1394 lines
45 KiB
C++
1394 lines
45 KiB
C++
/*
|
|
* Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "c1/c1_Compilation.hpp"
|
|
#include "c1/c1_FrameMap.hpp"
|
|
#include "c1/c1_Instruction.hpp"
|
|
#include "c1/c1_LIRAssembler.hpp"
|
|
#include "c1/c1_LIRGenerator.hpp"
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#include "c1/c1_ValueStack.hpp"
|
|
#include "ci/ciArray.hpp"
|
|
#include "ci/ciObjArrayKlass.hpp"
|
|
#include "ci/ciTypeArrayKlass.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "vmreg_aarch64.inline.hpp"
|
|
|
|
#ifdef ASSERT
|
|
#define __ gen()->lir(__FILE__, __LINE__)->
|
|
#else
|
|
#define __ gen()->lir()->
|
|
#endif
|
|
|
|
// Item will be loaded into a byte register; Intel only
|
|
void LIRItem::load_byte_item() {
|
|
load_item();
|
|
}
|
|
|
|
|
|
void LIRItem::load_nonconstant() {
|
|
LIR_Opr r = value()->operand();
|
|
if (r->is_constant()) {
|
|
_result = r;
|
|
} else {
|
|
load_item();
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------
|
|
// LIRGenerator
|
|
//--------------------------------------------------------------
|
|
|
|
|
|
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
|
|
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; }
|
|
LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
|
|
LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
|
|
LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
|
|
LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
|
|
LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
|
|
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; }
|
|
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
|
|
|
|
|
|
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
|
|
LIR_Opr opr;
|
|
switch (type->tag()) {
|
|
case intTag: opr = FrameMap::r0_opr; break;
|
|
case objectTag: opr = FrameMap::r0_oop_opr; break;
|
|
case longTag: opr = FrameMap::long0_opr; break;
|
|
case floatTag: opr = FrameMap::fpu0_float_opr; break;
|
|
case doubleTag: opr = FrameMap::fpu0_double_opr; break;
|
|
|
|
case addressTag:
|
|
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
|
|
}
|
|
|
|
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
|
|
return opr;
|
|
}
|
|
|
|
|
|
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
|
|
LIR_Opr reg = new_register(T_INT);
|
|
set_vreg_flag(reg, LIRGenerator::byte_reg);
|
|
return reg;
|
|
}
|
|
|
|
|
|
//--------- loading items into registers --------------------------------
|
|
|
|
|
|
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
|
|
if (v->type()->as_IntConstant() != NULL) {
|
|
return v->type()->as_IntConstant()->value() == 0L;
|
|
} else if (v->type()->as_LongConstant() != NULL) {
|
|
return v->type()->as_LongConstant()->value() == 0L;
|
|
} else if (v->type()->as_ObjectConstant() != NULL) {
|
|
return v->type()->as_ObjectConstant()->value()->is_null_object();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool LIRGenerator::can_inline_as_constant(Value v) const {
|
|
// FIXME: Just a guess
|
|
if (v->type()->as_IntConstant() != NULL) {
|
|
return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
|
|
} else if (v->type()->as_LongConstant() != NULL) {
|
|
return v->type()->as_LongConstant()->value() == 0L;
|
|
} else if (v->type()->as_ObjectConstant() != NULL) {
|
|
return v->type()->as_ObjectConstant()->value()->is_null_object();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
|
|
|
|
|
|
LIR_Opr LIRGenerator::safepoint_poll_register() {
|
|
return LIR_OprFact::illegalOpr;
|
|
}
|
|
|
|
|
|
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
|
|
int shift, int disp, BasicType type) {
|
|
assert(base->is_register(), "must be");
|
|
|
|
// accumulate fixed displacements
|
|
if (index->is_constant()) {
|
|
disp += index->as_constant_ptr()->as_jint() << shift;
|
|
index = LIR_OprFact::illegalOpr;
|
|
}
|
|
|
|
if (index->is_register()) {
|
|
// apply the shift and accumulate the displacement
|
|
if (shift > 0) {
|
|
LIR_Opr tmp = new_pointer_register();
|
|
__ shift_left(index, shift, tmp);
|
|
index = tmp;
|
|
}
|
|
if (disp != 0) {
|
|
LIR_Opr tmp = new_pointer_register();
|
|
if (Assembler::operand_valid_for_add_sub_immediate(disp)) {
|
|
__ add(tmp, tmp, LIR_OprFact::intptrConst(disp));
|
|
index = tmp;
|
|
} else {
|
|
__ move(tmp, LIR_OprFact::intptrConst(disp));
|
|
__ add(tmp, index, tmp);
|
|
index = tmp;
|
|
}
|
|
disp = 0;
|
|
}
|
|
} else if (disp != 0 && !Address::offset_ok_for_immed(disp, shift)) {
|
|
// index is illegal so replace it with the displacement loaded into a register
|
|
index = new_pointer_register();
|
|
__ move(LIR_OprFact::intptrConst(disp), index);
|
|
disp = 0;
|
|
}
|
|
|
|
// at this point we either have base + index or base + displacement
|
|
if (disp == 0) {
|
|
return new LIR_Address(base, index, type);
|
|
} else {
|
|
assert(Address::offset_ok_for_immed(disp, 0), "must be");
|
|
return new LIR_Address(base, disp, type);
|
|
}
|
|
}
|
|
|
|
|
|
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
|
|
BasicType type, bool needs_card_mark) {
|
|
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
|
|
int elem_size = type2aelembytes(type);
|
|
int shift = exact_log2(elem_size);
|
|
|
|
LIR_Address* addr;
|
|
if (index_opr->is_constant()) {
|
|
addr = new LIR_Address(array_opr,
|
|
offset_in_bytes + index_opr->as_jint() * elem_size, type);
|
|
} else {
|
|
if (offset_in_bytes) {
|
|
LIR_Opr tmp = new_pointer_register();
|
|
__ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
|
|
array_opr = tmp;
|
|
offset_in_bytes = 0;
|
|
}
|
|
addr = new LIR_Address(array_opr,
|
|
index_opr,
|
|
LIR_Address::scale(type),
|
|
offset_in_bytes, type);
|
|
}
|
|
if (needs_card_mark) {
|
|
// This store will need a precise card mark, so go ahead and
|
|
// compute the full adddres instead of computing once for the
|
|
// store and again for the card mark.
