RShiftVI: return new RShiftVINode(n1, n2, vt);
case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt);
case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt);
case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt);
case Op_URShiftVI: return new URShiftVINode(n1, n2, vt);
case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt);
case Op_AndV: return new AndVNode(n1, n2, vt);
case Op_OrV: return new OrVNode (n1, n2, vt);
case Op_XorV: return new XorVNode(n1, n2, vt);
case Op_RoundDoubleModeV: return new RoundDoubleModeVNode(n1, n2, vt);
case Op_MulAddVS2VI: return new MulAddVS2VINode(n1, n2, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
// Return the vector version of a scalar binary operation node.
VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
return make(vopc, n1, n2, vt);
}
// Make a vector node for ternary operation
VectorNode* VectorNode::make(int vopc, Node* n1, Node* n2, Node* n3, const TypeVect* vt) {
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "vopc must be > 0");
switch (vopc) {
case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt);
case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
// Return the vector version of a scalar ternary operation node.
VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
return make(vopc, n1, n2, n3, vt);
}
// Scalar promotion
VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
: TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new ReplicateBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new ReplicateSNode(s, vt);
case T_INT:
return new ReplicateINode(s, vt);
case T_LONG:
return new ReplicateLNode(s, vt);
case T_FLOAT:
return new ReplicateFNode(s, vt);
case T_DOUBLE:
return new ReplicateDNode(s, vt);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
VectorNode* VectorNode::shift_count(int opc, Node* cnt, uint vlen, BasicType bt) {
// Match shift count type with shift vector type.
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (opc) {
case Op_LShiftI:
case Op_LShiftL:
return new LShiftCntVNode(cnt, vt);
case Op_RShiftI:
case Op_RShiftL:
case Op_URShiftB:
case Op_URShiftS:
case Op_URShiftI:
case Op_URShiftL:
return new RShiftCntVNode(cnt, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[opc]);
return NULL;
}
}
bool VectorNode::is_vector_shift(int opc) {
assert(opc > _last_machine_leaf && opc < _last_opcode, "invalid opcode");
switch (opc) {
case Op_LShiftVB:
case Op_LShiftVS:
case Op_LShiftVI:
case Op_LShiftVL:
case Op_RShiftVB:
case Op_RShiftVS:
case Op_RShiftVI:
case Op_RShiftVL:
case Op_URShiftVB:
case Op_URShiftVS:
case Op_URShiftVI:
case Op_URShiftVL:
return true;
default:
return false;
}
}
bool VectorNode::is_vector_shift_count(int opc) {
assert(opc > _last_machine_leaf && opc < _last_opcode, "invalid opcode");
switch (opc) {
case Op_RShiftCntV:
case Op_LShiftCntV:
return true;
default:
return false;
}
}
static bool is_con_M1(Node* n) {
if (n->is_Con()) {
const Type* t = n->bottom_type();
if (t->isa_int() && t->is_int()->get_con() == -1) {
return true;
}
if (t->isa_long() && t->is_long()->get_con() == -1) {
return true;
}
}
return false;
}
bool VectorNode::is_all_ones_vector(Node* n) {
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
return is_con_M1(n->in(1));
default:
return false;
}
}
bool VectorNode::is_vector_bitwise_not_pattern(Node* n) {
if (n->Opcode() == Op_XorV) {
return is_all_ones_vector(n->in(1)) ||
is_all_ones_vector(n->in(2));
}
return false;
}
// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new PackBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new PackSNode(s, vt);
case T_INT:
return new PackINode(s, vt);
case T_LONG:
return new PackLNode(s, vt);
case T_FLOAT:
return new PackFNode(s, vt);
case T_DOUBLE:
return new PackDNode(s, vt);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
// Create a binary tree form for Packs. [lo, hi) (half-open) range
PackNode* PackNode::binary_tree_pack(int lo, int hi) {
int ct = hi - lo;
assert(is_power_of_2(ct), "power of 2");
if (ct == 2) {
PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
pk->add_opd(in(lo+1));
return pk;
} else {
int mid = lo + ct/2;
PackNode* n1 = binary_tree_pack(lo, mid);
PackNode* n2 = binary_tree_pack(mid, hi );
BasicType bt = n1->vect_type()->element_basic_type();
assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
case T_CHAR:
case T_SHORT:
return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
case T_INT:
return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_LONG:
return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_FLOAT:
return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
case T_DOUBLE:
return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
}
// Return the vector version of a scalar load node.
LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp,
uint vlen, BasicType bt,
ControlDependency control_dependency) {
const TypeVect* vt = TypeVect::make(bt, vlen);
return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
}
// Return the vector version of a scalar store node.
StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp, Node* val,
uint vlen) {
return new StoreVectorNode(ctl, mem, adr, atyp, val);
}
int ExtractNode::opcode(BasicType bt) {
switch (bt) {
case T_BOOLEAN: return Op_ExtractUB;
case T_BYTE: return Op_ExtractB;
case T_CHAR: return Op_ExtractC;
case T_SHORT: return Op_ExtractS;
case T_INT: return Op_ExtractI;
case T_LONG: return Op_ExtractL;
case T_FLOAT: return Op_ExtractF;
case T_DOUBLE: return Op_ExtractD;
default:
assert(false, "wrong type: %s", type2name(bt));
return 0;
}
}
// Extract a scalar element of vector.
Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
assert((int)position < Matcher::max_vector_size(bt), "pos in range");
ConINode* pos = ConINode::make((int)position);
switch (bt) {
case T_BOOLEAN: return new ExtractUBNode(v, pos);
case T_BYTE: return new ExtractBNode(v, pos);
case T_CHAR: return new ExtractCNode(v, pos);
case T_SHORT: return new ExtractSNode(v, pos);
case T_INT: return new ExtractINode(v, pos);
case T_LONG: return new ExtractLNode(v, pos);
case T_FLOAT: return new ExtractFNode(v, pos);
case T_DOUBLE: return new ExtractDNode(v, pos);
default:
assert(false, "wrong type: %s", type2name(bt));
return NULL;
}
}
int ReductionNode::opcode(int opc, BasicType bt) {
int vopc = opc;
switch (opc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_AddReductionVI;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_AddL:
assert(bt == T_LONG, "must be");
vopc = Op_AddReductionVL;
break;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
vopc = Op_AddReductionVF;
break;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_AddReductionVD;
break;
case Op_MulI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_MulReductionVI;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_MulL:
assert(bt == T_LONG, "must be");
vopc = Op_MulReductionVL;
break;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MulReductionVF;
break;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MulReductionVD;
break;
case Op_MinI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_MinReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_MinL:
assert(bt == T_LONG, "must be");
vopc = Op_MinReductionV;
break;
case Op_MinF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MinReductionV;
break;
case Op_MinD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MinReductionV;
break;
case Op_MaxI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_MaxReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_MaxL:
assert(bt == T_LONG, "must be");
vopc = Op_MaxReductionV;
break;
case Op_MaxF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MaxReductionV;
break;
case Op_MaxD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MaxReductionV;
break;
case Op_AndI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_AndReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_AndL:
assert(bt == T_LONG, "must be");
vopc = Op_AndReductionV;
break;
case Op_OrI:
switch(bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_OrReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_OrL:
assert(bt == T_LONG, "must be");
vopc = Op_OrReductionV;
break;
case Op_XorI:
switch(bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_XorReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_XorL:
assert(bt == T_LONG, "must be");
vopc = Op_XorReductionV;
break;
default:
break;
}
return vopc;
}
// Return the appropriate reduction node.
ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
int vopc = opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
case Op_MinReductionV: return new MinReductionVNode(ctrl, n1, n2);
case Op_MaxReductionV: return new MaxReductionVNode(ctrl, n1, n2);
case Op_AndReductionV: return new AndReductionVNode(ctrl, n1, n2);
case Op_OrReductionV: return new OrReductionVNode(ctrl, n1, n2);
case Op_XorReductionV: return new XorReductionVNode(ctrl, n1, n2);
default:
assert(false, "unknown node: %s", NodeClassNames[vopc]);
return NULL;
}
}
VectorStoreMaskNode* VectorStoreMaskNode::make(PhaseGVN& gvn, Node* in, BasicType in_type, uint num_elem) {
assert(in->bottom_type()->isa_vect(), "sanity");
const TypeVect* vt = TypeVect::make(T_BOOLEAN, num_elem);
int elem_size = type2aelembytes(in_type);
return new VectorStoreMaskNode(in, gvn.intcon(elem_size), vt);
}
VectorCastNode* VectorCastNode::make(int vopc, Node* n1, BasicType bt, uint vlen) {
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (vopc) {
case Op_VectorCastB2X: return new VectorCastB2XNode(n1, vt);
case Op_VectorCastS2X: return new VectorCastS2XNode(n1, vt);
case Op_VectorCastI2X: return new VectorCastI2XNode(n1, vt);
case Op_VectorCastL2X: return new VectorCastL2XNode(n1, vt);
case Op_VectorCastF2X: return new VectorCastF2XNode(n1, vt);
case Op_VectorCastD2X: return new VectorCastD2XNode(n1, vt);
default:
assert(false, "unknown node: %s", NodeClassNames[vopc]);
return NULL;
}
}
int VectorCastNode::opcode(BasicType bt) {
switch (bt) {
case T_BYTE: return Op_VectorCastB2X;
case T_SHORT: return Op_VectorCastS2X;
case T_INT: return Op_VectorCastI2X;
case T_LONG: return Op_VectorCastL2X;
case T_FLOAT: return Op_VectorCastF2X;
case T_DOUBLE: return Op_VectorCastD2X;
default:
assert(false, "unknown type: %s", type2name(bt));
return 0;
}
}
Node* ReductionNode::make_reduction_input(PhaseGVN& gvn, int opc, BasicType bt) {
int vopc = opcode(opc, bt);
guarantee(vopc != opc, "Vector reduction for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_AndReductionV:
switch (bt) {
case T_BYTE:
case T_SHORT:
case T_INT:
return gvn.makecon(TypeInt::MINUS_1);
case T_LONG:
return gvn.makecon(TypeLong::MINUS_1);
default:
fatal("Missed vector creation for '%s' as the basic type is not correct.", NodeClassNames[vopc]);
return NULL;
}
break;
case Op_AddReductionVI: // fallthrough
case Op_AddReductionVL: // fallthrough
case Op_AddReductionVF: // fallthrough
case Op_AddReductionVD:
case Op_OrReductionV:
case Op_XorReductionV:
return gvn.zerocon(bt);
case Op_MulReductionVI:
return gvn.makecon(TypeInt::ONE);
case Op_MulReductionVL:
return gvn.makecon(TypeLong::ONE);
case Op_MulReductionVF:
return gvn.makecon(TypeF::ONE);
case Op_MulReductionVD:
return gvn.makecon(TypeD::ONE);
case Op_MinReductionV:
switch (bt) {
case T_BYTE:
case T_SHORT:
case T_INT:
return gvn.makecon(TypeInt::MAX);
case T_LONG:
return gvn.makecon(TypeLong::MAX);
case T_FLOAT:
return gvn.makecon(TypeF::POS_INF);
case T_DOUBLE:
return gvn.makecon(TypeD::POS_INF);
default: Unimplemented(); return NULL;
}
break;
case Op_MaxReductionV:
switch (bt) {
case T_BYTE:
case T_SHORT:
case T_INT:
return gvn.makecon(TypeInt::MIN);
case T_LONG:
return gvn.makecon(TypeLong::MIN);
case T_FLOAT:
return gvn.makecon(TypeF::NEG_INF);
case T_DOUBLE:
return gvn.makecon(TypeD::NEG_INF);
default: Unimplemented(); return NULL;
}
break;
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
Matcher::vector_size_supported(bt, vlen)) {
int vopc = ReductionNode::opcode(opc, bt);
return vopc != opc && Matcher::match_rule_supported_vector(vopc, vlen, bt);
}
return false;
}
MacroLogicVNode* MacroLogicVNode::make(PhaseGVN& gvn, Node* in1, Node* in2, Node* in3,
uint truth_table, const TypeVect* vt) {
assert(truth_table <= 0xFF, "invalid");
assert(in1->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch");
assert(in2->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch");
assert(in3->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch");
Node* fn = gvn.intcon(truth_table);
return new MacroLogicVNode(in1, in2, in3, fn, vt);
}
Node* VectorNode::degenerate_vector_rotate(Node* src, Node* cnt, bool is_rotate_left,
int vlen, BasicType bt, PhaseGVN* phase) {
assert(bt == T_INT || bt == T_LONG, "sanity");
const TypeVect* vt = TypeVect::make(bt, vlen);
int shift_mask = (bt == T_INT) ? 0x1F : 0x3F;
int shiftLOpc = (bt == T_INT) ? Op_LShiftI : Op_LShiftL;
int shiftROpc = (bt == T_INT) ? Op_URShiftI: Op_URShiftL;
// Compute shift values for right rotation and
// later swap them in case of left rotation.