|
|
LIR_Opr tmp = new_pointer_register();
|
|
__ leal(LIR_OprFact::address(addr), tmp);
|
|
return new LIR_Address(tmp, type);
|
|
} else {
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
|
|
LIR_Opr r;
|
|
if (type == T_LONG) {
|
|
r = LIR_OprFact::longConst(x);
|
|
if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
|
|
LIR_Opr tmp = new_register(type);
|
|
__ move(r, tmp);
|
|
return tmp;
|
|
}
|
|
} else if (type == T_INT) {
|
|
r = LIR_OprFact::intConst(x);
|
|
if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
|
|
// This is all rather nasty. We don't know whether our constant
|
|
// is required for a logical or an arithmetic operation, wo we
|
|
// don't know what the range of valid values is!!
|
|
LIR_Opr tmp = new_register(type);
|
|
__ move(r, tmp);
|
|
return tmp;
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
|
|
LIR_Opr pointer = new_pointer_register();
|
|
__ move(LIR_OprFact::intptrConst(counter), pointer);
|
|
LIR_Address* addr = new LIR_Address(pointer, type);
|
|
increment_counter(addr, step);
|
|
}
|
|
|
|
|
|
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
|
|
LIR_Opr imm = NULL;
|
|
switch(addr->type()) {
|
|
case T_INT:
|
|
imm = LIR_OprFact::intConst(step);
|
|
break;
|
|
case T_LONG:
|
|
imm = LIR_OprFact::longConst(step);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
LIR_Opr reg = new_register(addr->type());
|
|
__ load(addr, reg);
|
|
__ add(reg, imm, reg);
|
|
__ store(reg, addr);
|
|
}
|
|
|
|
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
|
|
LIR_Opr reg = new_register(T_INT);
|
|
__ load(generate_address(base, disp, T_INT), reg, info);
|
|
__ cmp(condition, reg, LIR_OprFact::intConst(c));
|
|
}
|
|
|
|
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
|
|
LIR_Opr reg1 = new_register(T_INT);
|
|
__ load(generate_address(base, disp, type), reg1, info);
|
|
__ cmp(condition, reg, reg1);
|
|
}
|
|
|
|
|
|
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
|
|
|
|
if (is_power_of_2(c - 1)) {
|
|
__ shift_left(left, exact_log2(c - 1), tmp);
|
|
__ add(tmp, left, result);
|
|
return true;
|
|
} else if (is_power_of_2(c + 1)) {
|
|
__ shift_left(left, exact_log2(c + 1), tmp);
|
|
__ sub(tmp, left, result);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
|
|
BasicType type = item->type();
|
|
__ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// visitor functions
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
|
|
assert(x->is_pinned(),"");
|
|
bool needs_range_check = x->compute_needs_range_check();
|
|
bool use_length = x->length() != NULL;
|
|
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
|
|
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
|
|
!get_jobject_constant(x->value())->is_null_object() ||
|
|
x->should_profile());
|
|
|
|
LIRItem array(x->array(), this);
|
|
LIRItem index(x->index(), this);
|
|
LIRItem value(x->value(), this);
|
|
LIRItem length(this);
|
|
|
|
array.load_item();
|
|
index.load_nonconstant();
|
|
|
|
if (use_length && needs_range_check) {
|
|
length.set_instruction(x->length());
|
|
length.load_item();
|
|
|
|
}
|
|
if (needs_store_check) {
|
|
value.load_item();
|
|
} else {
|
|
value.load_for_store(x->elt_type());
|
|
}
|
|
|
|
set_no_result(x);
|
|
|
|
// the CodeEmitInfo must be duplicated for each different
|
|
// LIR-instruction because spilling can occur anywhere between two
|
|
// instructions and so the debug information must be different
|
|
CodeEmitInfo* range_check_info = state_for(x);
|
|
CodeEmitInfo* null_check_info = NULL;
|
|
if (x->needs_null_check()) {
|
|
null_check_info = new CodeEmitInfo(range_check_info);
|
|
}
|
|
|
|
// emit array address setup early so it schedules better
|
|
// FIXME? No harm in this on aarch64, and it might help
|
|
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
|
|
|
|
if (GenerateRangeChecks && needs_range_check) {
|
|
if (use_length) {
|
|
__ cmp(lir_cond_belowEqual, length.result(), index.result());
|
|
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
|
|
} else {
|
|
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
|
|
// range_check also does the null check
|
|
null_check_info = NULL;
|
|
}
|
|
}
|
|
|
|
if (GenerateArrayStoreCheck && needs_store_check) {
|
|
LIR_Opr tmp1 = new_register(objectType);
|
|
LIR_Opr tmp2 = new_register(objectType);
|
|
LIR_Opr tmp3 = new_register(objectType);
|
|
|
|
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
|
|
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
|
|
}
|
|
|
|
if (obj_store) {
|
|
// Needs GC write barriers.
|
|
pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
|
|
true /* do_load */, false /* patch */, NULL);
|
|
__ move(value.result(), array_addr, null_check_info);
|
|
// Seems to be a precise
|
|
post_barrier(LIR_OprFact::address(array_addr), value.result());
|
|
} else {
|
|
__ move(value.result(), array_addr, null_check_info);
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
|
|
assert(x->is_pinned(),"");
|
|
LIRItem obj(x->obj(), this);
|
|
obj.load_item();
|
|
|
|
set_no_result(x);
|
|
|
|
// "lock" stores the address of the monitor stack slot, so this is not an oop
|
|
LIR_Opr lock = new_register(T_INT);
|
|
// Need a scratch register for biased locking
|
|
LIR_Opr scratch = LIR_OprFact::illegalOpr;
|
|
if (UseBiasedLocking) {
|
|
scratch = new_register(T_INT);
|
|
}
|
|
|
|
CodeEmitInfo* info_for_exception = NULL;
|
|
if (x->needs_null_check()) {
|
|
info_for_exception = state_for(x);
|
|
}
|
|
// this CodeEmitInfo must not have the xhandlers because here the
|
|
// object is already locked (xhandlers expect object to be unlocked)
|
|
CodeEmitInfo* info = state_for(x, x->state(), true);
|
|
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
|
|
x->monitor_no(), info_for_exception, info);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
|
|
assert(x->is_pinned(),"");
|
|
|
|
LIRItem obj(x->obj(), this);
|
|
obj.dont_load_item();
|
|
|
|
LIR_Opr lock = new_register(T_INT);
|
|
LIR_Opr obj_temp = new_register(T_INT);
|
|
set_no_result(x);
|
|
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_NegateOp(NegateOp* x) {
|
|
|
|
LIRItem from(x->x(), this);
|
|
from.load_item();
|
|
LIR_Opr result = rlock_result(x);
|
|
__ negate (from.result(), result);
|
|
|
|
}
|
|
|
|
// for _fadd, _fmul, _fsub, _fdiv, _frem
|
|
// _dadd, _dmul, _dsub, _ddiv, _drem
|
|
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
|
|
|
|
if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
|
|
// float remainder is implemented as a direct call into the runtime
|
|
LIRItem right(x->x(), this);
|
|
LIRItem left(x->y(), this);
|
|
|
|
BasicTypeList signature(2);
|
|
if (x->op() == Bytecodes::_frem) {
|
|
signature.append(T_FLOAT);
|
|
signature.append(T_FLOAT);
|
|
} else {
|
|
signature.append(T_DOUBLE);
|
|
signature.append(T_DOUBLE);
|
|
}
|
|
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
|
|
|
|
const LIR_Opr result_reg = result_register_for(x->type());
|
|
left.load_item_force(cc->at(1));
|
|
right.load_item();
|
|
|
|
__ move(right.result(), cc->at(0));
|
|
|
|
address entry;
|
|
if (x->op() == Bytecodes::_frem) {
|
|
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
|
|
} else {
|
|
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
|
|
}
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
|
|
__ move(result_reg, result);
|
|
|
|
return;
|
|
}
|
|
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
LIRItem* left_arg = &left;
|
|
LIRItem* right_arg = &right;
|
|
|
|
// Always load right hand side.
|
|
right.load_item();
|
|
|
|
if (!left.is_register())
|
|
left.load_item();
|
|
|
|
LIR_Opr reg = rlock(x);
|
|
LIR_Opr tmp = LIR_OprFact::illegalOpr;
|
|
if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
|
|
tmp = new_register(T_DOUBLE);
|
|
}
|
|
|
|
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), NULL);
|
|
|
|
set_result(x, round_item(reg));
|
|
}
|
|
|
|
// for _ladd, _lmul, _lsub, _ldiv, _lrem
|
|
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
|
|
|
|
// missing test if instr is commutative and if we should swap
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
|
|
|
|
// the check for division by zero destroys the right operand
|
|
right.set_destroys_register();
|
|
|
|
// check for division by zero (destroys registers of right operand!)