Node* shiftRCnt = NULL;
Node* shiftLCnt = NULL;
if (cnt->is_Con() && cnt->bottom_type()->isa_int()) {
// Constant shift case.
int shift = cnt->get_int() & shift_mask;
shiftRCnt = phase->intcon(shift);
shiftLCnt = phase->intcon(shift_mask + 1 - shift);
} else {
// Variable shift case.
assert(VectorNode::is_invariant_vector(cnt), "Broadcast expected");
cnt = cnt->in(1);
if (bt == T_LONG) {
// Shift count vector for Rotate vector has long elements too.
assert(cnt->Opcode() == Op_ConvI2L, "ConvI2L expected");
cnt = cnt->in(1);
}
shiftRCnt = phase->transform(new AndINode(cnt, phase->intcon(shift_mask)));
shiftLCnt = phase->transform(new SubINode(phase->intcon(shift_mask + 1), shiftRCnt));
}
// Swap the computed left and right shift counts.
if (is_rotate_left) {
swap(shiftRCnt,shiftLCnt);
}
shiftLCnt = phase->transform(new LShiftCntVNode(shiftLCnt, vt));
shiftRCnt = phase->transform(new RShiftCntVNode(shiftRCnt, vt));
return new OrVNode(phase->transform(VectorNode::make(shiftLOpc, src, shiftLCnt, vlen, bt)),
phase->transform(VectorNode::make(shiftROpc, src, shiftRCnt, vlen, bt)),
vt);
}
Node* RotateLeftVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
int vlen = length();
BasicType bt = vect_type()->element_basic_type();
if (!Matcher::match_rule_supported_vector(Op_RotateLeftV, vlen, bt)) {
return VectorNode::degenerate_vector_rotate(in(1), in(2), true, vlen, bt, phase);
}
return NULL;
}
Node* RotateRightVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
int vlen = length();
BasicType bt = vect_type()->element_basic_type();
if (!Matcher::match_rule_supported_vector(Op_RotateRightV, vlen, bt)) {
return VectorNode::degenerate_vector_rotate(in(1), in(2), false, vlen, bt, phase);
}
return NULL;
}
#ifndef PRODUCT
void VectorMaskCmpNode::dump_spec(outputStream *st) const {
st->print(" %d #", _predicate); _type->dump_on(st);
}
#endif // PRODUCT
Node* VectorReinterpretNode::Identity(PhaseGVN *phase) {
Node* n = in(1);
if (n->Opcode() == Op_VectorReinterpret) {
if (Type::cmp(bottom_type(), n->in(1)->bottom_type()) == 0) {
return n->in(1);
}
}
return this;
}
Node* VectorInsertNode::make(Node* vec, Node* new_val, int position) {
assert(position < (int)vec->bottom_type()->is_vect()->length(), "pos in range");
ConINode* pos = ConINode::make(position);
return new VectorInsertNode(vec, new_val, pos, vec->bottom_type()->is_vect());
}
Node* VectorUnboxNode::Identity(PhaseGVN *phase) {
Node* n = obj()->uncast();
if (EnableVectorReboxing && n->Opcode() == Op_VectorBox) {
if (Type::cmp(bottom_type(), n->in(VectorBoxNode::Value)->bottom_type()) == 0) {
return n->in(VectorBoxNode::Value);
}
}
return this;
}
const TypeFunc* VectorBoxNode::vec_box_type(const TypeInstPtr* box_type) {
const Type** fields = TypeTuple::fields(0);
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = box_type;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
#ifndef PRODUCT
void VectorBoxAllocateNode::dump_spec(outputStream *st) const {
CallStaticJavaNode::dump_spec(st);
}
#endif // !PRODUCT