|
|
CodeEmitInfo* info = state_for(x);
|
|
|
|
left.load_item();
|
|
right.load_item();
|
|
|
|
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
|
|
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
|
|
|
|
rlock_result(x);
|
|
switch (x->op()) {
|
|
case Bytecodes::_lrem:
|
|
__ rem (left.result(), right.result(), x->operand());
|
|
break;
|
|
case Bytecodes::_ldiv:
|
|
__ div (left.result(), right.result(), x->operand());
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
|
|
|
|
} else {
|
|
assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
|
|
"expect lmul, ladd or lsub");
|
|
// add, sub, mul
|
|
left.load_item();
|
|
if (! right.is_register()) {
|
|
if (x->op() == Bytecodes::_lmul
|
|
|| ! right.is_constant()
|
|
|| ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
|
|
right.load_item();
|
|
} else { // add, sub
|
|
assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
|
|
// don't load constants to save register
|
|
right.load_nonconstant();
|
|
}
|
|
}
|
|
rlock_result(x);
|
|
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
|
|
}
|
|
}
|
|
|
|
// for: _iadd, _imul, _isub, _idiv, _irem
|
|
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
|
|
|
|
// Test if instr is commutative and if we should swap
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
LIRItem* left_arg = &left;
|
|
LIRItem* right_arg = &right;
|
|
if (x->is_commutative() && left.is_stack() && right.is_register()) {
|
|
// swap them if left is real stack (or cached) and right is real register(not cached)
|
|
left_arg = &right;
|
|
right_arg = &left;
|
|
}
|
|
|
|
left_arg->load_item();
|
|
|
|
// do not need to load right, as we can handle stack and constants
|
|
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
|
|
|
|
right_arg->load_item();
|
|
rlock_result(x);
|
|
|
|
CodeEmitInfo* info = state_for(x);
|
|
LIR_Opr tmp = new_register(T_INT);
|
|
__ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
|
|
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
|
|
info = state_for(x);
|
|
|
|
if (x->op() == Bytecodes::_irem) {
|
|
__ irem(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
|
|
} else if (x->op() == Bytecodes::_idiv) {
|
|
__ idiv(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
|
|
}
|
|
|
|
} else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
|
|
if (right.is_constant()
|
|
&& Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
|
|
right.load_nonconstant();
|
|
} else {
|
|
right.load_item();
|
|
}
|
|
rlock_result(x);
|
|
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
|
|
} else {
|
|
assert (x->op() == Bytecodes::_imul, "expect imul");
|
|
if (right.is_constant()) {
|
|
int c = right.get_jint_constant();
|
|
if (! is_power_of_2(c) && ! is_power_of_2(c + 1) && ! is_power_of_2(c - 1)) {
|
|
// Cannot use constant op.
|
|
right.load_item();
|
|
} else {
|
|
right.dont_load_item();
|
|
}
|
|
} else {
|
|
right.load_item();
|
|
}
|
|
rlock_result(x);
|
|
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
|
|
// when an operand with use count 1 is the left operand, then it is
|
|
// likely that no move for 2-operand-LIR-form is necessary
|
|
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
|
|
x->swap_operands();
|
|
}
|
|
|
|
ValueTag tag = x->type()->tag();
|
|
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
|
|
switch (tag) {
|
|
case floatTag:
|
|
case doubleTag: do_ArithmeticOp_FPU(x); return;
|
|
case longTag: do_ArithmeticOp_Long(x); return;
|
|
case intTag: do_ArithmeticOp_Int(x); return;
|
|
}
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
|
|
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
|
|
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
left.load_item();
|
|
|
|
rlock_result(x);
|
|
if (right.is_constant()) {
|
|
right.dont_load_item();
|
|
|
|
switch (x->op()) {
|
|
case Bytecodes::_ishl: {
|
|
int c = right.get_jint_constant() & 0x1f;
|
|
__ shift_left(left.result(), c, x->operand());
|
|
break;
|
|
}
|
|
case Bytecodes::_ishr: {
|
|
int c = right.get_jint_constant() & 0x1f;
|
|
__ shift_right(left.result(), c, x->operand());
|
|
break;
|
|
}
|
|
case Bytecodes::_iushr: {
|
|
int c = right.get_jint_constant() & 0x1f;
|
|
__ unsigned_shift_right(left.result(), c, x->operand());
|
|
break;
|
|
}
|
|
case Bytecodes::_lshl: {
|
|
int c = right.get_jint_constant() & 0x3f;
|
|
__ shift_left(left.result(), c, x->operand());
|
|
break;
|
|
}
|
|
case Bytecodes::_lshr: {
|
|
int c = right.get_jint_constant() & 0x3f;
|
|
__ shift_right(left.result(), c, x->operand());
|
|
break;
|
|
}
|
|
case Bytecodes::_lushr: {
|
|
int c = right.get_jint_constant() & 0x3f;
|
|
__ unsigned_shift_right(left.result(), c, x->operand());
|
|
break;
|
|
}
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
right.load_item();
|
|
LIR_Opr tmp = new_register(T_INT);
|
|
switch (x->op()) {
|
|
case Bytecodes::_ishl: {
|
|
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
|
|
__ shift_left(left.result(), tmp, x->operand(), tmp);
|
|
break;
|
|
}
|
|
case Bytecodes::_ishr: {
|
|
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
|
|
__ shift_right(left.result(), tmp, x->operand(), tmp);
|
|
break;
|
|
}
|
|
case Bytecodes::_iushr: {
|
|
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
|
|
__ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
|
|
break;
|
|
}
|
|
case Bytecodes::_lshl: {
|
|
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
|
|
__ shift_left(left.result(), tmp, x->operand(), tmp);
|
|
break;
|
|
}
|
|
case Bytecodes::_lshr: {
|
|
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
|
|
__ shift_right(left.result(), tmp, x->operand(), tmp);
|
|
break;
|
|
}
|
|
case Bytecodes::_lushr: {
|
|
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
|
|
__ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
|
|
break;
|
|
}
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
|
|
// _iand, _land, _ior, _lor, _ixor, _lxor
|
|
void LIRGenerator::do_LogicOp(LogicOp* x) {
|
|
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
left.load_item();
|
|
|
|
rlock_result(x);
|
|
if (right.is_constant()
|
|
&& ((right.type()->tag() == intTag
|
|
&& Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
|
|
|| (right.type()->tag() == longTag
|
|
&& Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) {
|
|
right.dont_load_item();
|
|
} else {
|
|
right.load_item();
|
|
}
|
|
switch (x->op()) {
|
|
case Bytecodes::_iand:
|
|
case Bytecodes::_land:
|
|
__ logical_and(left.result(), right.result(), x->operand()); break;
|
|
case Bytecodes::_ior:
|
|
case Bytecodes::_lor:
|
|
__ logical_or (left.result(), right.result(), x->operand()); break;
|
|
case Bytecodes::_ixor:
|
|
case Bytecodes::_lxor:
|
|
__ logical_xor(left.result(), right.result(), x->operand()); break;
|
|
default: Unimplemented();
|
|
}
|
|
}
|
|
|
|
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
|
|
void LIRGenerator::do_CompareOp(CompareOp* x) {
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
ValueTag tag = x->x()->type()->tag();
|
|
if (tag == longTag) {
|
|
left.set_destroys_register();
|
|
}
|
|
left.load_item();
|
|
right.load_item();
|
|
LIR_Opr reg = rlock_result(x);
|
|
|
|
if (x->x()->type()->is_float_kind()) {
|
|
Bytecodes::Code code = x->op();
|
|
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
|
|
} else if (x->x()->type()->tag() == longTag) {
|
|
__ lcmp2int(left.result(), right.result(), reg);
|
|
} else {
|
|
Unimplemented();
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
|
|
assert(x->number_of_arguments() == 4, "wrong type");
|
|
LIRItem obj (x->argument_at(0), this); // object
|
|
LIRItem offset(x->argument_at(1), this); // offset of field
|
|
LIRItem cmp (x->argument_at(2), this); // value to compare with field
|
|
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
|
|
|
|
assert(obj.type()->tag() == objectTag, "invalid type");
|
|
|
|
// In 64bit the type can be long, sparc doesn't have this assert
|
|
// assert(offset.type()->tag() == intTag, "invalid type");
|
|
|
|
assert(cmp.type()->tag() == type->tag(), "invalid type");
|
|
assert(val.type()->tag() == type->tag(), "invalid type");
|
|
|
|
// get address of field
|
|
obj.load_item();
|
|
offset.load_nonconstant();
|
|
val.load_item();
|
|
cmp.load_item();
|
|
|
|
LIR_Address* a;
|
|
if(offset.result()->is_constant()) {
|
|
jlong c = offset.result()->as_jlong();
|
|
if ((jlong)((jint)c) == c) {
|
|
a = new LIR_Address(obj.result(),
|
|
(jint)c,
|
|
as_BasicType(type));
|
|
} else {
|
|
LIR_Opr tmp = new_register(T_LONG);
|
|
__ move(offset.result(), tmp);
|
|
a = new LIR_Address(obj.result(),
|
|
tmp,
|
|
as_BasicType(type));
|
|
}
|
|
} else {
|
|
a = new LIR_Address(obj.result(),
|
|
offset.result(),
|
|
LIR_Address::times_1,
|
|
0,
|
|
as_BasicType(type));
|
|
}
|
|
LIR_Opr addr = new_pointer_register();
|
|
__ leal(LIR_OprFact::address(a), addr);
|
|
|
|
if (type == objectType) { // Write-barrier needed for Object fields.
|
|
// Do the pre-write barrier, if any.
|
|
pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
|
|
true /* do_load */, false /* patch */, NULL);
|
|
}
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
|
|
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
|
|
if (type == objectType)
|
|
__ cas_obj(addr, cmp.result(), val.result(), new_register(T_INT), new_register(T_INT),
|
|
result);
|
|
else if (type == intType)
|
|
__ cas_int(addr, cmp.result(), val.result(), ill, ill);
|
|
else if (type == longType)
|
|
__ cas_long(addr, cmp.result(), val.result(), ill, ill);
|
|
else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
__ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
|
|
|
|
if (type == objectType) { // Write-barrier needed for Object fields.
|
|
// Seems to be precise
|
|
post_barrier(addr, val.result());
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
|
|
switch (x->id()) {
|
|
case vmIntrinsics::_dabs:
|
|
case vmIntrinsics::_dsqrt: {
|
|
assert(x->number_of_arguments() == 1, "wrong type");
|
|
LIRItem value(x->argument_at(0), this);
|
|
value.load_item();
|
|
LIR_Opr dst = rlock_result(x);
|
|
|
|
switch (x->id()) {
|
|
case vmIntrinsics::_dsqrt: {
|
|
__ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
|
|
break;
|
|
}
|
|
case vmIntrinsics::_dabs: {
|
|
__ abs(value.result(), dst, LIR_OprFact::illegalOpr);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case vmIntrinsics::_dlog10: // fall through
|
|
case vmIntrinsics::_dlog: // fall through
|
|
case vmIntrinsics::_dsin: // fall through
|
|
case vmIntrinsics::_dtan: // fall through
|
|
case vmIntrinsics::_dcos: // fall through
|
|
case vmIntrinsics::_dexp: {
|
|
assert(x->number_of_arguments() == 1, "wrong type");
|
|
|
|
address runtime_entry = NULL;
|
|
switch (x->id()) {
|
|
case vmIntrinsics::_dsin:
|
|
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
|
|
break;
|
|
case vmIntrinsics::_dcos:
|
|
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
|
|
break;
|
|
case vmIntrinsics::_dtan:
|
|
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
|
|
break;
|
|
case vmIntrinsics::_dlog:
|
|
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
|
|
break;
|
|
case vmIntrinsics::_dlog10:
|
|
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
|
|
break;
|
|
case vmIntrinsics::_dexp:
|
|
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
|
|
set_result(x, result);
|
|
break;
|
|
}
|
|
case vmIntrinsics::_dpow: {
|
|
assert(x->number_of_arguments() == 2, "wrong type");
|
|
address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
|
|
LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
|
|
set_result(x, result);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
|
|
assert(x->number_of_arguments() == 5, "wrong type");
|
|
|
|
// Make all state_for calls early since they can emit code
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
LIRItem src(x->argument_at(0), this);
|
|
LIRItem src_pos(x->argument_at(1), this);
|
|
LIRItem dst(x->argument_at(2), this);
|
|
LIRItem dst_pos(x->argument_at(3), this);
|
|
LIRItem length(x->argument_at(4), this);
|
|
|
|
// operands for arraycopy must use fixed registers, otherwise
|
|
// LinearScan will fail allocation (because arraycopy always needs a
|
|
// call)
|
|
|
|
// The java calling convention will give us enough registers
|
|
// so that on the stub side the args will be perfect already.
|
|
// On the other slow/special case side we call C and the arg
|
|
// positions are not similar enough to pick one as the best.
|
|
// Also because the java calling convention is a "shifted" version
|
|
// of the C convention we can process the java args trivially into C
|
|
// args without worry of overwriting during the xfer
|
|
|
|
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
|
|
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
|
|
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
|
|
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
|
|
length.load_item_force (FrameMap::as_opr(j_rarg4));
|
|
|
|
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
|
|
|
|
set_no_result(x);
|
|
|
|
int flags;
|
|
ciArrayKlass* expected_type;
|
|
arraycopy_helper(x, &flags, &expected_type);
|
|
|
|
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
|
|
}
|
|
|
|
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
|
|
assert(UseCRC32Intrinsics, "why are we here?");
|
|
// Make all state_for calls early since they can emit code
|
|
LIR_Opr result = rlock_result(x);
|
|
int flags = 0;
|
|
switch (x->id()) {
|
|
case vmIntrinsics::_updateCRC32: {
|
|
LIRItem crc(x->argument_at(0), this);
|
|
LIRItem val(x->argument_at(1), this);
|
|
// val is destroyed by update_crc32
|
|
val.set_destroys_register();
|
|
crc.load_item();
|
|
val.load_item();
|
|
__ update_crc32(crc.result(), val.result(), result);
|
|
break;
|
|
}
|
|
case vmIntrinsics::_updateBytesCRC32:
|
|
case vmIntrinsics::_updateByteBufferCRC32: {
|
|
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
|
|
|
|
LIRItem crc(x->argument_at(0), this);
|
|
LIRItem buf(x->argument_at(1), this);
|
|
LIRItem off(x->argument_at(2), this);
|
|
LIRItem len(x->argument_at(3), this);
|
|
buf.load_item();
|
|
off.load_nonconstant();
|
|
|
|
LIR_Opr index = off.result();
|
|
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
|
|
if(off.result()->is_constant()) {
|
|
index = LIR_OprFact::illegalOpr;
|
|
offset += off.result()->as_jint();
|
|
}
|
|
LIR_Opr base_op = buf.result();
|
|
|
|
if (index->is_valid()) {
|
|
LIR_Opr tmp = new_register(T_LONG);
|
|
__ convert(Bytecodes::_i2l, index, tmp);
|
|
index = tmp;
|
|
}
|
|
|
|
if (offset) {
|
|
LIR_Opr tmp = new_pointer_register();
|
|
__ add(base_op, LIR_OprFact::intConst(offset), tmp);
|
|
base_op = tmp;
|
|
offset = 0;
|
|
}
|
|
|
|
LIR_Address* a = new LIR_Address(base_op,
|
|
index,
|
|
LIR_Address::times_1,
|
|
offset,
|
|
T_BYTE);
|
|
BasicTypeList signature(3);
|
|
signature.append(T_INT);
|
|
signature.append(T_ADDRESS);
|
|
signature.append(T_INT);
|
|
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
|
|
const LIR_Opr result_reg = result_register_for(x->type());
|
|
|
|
LIR_Opr addr = new_pointer_register();
|
|
__ leal(LIR_OprFact::address(a), addr);
|
|
|
|
crc.load_item_force(cc->at(0));
|
|
__ move(addr, cc->at(1));
|
|
len.load_item_force(cc->at(2));
|
|
|
|
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
|
|
__ move(result_reg, result);
|
|
|
|
break;
|
|
}
|
|
default: {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
|
|
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
|
|
// _i2b, _i2c, _i2s
|
|
void LIRGenerator::do_Convert(Convert* x) {
|
|
LIRItem value(x->value(), this);
|
|
value.load_item();
|
|
LIR_Opr input = value.result();
|
|
LIR_Opr result = rlock(x);
|
|
|
|
// arguments of lir_convert
|
|
LIR_Opr conv_input = input;
|
|
LIR_Opr conv_result = result;
|
|
ConversionStub* stub = NULL;
|
|
|
|
__ convert(x->op(), conv_input, conv_result);
|
|
|
|
assert(result->is_virtual(), "result must be virtual register");
|
|
set_result(x, result);
|
|
}
|
|
|
|
void LIRGenerator::do_NewInstance(NewInstance* x) {
|
|
#ifndef PRODUCT
|
|
if (PrintNotLoaded && !x->klass()->is_loaded()) {
|
|
tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
|
|
}
|
|
#endif
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
new_instance(reg, x->klass(), x->is_unresolved(),
|
|
FrameMap::r2_oop_opr,
|
|
FrameMap::r5_oop_opr,
|
|
FrameMap::r4_oop_opr,
|
|
LIR_OprFact::illegalOpr,
|
|
FrameMap::r3_metadata_opr, info);
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
LIRItem length(x->length(), this);
|
|
length.load_item_force(FrameMap::r19_opr);
|
|
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
LIR_Opr tmp1 = FrameMap::r2_oop_opr;
|
|
LIR_Opr tmp2 = FrameMap::r4_oop_opr;
|
|
LIR_Opr tmp3 = FrameMap::r5_oop_opr;
|
|
LIR_Opr tmp4 = reg;
|
|
LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
|
|
LIR_Opr len = length.result();
|
|
BasicType elem_type = x->elt_type();
|
|
|
|
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
|
|
|
|
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
|
|
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
|
|
LIRItem length(x->length(), this);
|
|
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
|
|
// and therefore provide the state before the parameters have been consumed
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if (!x->klass()->is_loaded() || PatchALot) {
|
|
patching_info = state_for(x, x->state_before());
|
|
}
|
|
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
LIR_Opr tmp1 = FrameMap::r2_oop_opr;
|
|
LIR_Opr tmp2 = FrameMap::r4_oop_opr;
|
|
LIR_Opr tmp3 = FrameMap::r5_oop_opr;
|
|
LIR_Opr tmp4 = reg;
|
|
LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
|
|
|
|
length.load_item_force(FrameMap::r19_opr);
|
|
LIR_Opr len = length.result();
|
|
|
|
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
|
|
ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
|
|
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
|
|
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
|
|
}
|
|
klass2reg_with_patching(klass_reg, obj, patching_info);
|
|
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
|
|
Values* dims = x->dims();
|
|
int i = dims->length();
|
|
LIRItemList* items = new LIRItemList(dims->length(), NULL);
|
|
while (i-- > 0) {
|
|
LIRItem* size = new LIRItem(dims->at(i), this);
|
|
items->at_put(i, size);
|
|
}
|
|
|
|
// Evaluate state_for early since it may emit code.
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if (!x->klass()->is_loaded() || PatchALot) {
|
|
patching_info = state_for(x, x->state_before());
|
|
|
|
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
|
|
// clone all handlers (NOTE: Usually this is handled transparently
|
|
// by the CodeEmitInfo cloning logic in CodeStub constructors but
|
|
// is done explicitly here because a stub isn't being used).
|
|
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
|
|
}
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
i = dims->length();
|
|
while (i-- > 0) {
|
|
LIRItem* size = items->at(i);
|
|
size->load_item();
|
|
|
|
store_stack_parameter(size->result(), in_ByteSize(i*4));
|
|
}
|
|
|
|
LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
|
|
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
|
|
|
|
LIR_Opr rank = FrameMap::r19_opr;
|
|
__ move(LIR_OprFact::intConst(x->rank()), rank);
|
|
LIR_Opr varargs = FrameMap::r2_opr;
|
|
__ move(FrameMap::sp_opr, varargs);
|
|
LIR_OprList* args = new LIR_OprList(3);
|
|
args->append(klass_reg);
|
|
args->append(rank);
|
|
args->append(varargs);
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
|
|
LIR_OprFact::illegalOpr,
|
|
reg, args, info);
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
|
|
// nothing to do for now
|
|
}
|
|
|
|
void LIRGenerator::do_CheckCast(CheckCast* x) {
|
|
LIRItem obj(x->obj(), this);
|
|
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
|
|
// must do this before locking the destination register as an oop register,
|
|
// and before the obj is loaded (the latter is for deoptimization)
|
|
patching_info = state_for(x, x->state_before());
|
|
}
|
|
obj.load_item();
|
|
|
|
// info for exceptions
|
|
CodeEmitInfo* info_for_exception = state_for(x);
|
|
|
|
CodeStub* stub;
|
|
if (x->is_incompatible_class_change_check()) {
|
|
assert(patching_info == NULL, "can't patch this");
|
|
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
|
|
} else {
|
|
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
|
|
}
|
|
LIR_Opr reg = rlock_result(x);
|
|
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
|
|
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
|
|
tmp3 = new_register(objectType);
|
|
}
|
|
__ checkcast(reg, obj.result(), x->klass(),
|
|
new_register(objectType), new_register(objectType), tmp3,
|
|
x->direct_compare(), info_for_exception, patching_info, stub,
|
|
x->profiled_method(), x->profiled_bci());
|
|
}
|
|
|
|
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
|
|
LIRItem obj(x->obj(), this);
|
|
|
|
// result and test object may not be in same register
|
|
LIR_Opr reg = rlock_result(x);
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if ((!x->klass()->is_loaded() || PatchALot)) {
|
|
// must do this before locking the destination register as an oop register
|
|
patching_info = state_for(x, x->state_before());
|
|
}
|
|
obj.load_item();
|
|
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
|
|
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
|
|
tmp3 = new_register(objectType);
|
|
}
|
|
__ instanceof(reg, obj.result(), x->klass(),
|
|
new_register(objectType), new_register(objectType), tmp3,
|
|
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
|
|
}
|
|
|
|
void LIRGenerator::do_If(If* x) {
|
|
assert(x->number_of_sux() == 2, "inconsistency");
|
|
ValueTag tag = x->x()->type()->tag();
|
|
bool is_safepoint = x->is_safepoint();
|
|
|
|
If::Condition cond = x->cond();
|
|
|
|
LIRItem xitem(x->x(), this);
|
|
LIRItem yitem(x->y(), this);
|
|
LIRItem* xin = &xitem;
|
|
LIRItem* yin = &yitem;
|
|
|
|
if (tag == longTag) {
|
|
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
|
|
// mirror for other conditions
|
|
if (cond == If::gtr || cond == If::leq) {
|
|
cond = Instruction::mirror(cond);
|
|
xin = &yitem;
|
|
yin = &xitem;
|
|
}
|
|
xin->set_destroys_register();
|
|
}
|
|
xin->load_item();
|
|
|
|
if (tag == longTag) {
|
|
if (yin->is_constant()
|
|
&& Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
|
|
yin->dont_load_item();
|
|
} else {
|
|
yin->load_item();
|
|
}
|
|
} else if (tag == intTag) {
|
|
if (yin->is_constant()
|
|
&& Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) {
|
|
yin->dont_load_item();
|
|
} else {
|
|
yin->load_item();
|
|
}
|
|
} else {
|
|
yin->load_item();
|
|
}
|
|
|
|
// add safepoint before generating condition code so it can be recomputed
|
|
if (x->is_safepoint()) {
|
|
// increment backedge counter if needed
|
|
increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
|
|
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
|
|
}
|
|
set_no_result(x);
|
|
|
|
LIR_Opr left = xin->result();
|
|
LIR_Opr right = yin->result();
|
|
|
|
__ cmp(lir_cond(cond), left, right);
|
|
// Generate branch profiling. Profiling code doesn't kill flags.
|
|
profile_branch(x, cond);
|
|
move_to_phi(x->state());
|
|
if (x->x()->type()->is_float_kind()) {
|
|
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
|
|
} else {
|
|
__ branch(lir_cond(cond), right->type(), x->tsux());
|
|
}
|
|
assert(x->default_sux() == x->fsux(), "wrong destination above");
|
|
__ jump(x->default_sux());
|
|
}
|
|
|
|
LIR_Opr LIRGenerator::getThreadPointer() {
|
|
return FrameMap::as_pointer_opr(rthread);
|
|
}
|
|
|
|
void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
|
|
|
|
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
|
|
CodeEmitInfo* info) {
|
|
__ volatile_store_mem_reg(value, address, info);
|
|
}
|
|
|
|
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
|
|
CodeEmitInfo* info) {
|
|
__ volatile_load_mem_reg(address, result, info);
|
|
}
|
|
|
|
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
|
|
BasicType type, bool is_volatile) {
|
|
LIR_Address* addr = new LIR_Address(src, offset, type);
|
|
__ load(addr, dst);
|
|
}
|
|
|
|
|
|
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
|
|
BasicType type, bool is_volatile) {
|
|
LIR_Address* addr = new LIR_Address(src, offset, type);
|
|
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
|
|
if (is_obj) {
|
|
// Do the pre-write barrier, if any.
|
|
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
|
|
true /* do_load */, false /* patch */, NULL);
|
|
__ move(data, addr);
|
|
assert(src->is_register(), "must be register");
|
|
// Seems to be a precise address
|
|
post_barrier(LIR_OprFact::address(addr), data);
|
|
} else {
|
|
__ move(data, addr);
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
|
|
BasicType type = x->basic_type();
|
|
LIRItem src(x->object(), this);
|
|
LIRItem off(x->offset(), this);
|
|
LIRItem value(x->value(), this);
|
|
|
|
src.load_item();
|
|
off.load_nonconstant();
|
|
|
|
// We can cope with a constant increment in an xadd
|
|
if (! (x->is_add()
|
|
&& value.is_constant()
|
|
&& can_inline_as_constant(x->value()))) {
|
|
value.load_item();
|
|
}
|
|
|
|
LIR_Opr dst = rlock_result(x, type);
|
|
LIR_Opr data = value.result();
|
|
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
|
|
LIR_Opr offset = off.result();
|
|
|
|
if (data == dst) {
|
|
LIR_Opr tmp = new_register(data->type());
|
|
__ move(data, tmp);
|
|
data = tmp;
|
|
}
|
|
|
|
LIR_Address* addr;
|
|
if (offset->is_constant()) {
|
|
jlong l = offset->as_jlong();
|
|
assert((jlong)((jint)l) == l, "offset too large for constant");
|
|
jint c = (jint)l;
|
|
addr = new LIR_Address(src.result(), c, type);
|
|
} else {
|
|
addr = new LIR_Address(src.result(), offset, type);
|
|
}
|
|
|
|
LIR_Opr tmp = new_register(T_INT);
|
|
LIR_Opr ptr = LIR_OprFact::illegalOpr;
|
|
|
|
if (x->is_add()) {
|
|
__ xadd(LIR_OprFact::address(addr), data, dst, tmp);
|
|
} else {
|
|
if (is_obj) {
|
|
// Do the pre-write barrier, if any.
|
|
ptr = new_pointer_register();
|
|
__ add(src.result(), off.result(), ptr);
|
|
pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
|
|
true /* do_load */, false /* patch */, NULL);
|
|
}
|
|
__ xchg(LIR_OprFact::address(addr), data, dst, tmp);
|
|
if (is_obj) {
|
|
post_barrier(ptr, data);
|
|
}
|
|
}
|
|
}
|